Dissertations / Theses on the topic 'Data fusion algorithms'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Data fusion algorithms.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Aziz, Ashraf Mamdouh Abdel. "New data fusion algorithms for distributed multi-sensor multi-target environments." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1999. http://handle.dtic.mil/100.2/ADA369780.
Full text"September 1999". Dissertation supervisor(s): Robert Cristi, Murali Tummala. Includes bibliographical references (p. 199-214). Also avaliable online.
Rivera, velázquez Josué. "Analysis and development of algorithms for data fusion in sensor arrays." Thesis, Montpellier, 2020. http://www.theses.fr/2020MONTS038.
Full textCurrently, most of the sensors are ``smart'' in nature, which means that sensing elements and associated electronics are integrated on the same chip. Among these new generation of sensors, the Micro-Electro-Mechanical-Systems (MEMS) make use of Microelectronics technologies for batch manufacturing of small footprint sensors to unprecedented volumes and at low prices. If those components of the shelf are satisfactory for many consumer and low- to medium-end applications, they still cannot fully meet the performance needs of many high-end applications.However, due to their decreasing price, their small footprint, and their low-power consumption, it is now feasible to implement systems with tens and even hundreds of sensors. Those systems give a possible solution to the lack of performance of individual sensors and additionally they can also improve dependability and robustness of sensing. Sensor array systems are one of these methods of redundant measurements that arise in response to the aforementioned problems. The development of data fusion algorithms for sensor array systems is a research topic frequently studied in the literature. Even so, it still remains a lot of research work to do in this increasingly important area. The emergence of new applications with increasingly complex needs is growing the requirement for new algorithms with features such as integration, adaptability, dependability, low computational cost, and genericity among others.In this thesis we present a new algorithm for sensor array systems that propose a viable solution to overcome constraints mentioned before. The proposal is an on-line method based on the MInimum Norm Quadratic Unbiased Estimation (MINQUE) that is able to compute sensors' variances without the knowledge of the inputs. This algorithm is capable to track changes in sensors' variances caused principally by the low-frequency noise effects, as well as to detect and point out sensors affected by permanent or transitory errors. This approach is generic, which means that it can be implemented for different types of sensor array systems. In addition, this algorithm can be also implemented in sensor network systems.Two more contributions of this thesis can be listed. The first is a generic sensor model for sensor simulations at system level. This tool created inside the Matlab Simulink environment permits the analysis of implementations of data fusion algorithms in multi-sensor systems. Unlike the models previously existing in the literature, this sensor model has characteristics such as genericity and inclusion of low-frequency noises. The second is a study to compare the performance and feasibility in the implementation of different algorithms for data fusion in sensor array systems. This study contains an analysis of computational complexity, memory required, and the error in estimation. The analyzed algorithms are : the method of least squares, an artificial neural network, Kalman filter, and Random weighting
Baravdish, Ninos. "Information Fusion of Data-Driven Engine Fault Classification from Multiple Algorithms." Thesis, Linköpings universitet, Fordonssystem, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176508.
Full textLi, Lingjie Luo Zhi-Quan. "Data fusion and filtering for target tracking and identification /." *McMaster only, 2003.
Find full textAyodeji, Akiwowo. "Developing integrated data fusion algorithms for a portable cargo screening detection system." Thesis, Loughborough University, 2012. https://dspace.lboro.ac.uk/2134/9901.
Full textBougiouklis, Theodoros C. "Traffic management algorithms in wireless sensor networks." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2006. http://library.nps.navy.mil/uhtbin/hyperion/06Sep%5FBougiouklis.pdf.
Full textThesis Advisor(s): Weillian Su. "September 2006." Includes bibliographical references (p. 79-80). Also available in print.
Elbakary, Mohamed Ibrahim. "Novel Pixel-Level and Subpixel-Level Registration Algorithms for Multi-Modal Imagery Data." Diss., Tucson, Arizona : University of Arizona, 2005. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu%5Fetd%5F1293%5F1%5Fm.pdf&type=application/pdf.
Full textTrailović, Lidija. "Ranking and optimization of target tracking algorithms." online access from Digital Dissertation Consortium access full-text, 2002. http://libweb.cityu.edu.hk/cgi-bin/er/db/ddcdiss.pl?3074810.
Full textGnanapandithan, Nithya. "Data detection and fusion in decentralized sensor networks." Thesis, Manhattan, Kan. : Kansas State University, 2005. http://hdl.handle.net/2097/132.
Full textHo, Peter. "Organization in decentralized sensing." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.306873.
Full textDraper, Stark Christiaan. "Successive structuring of source coding algorithms for data fusion, buffering, and distribution in networks." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/29239.
Full textIncludes bibliographical references (p. 159-165).
Numerous opportunities to improve network performance present themselves when we make communication networks aware of the characteristics of the data content they are handling. In this thesis, we design such content-aware algorithms that span traditional network layers and are successively structured, focusing on problems of data fusion, buffering, and distribution. The successive structuring of these algorithms provides the flexibility needed to deal with the distributed processing, the heterogeneous sources of information, and the uncertain operating conditions that typify many networks. We investigate the broad interactions between estimation and communication in the context of data fusion in tree-structured sensor networks. We show how to decompose any general tree into serial (pipeline) and parallel (hub-and-spoke) networks. We develop successive coding strategies for these prototype sensor networks based on generalized Wyner-Ziv coding. We extend Wyner-Ziv source coding with side information to "noisy" encoder observations and develop the associated rate-distortion function. We show how to approach the serial and parallel network configurations as cascades of noisy Wyner-Ziv stages. This approach leads to convenient iterative (achievable) distortion-rate expressions for quadratic-Gaussian scenarios. Under a sum-rate constraint, the parallel network is equivalent to what is referred to as the CEO problem. We connect our work to those earlier results. We further develop channel coding strategies for certain classes of relay channels.
(cont.) We also explore the interactions between source coding and queue management in problems of buffering and distributing distortion-tolerant data. We formulate a general queuing model relevant to numerous communication scenarios, and develop a bound on the performance of any algorithm. We design an adaptive buffer-control algorithm for use in dynamic environments and under finite memory limitations; its performance closely approximates the bound. Our design uses multiresolution source codes that exploit the data's distortion-tolerance in minimizing end-to-end distortion. Compared to traditional approaches, the performance gains of the adaptive algorithm are significant - improving distortion, delay, and overall system robustness.
by Stark Christiaan Draper.
Ph.D.
Dong, Shaoqiang Agrawal Prathima. "Node placement, routing and localization algorithms for heterogeneous wireless sensor networks." Auburn, Ala, 2008. http://repo.lib.auburn.edu/EtdRoot/2008/SPRING/Electrical_and_Computer_Engineering/Thesis/Dong_Shaoqiang_40.pdf.
Full textJulier, Simon J. "Process models for the navigation of high speed land vehicles." Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.362011.
Full textAuephanwiriyakul, Sansanee. "A study of linguistic pattern recognition and sensor fusion /." free to MU campus, to others for purchase, 2000. http://wwwlib.umi.com/cr/mo/fullcit?p9999270.
Full textJones, Malachi Gabriel. "Design and implementation of a multi-agent systems laboratory." Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29617.
Full textCommittee Chair: Jeff Shamma; Committee Member: Eric Feron; Committee Member: Magnus Egerstedt. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Lu, Yang. "Unified Bias Analysis of Subspace-Based DOA Estimation Algorithms." PDXScholar, 1993. https://pdxscholar.library.pdx.edu/open_access_etds/4613.
Full textZarrouati-Vissière, Nadège. "La réalité augmentée : fusion de vision et navigation." Phd thesis, Ecole Nationale Supérieure des Mines de Paris, 2013. http://pastel.archives-ouvertes.fr/pastel-00961962.
Full textKallumadi, Surya Teja. "Data aggregation in sensor networks." Thesis, Manhattan, Kan. : Kansas State University, 2010. http://hdl.handle.net/2097/2387.
Full textAgarwalla, Bikash Kumar. "Resource management for data streaming applications." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34836.
Full textBorkar, Milind. "A distributed Monte Carlo method for initializing state vector distributions in heterogeneous smart sensor networks." Diss., Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/22680.
Full textArezki, Yassir. "Algorithmes de références 'robustes' pour la métrologie dimensionnelle des surfaces asphériques et des surfaces complexes en optique." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLN058.
Full textAspheres and freeform surfaces are a very challenging class of optical elements. Their application has grown considerably in the last few years in imaging systems, astronomy, lithography, etc. The metrology for aspheres is very challenging, because of the high dynamic range of the acquired information and the traceability to the SI unit meter. Metrology should make use of the infinite norm; (Minimum Zone Method or Min-Max method) to calculate the envelope enclosing the points in the dataset by minimizing the difference between the maximum deviation and the minimum deviation between the surface and the dataset. This method grows in complexity as the number of points in the dataset increases, and the involved algorithms are non-deterministic. Despite the fact that this method works for simple geometries (lines, planes, circles, cylinders, cones and spheres) it is still a major challenge when used on complex geometries (asphere and freeform surfaces). Therefore, the main objective is to address this key challenge about the development of Min-Max fitting algorithms for both aspherical and freeform surfaces as well as least squares fitting algorithms, in order to provide robust reference algorithms for the large community involved in this domain. The reference algorithms to be developed should be evaluated and validated on several reference data (softgauges) that will be generated using reference data generators
Malik, Zohaib Mansoor. "Design and implementation of temporal filtering and other data fusion algorithms to enhance the accuracy of a real time radio location tracking system." Thesis, Högskolan i Gävle, Avdelningen för elektronik, matematik och naturvetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-13261.
Full textNarasimhan, Ramakrishnan Akshra. "Design and Evaluation of Perception System Algorithms for Semi-Autonomous Vehicles." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1595256912692618.
Full textElkin, Colin P. "Development of Adaptive Computational Algorithms for Manned and Unmanned Flight Safety." University of Toledo / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1544640516618623.
Full textLian, Chunfeng. "Information fusion and decision-making using belief functions : application to therapeutic monitoring of cancer." Thesis, Compiègne, 2017. http://www.theses.fr/2017COMP2333/document.
Full textRadiation therapy is one of the most principal options used in the treatment of malignant tumors. To enhance its effectiveness, two critical issues should be carefully dealt with, i.e., reliably predicting therapy outcomes to adapt undergoing treatment planning for individual patients, and accurately segmenting tumor volumes to maximize radiation delivery in tumor tissues while minimize side effects in adjacent organs at risk. Positron emission tomography with radioactive tracer fluorine-18 fluorodeoxyglucose (FDG-PET) can noninvasively provide significant information of the functional activities of tumor cells. In this thesis, the goal of our study consists of two parts: 1) to propose reliable therapy outcome prediction system using primarily features extracted from FDG-PET images; 2) to propose automatic and accurate algorithms for tumor segmentation in PET and PET-CT images. The theory of belief functions is adopted in our study to model and reason with uncertain and imprecise knowledge quantified from noisy and blurring PET images. In the framework of belief functions, a sparse feature selection method and a low-rank metric learning method are proposed to improve the classification accuracy of the evidential K-nearest neighbor classifier learnt by high-dimensional data that contain unreliable features. Based on the above two theoretical studies, a robust prediction system is then proposed, in which the small-sized and imbalanced nature of clinical data is effectively tackled. To automatically delineate tumors in PET images, an unsupervised 3-D segmentation based on evidential clustering using the theory of belief functions and spatial information is proposed. This mono-modality segmentation method is then extended to co-segment tumor in PET-CT images, considering that these two distinct modalities contain complementary information to further improve the accuracy. All proposed methods have been performed on clinical data, giving better results comparing to the state of the art ones
Lassoued, Khaoula. "Localisation de robots mobiles en coopération mutuelle par observation d'état distribuée." Thesis, Compiègne, 2016. http://www.theses.fr/2016COMP2289/document.
Full textIn this work, we study some cooperative localization issues for mobile robotic systems that interact with each other without using relative measurements (e.g. bearing and relative distances). The considered localization technologies are based on beacons or satellites that provide radio-navigation measurements. Such systems often lead to offsets between real and observed positions. These systematic offsets (i.e, biases) are often due to inaccurate beacon positions, or differences between the real electromagnetic waves propagation and the observation models. The impact of these biases on robots localization should not be neglected. Cooperation and data exchange (estimates of biases, estimates of positions and proprioceptive measurements) reduce significantly systematic errors. However, cooperative localization based on sharing estimates is subject to data incest problems (i.e, reuse of identical information in the fusion process) that often lead to over-convergence problems. When position information is used in a safety-critical context (e.g. close navigation of autonomous robots), one should check the consistency of the localization estimates. In this context, we aim at characterizing reliable confidence domains that contain robots positions with high reliability. Hence, set-membership methods are considered as efficient solutions. This kind of approach enables merging adequately the information even when it is reused several time. It also provides reliable domains. Moreover, the use of non-linear models does not require any linearization. The modeling of a cooperative system of nr robots with biased beacons measurements is firstly presented. Then, we perform an observability study. Two cases regarding the localization technology are considered. Observability conditions are identified and demonstrated. We then propose a set-membership method for cooperativelocalization. Cooperation is performed by sharing estimated positions, estimated biases and proprioceptive measurements. Sharing biases estimates allows to reduce the estimation error and the uncertainty of the robots positions. The algorithm feasibility is validated through simulation when the observations are beacons distance measurements with several robots. The cooperation provides better performance compared to a non-cooperative method. Afterwards, the cooperative algorithm based on set-membership method is tested using real data with two experimental vehicles. Finally, we compare the interval method performance with a sequential Bayesian approach based on covariance intersection. Experimental results indicate that the interval approach provides more accurate positions of the vehicles with smaller confidence domains that remain reliable. Indeed, the comparison is performed in terms of accuracy and uncertainty
Ribas, Afonso Degmar. "Classificação distribuída de anuros usando rede de sensores sem fio." Universidade Federal do Amazonas, 2013. http://tede.ufam.edu.br/handle/tede/2922.
Full textWireless Sensor Networks (WSNs) can be used in environmental conservation applications and studies due to its wireless communication, sensing, and monitoring capabilities. In the Ecology context, amphibians are used as bioindicators of ecosystemic changes of a region and can early indicate environmental problems. Thus, biologists monitor the anuran (frogs and toads) population in order to establish environmental conservational strategies. Anuran were chosen because the sounds they emit allow classification by using microphones and signal processing. In this work we propose and evaluate some distributed algorithms for anuran classification based on their calls (vocalizations) in the habit using WSNs. This method is interesting because it is not intrusive and it allows remote monitoring. Our solution builds cluster of nodes whose acoustic collected measurements are correlated. The nodes of the same group are combined to generate local classification decisions. Then, these decisions are combined to generate a global decision. We use k-means algorithm for clustering nodes with correlated measurements, which groups instances by similarity. Experiments show that, in comparison with other literature algorithms, the error rate of our solution were 26 pp (percentage points) lower.
As Redes de Sensores Sem Fios (RSSFs) podem ser utilizadas em aplicações de conservação e estudo ambiental devido à sua capacidade de sensoriamento, monitoramento e comunicação sem fio. Dentro do contexto da Ecologia, os anfíbios são utilizados como bioindicadores de mudanças no ecossistema de uma região e podem precocemente indicar problemas ambientais. Desta forma, os biólogos monitoram a população de anuros (sapos e rãs) a fim de estabelecer estratégias de conservação do meio ambiente. Os anuros são escolhidos por causa sons que emitem (coaxar), que permitem a identificação dessas espécies por meio de microfones e processamento do sinal. Portanto, neste trabalho propomos e avaliamos alguns algoritmos distribuídos para classificação de anuros baseados em suas vocalizações em seu habitat usando RSSF. Este método é interessante pois não é intrusivo e permite o monitoramento remoto. Nossa solução cria grupos de nós sensores cujas medidas acústicas coletadas estão correlacionadas. Os dados dos nós de um mesmo grupo são combinados para gerar decisões de classificação locais. Essas decisões são então combinadas para formar uma decisão global. Para agrupar os nós com medidas correlacionadas, utilizamos o algoritmo k-means, que agrupa instâncias similares. Os experimentos mostram que, em comparação com outros algoritmos da literatura, a taxa de erro da nossa solução chegou ser até 26 pp (pontos percentuais) menor.
Jing, Hongyuan. "Landmine detection algorithm design based on data fusion technology." Thesis, University of Leicester, 2018. http://hdl.handle.net/2381/43099.
Full textShi, Hongxiang. "Hierarchical Statistical Models for Large Spatial Data in Uncertainty Quantification and Data Fusion." University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1504802515691938.
Full textVestin, Albin, and Gustav Strandberg. "Evaluation of Target Tracking Using Multiple Sensors and Non-Causal Algorithms." Thesis, Linköpings universitet, Reglerteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-160020.
Full textHéry, Elwan. "Localisation coopérative de véhicules autonomes communicants." Thesis, Compiègne, 2019. http://www.theses.fr/2019COMP2516.
Full textTo be able to navigate autonomously, a vehicle must be accurately localized relatively to all obstacles, such as roadside for lane keeping and vehicles and pedestrians to avoid causing accidents. This PhD thesis deals with the interest of cooperation to improve the localization of cooperative vehicles that exchange information. Autonomous navigation on the road is often based on coordinates provided in a Cartesian frame. In order to better represent the pose of a vehicle with respect to the lane in which it travels, we study curvilinear coordinates with respect to a path stored in a map. These coordinates generalize the curvilinear abscissa by adding a signed lateral deviation from the center of the lane and an orientation relative to the center of the lane taking into account the direction of travel. These coordinates are studied with different track models and using different projections to make the map-matching. A first cooperative localization approach is based on these coordinates. The lateral deviation and the orientation relative to the lane can be known precisely from a perception of the lane borders, but for autonomous driving with other vehicles, it is important to maintain a good longitudinal accuracy. A one-dimensional data fusion method makes it possible to show the interest of the cooperative localization in this simplified case where the lateral deviation, the curvilinear orientation and the relative positioning between two vehicles are accurately known. This case study shows that, in some cases, lateral accuracy can be propagated to other vehicles to improve their longitudinal accuracy. The correlation issues of the errors are taken into account with a covariance intersection filter. An ICP (Iterative Closest Point) minimization algorithm is then used to determine the relative pose between the vehicles from LiDAR points and a 2D polygonal model representing the shape of the vehicle. Several correspondences of the LiDAR points with the model and different minimization approaches are compared. The propagation of absolute vehicle pose using relative poses with their uncertainties is done through non-linear equations that can have a strong impact on consistency. The different dynamic elements surrounding the ego-vehicle are estimated in a Local Dynamic Map (LDM) to enhance the static high definition map describing the center of the lane and its border. In our case, the agents are only communicating vehicles. The LDM is composed of the state of each vehicle. The states are merged using an asynchronous algorithm, fusing available data at variable times. The algorithm is decentralized, each vehicle computing its own LDM and sharing it. As the position errors of the GNSS receivers are biased, a marking detection is introduced to obtain the lateral deviation from the center of the lane in order to estimate these biases. LiDAR observations with the ICP method allow to enrich the fusion with the constraints between the vehicles. Experimental results of this fusion show that the vehicles are more accurately localized with respect to each other while maintaining consistent poses
Ruthenberg, Thomas M. "Data fusion algorithm for the Vessel Traffic Services system : a fuzzy associative system approach /." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1995. http://handle.dtic.mil/100.2/ADA300458.
Full textDe, Gregorio Ludovica. "Development of new data fusion techniques for improving snow parameters estimation." Doctoral thesis, Università degli studi di Trento, 2019. http://hdl.handle.net/11572/245392.
Full textMidwood, Sean A. "A computationally efficient and cost effective multisensor data fusion algorithm for the United States Coast Guard Vessel Traffic Services system." Thesis, Monterey, Calif. : Naval Postgraduate School, 1997. http://handle.dtic.mil/100.2/ADA333476.
Full textThesis Advisor(s): Murali Tummala. "September 1997." Includes bibliographical references (p. 61-62). Also available in print.
Haj, Chhadé Hiba. "Data fusion and collaborative state estimation in wireless sensor networks." Thesis, Compiègne, 2015. http://www.theses.fr/2015COMP2207/document.
Full textThe aim of the thesis is to develop fusion algorithms for data collected from a wireless sensor network in order to locate multiple sources emitting some chemical or biological agent in the air. These sensors detect the concentration of the emitted substance, transported by advection and diffusion, at their positions and communicate this information to a treatment center. The information collected in a collaborative manner is used first to locate the randomly deployed sensors and second to locate the sources. Applications include, amongst others, environmental monitoring and surveillance of sensitive sites as well as security applications in the case of an accidental or intentional release of a toxic agent. However, the application we consider in the thesis is that of landmine detection and localization. In this approach, the land mines are considered as sources emitting explosive chemicals. The thesis includes a theoretical contribution where we extend the Belief Propagation algorithm, a well-known data fusion algorithm that is widely used for collaborative state estimation in sensor networks, to the bounded error framework. The novel algorithm is tested on the self-localization problem in static sensor networks as well as the application of tracking a mobile object using a network of range sensors. Other contributions include the use of a Bayesian probabilistic approach along with data analysis techniques to locate an unknown number of vapor emitting sources
Vincke, Bastien. "Architectures pour des systèmes de localisation et de cartographie simultanées." Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00770323.
Full textBader, Kaci. "Tolérance aux fautes pour la perception multi-capteurs : application à la localisation d'un véhicule intelligent." Thesis, Compiègne, 2014. http://www.theses.fr/2014COMP2161/document.
Full textPerception is a fundamental input for robotic systems, particularly for positioning, navigation and interaction with the environment. But the data perceived by these systems are often complex and subject to significant imprecision. To overcome these problems, the multi-sensor approach uses either multiple sensors of the same type to exploit their redundancy or sensors of different types for exploiting their complementarity to reduce the sensors inaccuracies and uncertainties. The validation of the data fusion approach raises two major problems. First, the behavior of fusion algorithms is difficult to predict, which makes them difficult to verify by formal approaches. In addition, the open environment of robotic systems generates a very large execution context, which makes the tests difficult and costly. The purpose of this work is to propose an alternative to validation by developing fault tolerance mechanisms : since it is difficult to eliminate all the errors of the perceptual system, We will try to limit impact in their operation. We studied the inherently fault tolerance allowed by data fusion by formally analyzing the data fusion algorithms, and we have proposed detection and recovery mechanisms suitable for multi-sensor perception, we implemented the proposed mechanisms on vehicle localization application using Kalman filltering data fusion. We evaluated the proposed mechanims using the real data replay and fault injection technique
Seba, Ali. "Fusion de données capteurs visuels et inertiels pour l'estimation de la pose d'un corps rigide." Thesis, Versailles-St Quentin en Yvelines, 2015. http://www.theses.fr/2015VERS020V/document.
Full textAbstractThis thesis addresses the problems of pose estimation of a rigid body moving in 3D space by fusing data from inertial and visual sensors. The inertial measurements are provided from an I.M.U. (Inertial Measurement Unit) composed by accelerometers and gyroscopes. Visual data are from cameras, which positioned on the moving object, provide images representative of the perceived visual field. Thus, the implicit measure directions of fixed lines in the space of the scene from their projections on the plane of the image will be used in the attitude estimation. The approach was first to address the problem of measuring visual sensors after a long sequence using the characteristics of the image. Thus, a line tracking algorithm has been proposed based on optical flow of the extracted points and line matching approach by minimizing the Euclidean distance. Thereafter, an observer in the SO(3) space has been proposed to estimate the relative orientation of the object in the 3D scene by merging the data from the proposed lines tracking algorithm with Gyro data. The observer gain was developed using a Kalman filter type M.E.K.F. (Multiplicative Extended Kalman Filter). The problem of ambiguity in the sign of the measurement directions of the lines was considered in the design of the observer. Finally, the estimation of the relative position and the absolute velocity of the rigid body in the 3D scene have been processed. Two observers were proposed: the first one is an observer cascaded with decoupled from the estimation of the attitude and position estimation. The estimation result of the attitude observer feeds a nonlinear observer using measurements from the accelerometers in order to provide an estimate of the relative position and the absolute velocity of the rigid body. The second observer, designed directly in SE (3) for simultaneously estimating the position and orientation of a rigid body in 3D scene by fusing inertial data (accelerometers, gyroscopes), and visual data using a Kalman filter (M.E.K.F.). The performance of the proposed methods are illustrated and validated by different simulation results
May, Michael. "Data analytics and methods for improved feature selection and matching." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/data-analytics-and-methods-for-improved-feature-selection-and-matching(965ded10-e3a0-4ed5-8145-2af7a8b5e35d).html.
Full textPálenská, Markéta. "Návrh algoritmu pro fúzi dat navigačních systémů GPS a INS." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2013. http://www.nusl.cz/ntk/nusl-230495.
Full textPlachkov, Alex. "Soft Data-Augmented Risk Assessment and Automated Course of Action Generation for Maritime Situational Awareness." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/35336.
Full textReche, Jérôme. "Nouvelle méthodologie hybride pour la mesure de rugosités sub-nanométriques." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAT050.
Full textRoughness at Sub-nanometric scale determination becomes a critical issue, especially for patterns with critical dimensions below 10nm. Currently, there is no metrology technique able to provide a result with high precision and accuracy. A way, based on hybrid metrology, is currently explored and dedicated to dimensional measurements. This hybrid metrology uses data fusion algorithms in order to address data coming from different tools. This thesis presents some improvements on line roughness analysis thanks to frequency decomposition and associated model. The current techniques used for roughness determination are explained and a new one SAXS (Small Angle X-rays Scattering) is used to push again limits of extraction of roughness. This technique has a high potential to determine sub nanometrics patterns. Moreover, the design and manufacturing of reference line roughness samples is made, following the state of art with periodic roughness, but also more complex roughness determined by a statistical model usually used for measurement. Finally, this work focus on hybridization methods and more especially on neural network utilization. Thus, the establishment of a neural network is detailed through the multitude of parameters which must be set. In addition, training of the neural network on simulation leads to the capability to generate different metrology
Kenyeres, Martin. "Analýza a zefektivnění distribuovaných systémů." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2018. http://www.nusl.cz/ntk/nusl-390292.
Full textJiao, Lianmeng. "Classification of uncertain data in the framework of belief functions : nearest-neighbor-based and rule-based approaches." Thesis, Compiègne, 2015. http://www.theses.fr/2015COMP2222/document.
Full textIn many classification problems, data are inherently uncertain. The available training data might be imprecise, incomplete, even unreliable. Besides, partial expert knowledge characterizing the classification problem may also be available. These different types of uncertainty bring great challenges to classifier design. The theory of belief functions provides a well-founded and elegant framework to represent and combine a large variety of uncertain information. In this thesis, we use this theory to address the uncertain data classification problems based on two popular approaches, i.e., the k-nearest neighbor rule (kNN) andrule-based classification systems. For the kNN rule, one concern is that the imprecise training data in class over lapping regions may greatly affect its performance. An evidential editing version of the kNNrule was developed based on the theory of belief functions in order to well model the imprecise information for those samples in over lapping regions. Another consideration is that, sometimes, only an incomplete training data set is available, in which case the ideal behaviors of the kNN rule degrade dramatically. Motivated by this problem, we designedan evidential fusion scheme for combining a group of pairwise kNN classifiers developed based on locally learned pairwise distance metrics.For rule-based classification systems, in order to improving their performance in complex applications, we extended the traditional fuzzy rule-based classification system in the framework of belief functions and develop a belief rule-based classification system to address uncertain information in complex classification problems. Further, considering that in some applications, apart from training data collected by sensors, partial expert knowledge can also be available, a hybrid belief rule-based classification system was developed to make use of these two types of information jointly for classification
Avilès, Cruz Carlos. "Analyse de texture par statistiques d'ordre superieur : caracterisation et performances." Grenoble INPG, 1997. http://www.theses.fr/1997INPG0001.
Full textNegri, Lucas Hermann. "Algoritmos de inteligência computacional em instrumentação: uso de fusão de dados na avaliação de amostras biológicas e químicas." Universidade do Estado de Santa Catarina, 2012. http://tede.udesc.br/handle/handle/2072.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
This work presents computational methods to process data from electrical impedance spectroscopy and fiber Bragg grating interrogation in order to characterize the evaluated samples. Estimation and classification systems were developed, by using the signals isolatedly or simultaneously. A new method to adjust the parameters of functions that describes the electrical impedance spectra by using particle swarm optimization is proposed. Such method were also extended to correct distorted spectra. A benchmark for peak detection algorithms in fiber Bragg grating interrogation was performed, including the currently used algorithms as obtained from literature, where the accuracy, precision, and computational performance were evaluated. This comparative study was performed with both simulated and experimental data. It was perceived that there is no optimal algorithm when all aspects are taken into account, but it is possible to choose a suitable algorithm when one has the application requirements. A novel peak detection algorithm based on an artificial neural network is proposed, being recommended when the analyzed spectra have distortions or is not symmetrical. Artificial neural networks and support vector machines were employed with the data processing algorithms to classify or estimate sample characteristics in experiments with bovine meat, milk, and automotive fuel. The results have shown that the proposed data processing methods are useful to extract the data main information and that the employed data fusion schemes were useful, in its initial classification and estimation objectives.
Neste trabalho são apresentados métodos computacionais para o processamento de dados produzidos em sistemas de espectroscopia de impedância elétrica e sensoriamento a redes de Bragg em fibra óptica com o objetivo de inferir características das amostras analisadas. Sistemas de estimação e classificação foram desenvolvidos, utilizando os sinais isoladamente ou de forma conjunta com o objetivo de melhorar as respostas dos sistemas. Propõe-se o ajuste dos parâmetros de funções que modelam espectros de impedância elétrica por meio de um novo algoritmo de otimização por enxame de partículas, incluindo a sua utilização na correção de espectros com determinadas distorções. Um estudo comparativo foi realizado entre os métodos correntes utilizados na detecção de pico de sinais resultantes de sensores em fibras ópticas, onde avaliou-se a exatidão, precisão e desempenho computacional. Esta comparação foi feita utilizando dados simulados e experimentais, onde percebeu-se que não há algoritmo simultaneamente superior em todos os aspectos avaliados, mas que é possível escolher o ideal quando se têm os requisitos da aplicação. Um método de detecção de pico por meio de uma rede neural artificial foi proposto, sendo recomendado em situações onde o espectro analisado possui distorções ou não é simétrico. Redes neurais artificiais e máquinas de vetor de suporte foram utilizadas em conjunto com os algoritmos de processamento com o objetivo de classificar ou estimar alguma característica de amostras em experimentos que envolveram carnes bovinas, leite bovino e misturas de combustível automotivo. Mostra-se neste trabalho que os métodos de processamento propostos são úteis para a extração das características importantes dos dados e que os esquemas utilizados para a fusão destes dados foram úteis dentro dos seus objetivos iniciais de classificação e estimação.
Patrix, Jérémy. "Détection de comportements à travers des modèles multi-agents collaboratifs, appliquée à l'évaluation de la situation, notamment en environnement asymétrique avec des données imprécises et incertaines." Phd thesis, Université de Caen, 2013. http://tel.archives-ouvertes.fr/tel-00991091.
Full textOsman, Ousama. "Méthodes de diagnostic en ligne, embarqué et distribué dans les réseaux filaires complexes." Thesis, Université Clermont Auvergne (2017-2020), 2020. http://www.theses.fr/2020CLFAC038.
Full textThe research conducted in this thesis focuses on the diagnosis of complex wired networks using distributed reflectometry. It aims to develop new distributed diagnostic techniques for complex networks that allow data fusion as well as communication between reflectometers to detect, locate and characterize electrical faults (soft and hard faults). This collaboration between reflectometers solves the problem of fault location ambiguity and improves the quality of diagnosis. The first contribution is the development of a graph theory-based method for combining data between distributed reflectometers, thus facilitating the location of the fault. Then, the amplitude of the reflected signal is used to identify the type of fault and estimate its impedance. The latter is based on the regeneration of the signal by compensating for the degradation suffered by the diagnosis signal during its propagation through the network. The second contribution enables data fusion between distributed reflectometers in complex networks affected by multiple faults. To achieve this objective, two methods have been proposed and developed: the first is based on genetic algorithms (GA) and the second is based on neural networks (RN). These tools combined with distributed reflectometryallow automatic detection, location, and characterization of several faults in different types and topologies of wired networks. The third contribution proposes the use of information-carrying diagnosis signal to integrate communication between distributed reflectometers. It properly uses the phases of the MCTDR multi-carrier signal to transmit data. This communication ensures the exchange of useful information (such as fault location and amplitude) between reflectometers on the state of the cables, thus enabling data fusion and unambiguous fault location. Interference problems between the reflectometers are also addressed when they simultaneously inject their test signals into the network. These studies illustrate the efficiency and applicability of the proposed methods. They also demonstrate their potential to improve the performance of the current wired diagnosis systems to meet the need and the problem of detecting and locating faults that manufacturers and users face today in electrical systems to improve their operational safety
Papež, Milan. "Optimální odhad stavu modelu navigačního systému." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2013. http://www.nusl.cz/ntk/nusl-220149.
Full textChiang, Kuan-Chen, and 江冠臻. "Performance Analysis of Integrated Weights Data Fusion Algorithms." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/69080295994095178349.
Full text育達商業技術學院
資訊管理所
93
The desired improvements of multi-sensor network tracking system rely on more accurate state estimates and less computation loads. An algorithm is devised for the problem of a distributed multi-sensor network track to track data fusion. For sensor level track, to reduce the computational loads involved in physical implementation, the method is essentially based on the decoupling technique that Kalman filter gain formulations are recursively computed. For local processor, statement vector of data fusion algorithm construct the combination of two sensor fusion in the network respectively. For global processor, an approach called integrated weights algorithm is utilized to process global state estimation using track data transmitted from local processor. Performance results for the proposed algorithm are compared with that of the local processor, using computer simulations of typical target maneuvering scenarios.