Academic literature on the topic 'Data Network Effects'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Data Network Effects.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Data Network Effects"
Smith, Jeffrey A., and G. Robin Gauthier. "Estimating Contextual Effects from Ego Network Data." Sociological Methodology 50, no. 1 (June 2, 2020): 215–75. http://dx.doi.org/10.1177/0081175020922879.
Full textDe Giorgi, Giacomo, Anders Frederiksen, and Luigi Pistaferri. "Consumption Network Effects." Review of Economic Studies 87, no. 1 (May 6, 2019): 130–63. http://dx.doi.org/10.1093/restud/rdz026.
Full textJochmans, Koen, and Martin Weidner. "Fixed‐Effect Regressions on Network Data." Econometrica 87, no. 5 (2019): 1543–60. http://dx.doi.org/10.3982/ecta14605.
Full textSewell, Daniel K. "Latent space models for network perception data." Network Science 7, no. 2 (April 15, 2019): 160–79. http://dx.doi.org/10.1017/nws.2019.1.
Full textWelles, Brooke Foucault, and Noshir Contractor. "Individual Motivations and Network Effects." ANNALS of the American Academy of Political and Social Science 659, no. 1 (April 9, 2015): 180–90. http://dx.doi.org/10.1177/0002716214565755.
Full textKhamis, Azme, Zuhaimy Ismail ., Khalid Haron ., and Ahmad Tarmizi Mohamm . "The Effects of Outliers Data on Neural Network Performance." Journal of Applied Sciences 5, no. 8 (July 15, 2005): 1394–98. http://dx.doi.org/10.3923/jas.2005.1394.1398.
Full textRosin, Paul L., and Freddy Fierens. "The effects of data filtering on neural network learning." Neurocomputing 20, no. 1-3 (August 1998): 155–62. http://dx.doi.org/10.1016/s0925-2312(98)00008-3.
Full textMaharjan, Pragya. "Effects of Social Network on Health Education." Shiksha Shastra Saurabh 21 (December 31, 2018): 31–36. http://dx.doi.org/10.3126/sss.v21i0.35087.
Full textOană, Iulian. "Network Effects on Rhythms of Scientific Publications." International Review of Social Research 8, no. 2 (December 1, 2018): 143–55. http://dx.doi.org/10.2478/irsr-2018-0016.
Full textMcPherson, Miller, and Jeffrey A. Smith. "Network Effects in Blau Space: Imputing Social Context from Survey Data." Socius: Sociological Research for a Dynamic World 5 (January 2019): 237802311986859. http://dx.doi.org/10.1177/2378023119868591.
Full textDissertations / Theses on the topic "Data Network Effects"
Örblom, Markus. "Effects of Network Performance on Smartphone User Behavior." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-177547.
Full textSathyanarayana, Supreeth. "Characterizing the effects of device components on network traffic." Thesis, Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47640.
Full textMerchán, Dueñas Daniel Esteban. "Effects of road-network circuity on strategic decisions in urban logistics." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119911.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 114-120).
This thesis proposes a research framework that leverages high-resolution traffic and urban infrastructure data to improve analytical approximation methods used to inform strategic decisions in designing last-mile distribution systems. In particular, this thesis explores the effects of the road-network on the circuity of local trips, and introduces data-driven extensions to improve predictive performance of route distance approximation methods by increasing the resolution of the underlying urban road-network. Overall, these circuity-based extensions significantly increase the real-world validity of routing approximations compared to classical methods, and entail relevant implications in the configuration of logistics networks within urban markets. The framework presented in this thesis entails three inter-dependent levels of analysis: individual trip, consolidated route and last-mile network levels. In Chapter 2, we introduce a method to quantify and analyze the network circuity of local trips leveraging contemporary traffic datasets. Using the city of Sao Paulo as the primary illustrative example and a combination of supervised and unsupervised machine learning methods, significant heterogeneities in local network circuity are observed, explained by dimensional and topological properties of the road-network. Results from Sao Paulo are compared to seven additional large and medium-sized urban areas in Latin America and the United States. At a coarse-grained level of analysis, we observe similar correlations between road-network properties and local circuity across these cities. In Chapter 3, this thesis proposes a data-driven extension to continuum approximation-based methods used to predict urban route distances. This extension efficiently incorporates the circuity of the underlying road-network into the approximation method to improve distance predictions in more realistic settings. The proposed extension significantly outperforms classic methods, which build on the assumption of travel according to the rectilinear distance metric within urban areas. By only marginally increasing the data collection effort, results of the proposed extension yield error reductions between 20-30% in mean absolute percentage error compared to classical approximation methods and are within 10 - 20% compared to near-optimal solutions obtained with a local search heuristic. Further, by providing a real-world validation of classic continuum approximation-based methods, we explore how contemporary mapping technologies and novel sources of geo-spatial and traffic data can be efficiently leveraged to improve the predictive performance of these methods. Finally, building on the augmented route distance approximation, in Chapter 4 we explore the effect of road-network circuity on the design and planning of urban last-mile distribution systems. These improved routing approximations are used within an integer linear programming model to solve large-scale, real-world instances of the two-echelon capacitated location routing problem. Using the parcel delivery operation of Brazil's largest e-commerce platform in the city of Sao Paulo as the primary example to illustrate the impact and relevance of this work, we demonstrate how explicitly accounting for local variations in road-network circuity can yield relevant implications for fleet capacity planning, the location of urban distribution facilities, and the definition of facility-specific service areas. Results indicate that failing to account for local circuity would underestimate the necessary fleet size by 20% and would increase the total last-mile network cost by approximately 8%.
by Daniel Esteban Merchán Dueñas.
Ph. D. in Engineering Systems
Vuyyuru, Sisir. "Data Collection Network and Data Analysis for the Prototype Local Area Augmentation System Ground Facility." Ohio University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1195158113.
Full textRaoufi-Danner, Torrin. "Effects of Missing Values on Neural Network Survival Time Prediction." Thesis, Linköpings universitet, Statistik och maskininlärning, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-150339.
Full textFadul, Waad. "Data-Driven Health Services: an Empirical Investigation on the Role of Artificial Intelligence and Data Network Effects in Value Creation." Thesis, Uppsala universitet, Informationssystem, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-447507.
Full textDayton, Jonathan Bryan. "Adversarial Deep Neural Networks Effectively Remove Nonlinear Batch Effects from Gene-Expression Data." BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/7521.
Full textLarsson, Marcus, and Christoffer Möckelind. "The effects of Deep Belief Network pre-training of a Multilayered perceptron under varied labeled data conditions." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-187374.
Full textMärkt data kan ibland vara svårt att hitta för maskininlärningsuppgifter. Detta är ett problem för modeller som bygger på övervakad inlärning, exem- pelvis Multilayerd Perceptron(MLP). Ett Discriminative Deep Belief Network (DDBN) är en semi-övervakad modell som kan använda både märkt och omärkt data. Denna forskning syftar till att närma sig en tumregel om när det är för- delaktigt att använda en DDBN i stället för en MLP, vid olika proportioner av märkt och omärkt data. Flera försök med olika mängd märkt data, från MNIST och Rectangle-Images datamängderna, genomfördes för att jämföra de två mo- dellerna. Det konstaterades att för dessa datamängder hade DDBNerna bättre precision när ett fåtal märkt data fanns tillgängligt. När 50% eller mer av datan var märkt, hade DDBNerna och MLPerna jämförbar noggrannhet. Slutsatsen är att en tumregel att använda en DDBN när mindre än 50% av av träningsdatan är märkt, skulle vara i linje med resultaten. Det behövs dock mer forskning för att göra några generella slutsatser.
Diaz, Boada Juan Sebastian. "Polypharmacy Side Effect Prediction with Graph Convolutional Neural Network based on Heterogeneous Structural and Biological Data." Thesis, KTH, Numerisk analys, NA, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-288537.
Full textFör att minska dödligheten och sjukligheten hos patienter som lider av komplexa sjukdomar är det avgörande att kunna förutsäga biverkningar från polyfarmaci. Att experimentellt förutsäga biverkningarna är dock ogenomförbart på grund av det stora antalet möjliga läkemedelskombinationer, vilket lämnar in silico-verktyg som det mest lovande sättet att lösa detta problem. Detta arbete förbättrar prestandan och robustheten av ett av det senaste grafiska faltningsnätverken som är utformat för att förutsäga biverkningar från polyfarmaci, genom att mata det med läkemedel-protein-nätverkets komplexitetsegenskaper. Ändringarna involverar också skapandet av en direkt pipeline för att återge resultaten och testa den med olika dataset.
McMorries, David W. "Investigation into the effects of voice and data convergence on a Marine Expeditionary Bridgade TRI-TAC digital transmission network." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2000. http://handle.dtic.mil/100.2/ADA379684.
Full textThesis advisors, Osmundson, John S. ; Brady, Terrence C. "June 2000." Includes bibliographical references (p. 69). Also available in print.
Books on the topic "Data Network Effects"
McMorries, David W. Investigation into the effects of voice and data convergence on a Marine Expeditionary Bridgade TRI-TAC digital transmission network. Monterey, Calif: Naval Postgraduate School, 2000.
Find full textInformation systems for global financial markets: Emerging developments and effects. Hershey, PA: Business Science Reference, 2012.
Find full textVarlamov, Oleg. Mivar databases and rules. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1508665.
Full textInternet discourse and health debates. Basingstoke, Hampshire: Palgrave Macmillan, 2005.
Find full textP, Masterson John, Johnson Carole D, Climate and Land Use Change Research Development Program (U.S.), and Geological Survey (U.S.), eds. Well network installation and hydrogeologic data collection, Assateague Island National Seashore, Worcester County, Maryland, 2010. Reston, Va: U.S. Dept. of the Interior, U.S. Geological Survey, 2012.
Find full textKerr, Kerri A. Quaker Valley Digital School District: Early effects and plans for future evaluation. Santa Monica, CA: Rand, 2003.
Find full textInternational Conference on Systems Research, Informatics, and Cybernetics (19th 2007 Baden-Baden, Germany). Advances in environmental systems research: Sustainability, environmental sciences, support systems : effects of electromagnetic exposition on honeybees, principles of neuro-empirism and dynamic models, application of stochastic networks, sustainability of fuzzy theory, object oriented analysis, integrated logistic support principles, business information management system, sustainable decision support systems, health service delivery. Tecumseh, Ont: International Institute for Advanced Studies in Systems Research and Cybernetics, 2007.
Find full textInternational Conference on Systems Research, Informatics, and Cybernetics (19th 2007 Baden-Baden, Germany). Advances in environmental systems research: Sustainability, environmental sciences, support systems : effects of electromagnetic exposition on honeybees, principles of neuro-empirism and dynamic models, application of stochastic networks, sustainability of fuzzy theory, object oriented analysis, integrated logistic support principles, business information management system, sustainable decision support systems, health service delivery. Tecumseh, Ont: International Institute for Advanced Studies in Systems Research and Cybernetics, 2007.
Find full textStefanie, Lindstaedt, Kloos Carlos Delgado, Hernández-Leo Davinia, and SpringerLink (Online service), eds. 21st Century Learning for 21st Century Skills: 7th European Conference of Technology Enhanced Learning, EC-TEL 2012, Saarbrücken, Germany, September 18-21, 2012. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textOntario Educational Research Council. Conference. [Papers presented at the 36th Annual Conference of the Ontario Educational Research Council, Toronto, Ontario, December 2-3, 1994]. [Toronto, ON: s.n.], 1994.
Find full textBook chapters on the topic "Data Network Effects"
De Marsico, Maria, Luca Moschella, Andrea Sterbini, and Marco Temperini. "Effects of Network Topology on the OpenAnswer’s Bayesian Model of Peer Assessment." In Data Driven Approaches in Digital Education, 385–90. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66610-5_31.
Full textPark, Kyungseo, and Ramez Elmasri. "Effects of Storage Architecture on Performance of Sensor Network Queries." In Information Networking. Advances in Data Communications and Wireless Networks, 247–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11919568_25.
Full textAkhmet, Marat, Duygu Aruğaslan Çinçin, and Nur Cengiz. "Dynamics of a Recurrent Neural Network with Impulsive Effects and Piecewise Constant Argument." In Trends in Data Engineering Methods for Intelligent Systems, 540–52. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79357-9_52.
Full textJung, Joon-Young, and Jae-Min Ahn. "Effects of the Distinction between Long and Short Data Grants in DOCSIS Network." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 310–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-11284-3_32.
Full textHeinkelmann, Robert, Kyriakos Balidakis, Apurva Phogat, Cuixian Lu, Julian A. Mora-Diaz, Tobias Nilsson, and Harald Schuh. "Effects of Meteorological Input Data on the VLBI Station Coordinates, Network Scale, and EOP." In International Symposium on Earth and Environmental Sciences for Future Generations, 195–202. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/1345_2016_243.
Full textZörgő, Szilvia, Zachari Swiecki, and A. R. Ruis. "Exploring the Effects of Segmentation on Semi-structured Interview Data with Epistemic Network Analysis." In Communications in Computer and Information Science, 78–90. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67788-6_6.
Full textMcGarry, Ken, and Ennock Assamoha. "Data Integration with Self-organising Neural Network Reveals Chemical Structure and Therapeutic Effects of Drug ATC Codes." In Advances in Intelligent Systems and Computing, 63–74. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66939-7_6.
Full textBanhatti, Aniruddha Gopal, and Paresh Chandra Deka. "Effects of Data Pre-processing on the Prediction Accuracy of Artificial Neural Network Model in Hydrological Time Series." In Urban Hydrology, Watershed Management and Socio-Economic Aspects, 265–75. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40195-9_21.
Full textZwitter, Andrej. "The Network Effect on Ethics in the Big Data Age." In Big Data Challenges, 23–34. London: Palgrave Macmillan UK, 2016. http://dx.doi.org/10.1057/978-1-349-94885-7_3.
Full textKocak, Fatih, George Kesidis, and Serge Fdida. "Network Neutrality with Content Caching and Its Effect on Access Pricing." In Smart Data Pricing, 47–66. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118899250.ch3.
Full textConference papers on the topic "Data Network Effects"
Saveski, Martin, Jean Pouget-Abadie, Guillaume Saint-Jacques, Weitao Duan, Souvik Ghosh, Ya Xu, and Edoardo M. Airoldi. "Detecting Network Effects." In KDD '17: The 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3097983.3098192.
Full textLin, Anne, Andrees Abeliuk, and Emilio Ferrara. "Effects of Network Structure on Subjective Preference Diversity." In 2019 IEEE International Conference on Big Data (Big Data). IEEE, 2019. http://dx.doi.org/10.1109/bigdata47090.2019.9005454.
Full textArbour, David, Dan Garant, and David Jensen. "Inferring Network Effects from Observational Data." In KDD '16: The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2939672.2939791.
Full textChristodoulakis, Christina, Christos Faloutsos, and Renee J. Miller. "VoidWiz: Resolving incompleteness using network effects." In 2014 IEEE 30th International Conference on Data Engineering (ICDE). IEEE, 2014. http://dx.doi.org/10.1109/icde.2014.6816748.
Full textSun, Yanan, Peiqin Zhang, and Jinhua Fei. "CEO Turnover, Network Effects, and Firm Performance." In 2020 5th IEEE International Conference on Big Data Analytics (ICBDA). IEEE, 2020. http://dx.doi.org/10.1109/icbda49040.2020.9101323.
Full textOzcan, Selim, and Ahmet Fatih Mustacoglu. "Transfer Learning Effects on Image Steganalysis with Pre-Trained Deep Residual Neural Network Model." In 2018 IEEE International Conference on Big Data (Big Data). IEEE, 2018. http://dx.doi.org/10.1109/bigdata.2018.8622437.
Full textAbdullah, Kareem, Noha Korany, Ayman Khalafallah, Ahmed Saeed, and Ayman Gaber. "Characterizing the Effects of Rapid LTE Deployment: A Data-Driven Analysis." In 2019 Network Traffic Measurement and Analysis Conference (TMA). IEEE, 2019. http://dx.doi.org/10.23919/tma.2019.8784522.
Full textMase, Hajime, Maria T. Reis, Shunji Nagahashi, Takehisa Saitoh, and Terry S. Hedges. "EFFECTS OF ZERO-OVERTOPPING DATA IN ARTIFICIAL NEURAL NETWORK PREDICTIONS." In Proceedings of the 5th Coastal Structures International Conference, CSt07. World Scientific Publishing Company, 2009. http://dx.doi.org/10.1142/9789814282024_0136.
Full textUtrera, Gladys, Marisa Gil, and Xavier Martorell. "Analyzing Data-Error Propagation Effects in High-Performance Computing." In 2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP). IEEE, 2016. http://dx.doi.org/10.1109/pdp.2016.42.
Full textLin, Yao-San, and Tung-I. Tsai. "Using virtual data effects to stabilize pilot run neural network modeling." In 2013 IEEE International Conference on Grey Systems and Intelligent Services (GSIS). IEEE, 2013. http://dx.doi.org/10.1109/gsis.2013.6714828.
Full textReports on the topic "Data Network Effects"
Malde, Bansi, and Arun Advani. Empirical methods for networks data: social effects, network formation and measurement error. IFS, December 2014. http://dx.doi.org/10.1920/wp.ifs.2014.1434.
Full textJochmans, Koen, and Martin Weidner. Fixed-effect regressions on network data. The IFS, May 2017. http://dx.doi.org/10.1920/wp.cem.2017.2617.
Full textWeidner, Martin, and Koen Jochmans. Fixed-effect regressions on network data. IFS, August 2016. http://dx.doi.org/10.1920/wp.cem.2016.3216.
Full textWeidner, Martin, and Koen Jochmans. Fixed-effect regressions on network data. The IFS, April 2019. http://dx.doi.org/10.1920/wp.cem.2019.1619.
Full textLatané, Annah, Jean-Michel Voisard, and Alice Olive Brower. Senegal Farmer Networks Respond to COVID-19. RTI Press, June 2021. http://dx.doi.org/10.3768/rtipress.2021.rr.0045.2106.
Full textDodd, Hope, David Peitz, Gareth Rowell, Janice Hinsey, David Bowles, Lloyd Morrison, Michael DeBacker, Jennifer Haack-Gaynor, and Jefrey Williams. Protocol for Monitoring Fish Communities in Small Streams in the Heartland Inventory and Monitoring Network. National Park Service, April 2021. http://dx.doi.org/10.36967/nrr-2284726.
Full textBedoya-Maya, Felipe, Lynn Scholl, Orlando Sabogal-Cardona, and Daniel Oviedo. Who uses Transport Network Companies?: Characterization of Demand and its Relationship with Public Transit in Medellín. Inter-American Development Bank, September 2021. http://dx.doi.org/10.18235/0003621.
Full textBehrman, Jere R., Hans-Peter Kohler, and Susan Cotts Watkins. How can we measure the causal effects of social networks using observational data? Evidence from the diffusion of family planning and AIDS worries in South Nyanza District, Kenya. Rostock: Max Planck Institute for Demographic Research, July 2001. http://dx.doi.org/10.4054/mpidr-wp-2001-022.
Full textBalali, Vahid, Arash Tavakoli, and Arsalan Heydarian. A Multimodal Approach for Monitoring Driving Behavior and Emotions. Mineta Transportation Institute, July 2020. http://dx.doi.org/10.31979/mti.2020.1928.
Full textTucker-Blackmon, Angelicque. Engagement in Engineering Pathways “E-PATH” An Initiative to Retain Non-Traditional Students in Engineering Year Three Summative External Evaluation Report. Innovative Learning Center, LLC, July 2020. http://dx.doi.org/10.52012/tyob9090.
Full text