Journal articles on the topic 'Data-efficient Deep Learning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Data-efficient Deep Learning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Chaudhary, Dr Sumit, Ms Neha Singh, and Salaiya Pankaj. "Time-Efficient Algorithm for Data Annotation using Deep Learning." Indian Journal of Artificial Intelligence and Neural Networking 2, no. 5 (August 30, 2022): 8–11. http://dx.doi.org/10.54105/ijainn.e1058.082522.
Full textBiswas, Surojit, Grigory Khimulya, Ethan C. Alley, Kevin M. Esvelt, and George M. Church. "Low-N protein engineering with data-efficient deep learning." Nature Methods 18, no. 4 (April 2021): 389–96. http://dx.doi.org/10.1038/s41592-021-01100-y.
Full textEdstrom, Jonathon, Yifu Gong, Dongliang Chen, Jinhui Wang, and Na Gong. "Data-Driven Intelligent Efficient Synaptic Storage for Deep Learning." IEEE Transactions on Circuits and Systems II: Express Briefs 64, no. 12 (December 2017): 1412–16. http://dx.doi.org/10.1109/tcsii.2017.2767900.
Full textFeng, Wenhui, Chongzhao Han, Feng Lian, and Xia Liu. "A Data-Efficient Training Method for Deep Reinforcement Learning." Electronics 11, no. 24 (December 16, 2022): 4205. http://dx.doi.org/10.3390/electronics11244205.
Full textHu, Wenjin, Feng Liu, and Jiebo Peng. "An Efficient Data Classification Decision Based on Multimodel Deep Learning." Computational Intelligence and Neuroscience 2022 (May 4, 2022): 1–10. http://dx.doi.org/10.1155/2022/7636705.
Full textMairittha, Nattaya, Tittaya Mairittha, and Sozo Inoue. "On-Device Deep Learning Inference for Efficient Activity Data Collection." Sensors 19, no. 15 (August 5, 2019): 3434. http://dx.doi.org/10.3390/s19153434.
Full textDuan, Yanjie, Yisheng Lv, Yu-Liang Liu, and Fei-Yue Wang. "An efficient realization of deep learning for traffic data imputation." Transportation Research Part C: Emerging Technologies 72 (November 2016): 168–81. http://dx.doi.org/10.1016/j.trc.2016.09.015.
Full textSashank, Madipally Sai Krishna, Vijay Souri Maddila, Vikas Boddu, and Y. Radhika. "Efficient deep learning based data augmentation techniques for enhanced learning on inadequate medical imaging data." ACTA IMEKO 11, no. 1 (March 31, 2022): 6. http://dx.doi.org/10.21014/acta_imeko.v11i1.1226.
Full textPetrovic, Nenad, and Djordje Kocic. "Data-driven framework for energy-efficient smart cities." Serbian Journal of Electrical Engineering 17, no. 1 (2020): 41–63. http://dx.doi.org/10.2298/sjee2001041p.
Full textYue, Yang, Bingyi Kang, Zhongwen Xu, Gao Huang, and Shuicheng Yan. "Value-Consistent Representation Learning for Data-Efficient Reinforcement Learning." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 9 (June 26, 2023): 11069–77. http://dx.doi.org/10.1609/aaai.v37i9.26311.
Full textShin, Hyunkyung, Hyeonung Shin, Wonje Choi, Jaesung Park, Minjae Park, Euiyul Koh, and Honguk Woo. "Sample-Efficient Deep Learning Techniques for Burn Severity Assessment with Limited Data Conditions." Applied Sciences 12, no. 14 (July 21, 2022): 7317. http://dx.doi.org/10.3390/app12147317.
Full textLyu, Daoming, Fangkai Yang, Bo Liu, and Steven Gustafson. "SDRL: Interpretable and Data-Efficient Deep Reinforcement Learning Leveraging Symbolic Planning." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 2970–77. http://dx.doi.org/10.1609/aaai.v33i01.33012970.
Full textda Silva Lourenço, Catarina, Marleen C. Tjepkema-Cloostermans, and Michel J. A. M. van Putten. "Efficient use of clinical EEG data for deep learning in epilepsy." Clinical Neurophysiology 132, no. 6 (June 2021): 1234–40. http://dx.doi.org/10.1016/j.clinph.2021.01.035.
Full textCuayáhuitl, Heriberto. "A data-efficient deep learning approach for deployable multimodal social robots." Neurocomputing 396 (July 2020): 587–98. http://dx.doi.org/10.1016/j.neucom.2018.09.104.
Full textZhao, Junhui, Yiwen Nie, Shanjin Ni, and Xiaoke Sun. "Traffic Data Imputation and Prediction: An Efficient Realization of Deep Learning." IEEE Access 8 (2020): 46713–22. http://dx.doi.org/10.1109/access.2020.2978530.
Full textTovar, Nathaniel, Sean (Seok-Chul) Kwon, and Jinseong Jeong. "Image Upscaling with Deep Machine Learning for Energy-Efficient Data Communications." Electronics 12, no. 3 (January 30, 2023): 689. http://dx.doi.org/10.3390/electronics12030689.
Full textLi, Mengkun, and Yongjian Wang. "An Energy-Efficient Silicon Photonic-Assisted Deep Learning Accelerator for Big Data." Wireless Communications and Mobile Computing 2020 (December 16, 2020): 1–11. http://dx.doi.org/10.1155/2020/6661022.
Full textYuan, Mu, Lan Zhang, Xiang-Yang Li, Lin-Zhuo Yang, and Hui Xiong. "Adaptive Model Scheduling for Resource-efficient Data Labeling." ACM Transactions on Knowledge Discovery from Data 16, no. 4 (August 31, 2022): 1–22. http://dx.doi.org/10.1145/3494559.
Full textOnofrey, John A., Lawrence H. Staib, Xiaojie Huang, Fan Zhang, Xenophon Papademetris, Dimitris Metaxas, Daniel Rueckert, and James S. Duncan. "Sparse Data–Driven Learning for Effective and Efficient Biomedical Image Segmentation." Annual Review of Biomedical Engineering 22, no. 1 (June 4, 2020): 127–53. http://dx.doi.org/10.1146/annurev-bioeng-060418-052147.
Full textBhat, Sanjit, David Lu, Albert Kwon, and Srinivas Devadas. "Var-CNN: A Data-Efficient Website Fingerprinting Attack Based on Deep Learning." Proceedings on Privacy Enhancing Technologies 2019, no. 4 (October 1, 2019): 292–310. http://dx.doi.org/10.2478/popets-2019-0070.
Full textWang, Yang, Yutong Li, Ting Wang, and Gang Liu. "Towards an energy-efficient Data Center Network based on deep reinforcement learning." Computer Networks 210 (June 2022): 108939. http://dx.doi.org/10.1016/j.comnet.2022.108939.
Full textShiloh, Lihi, Avishay Eyal, and Raja Giryes. "Efficient Processing of Distributed Acoustic Sensing Data Using a Deep Learning Approach." Journal of Lightwave Technology 37, no. 18 (September 15, 2019): 4755–62. http://dx.doi.org/10.1109/jlt.2019.2919713.
Full textYi, Deliang, Xin Zhou, Yonggang Wen, and Rui Tan. "Efficient Compute-Intensive Job Allocation in Data Centers via Deep Reinforcement Learning." IEEE Transactions on Parallel and Distributed Systems 31, no. 6 (June 1, 2020): 1474–85. http://dx.doi.org/10.1109/tpds.2020.2968427.
Full textJeong, Seunghwan, Gwangpyo Yoo, Minjong Yoo, Ikjun Yeom, and Honguk Woo. "Resource-Efficient Sensor Data Management for Autonomous Systems Using Deep Reinforcement Learning." Sensors 19, no. 20 (October 11, 2019): 4410. http://dx.doi.org/10.3390/s19204410.
Full textHe, Yan, Bin Fu, Jian Yu, Renfa Li, and Rucheng Jiang. "Efficient Learning of Healthcare Data from IoT Devices by Edge Convolution Neural Networks." Applied Sciences 10, no. 24 (December 15, 2020): 8934. http://dx.doi.org/10.3390/app10248934.
Full textWu, Chunyi, and Ya Li. "FLOM: Toward Efficient Task Processing in Big Data with Federated Learning." Security and Communication Networks 2022 (January 27, 2022): 1–16. http://dx.doi.org/10.1155/2022/5277362.
Full textZhang, Lan, Yu Feng Nie, and Zhen Hai Wang. "Image De-Noising Using Deep Learning." Applied Mechanics and Materials 641-642 (September 2014): 1287–90. http://dx.doi.org/10.4028/www.scientific.net/amm.641-642.1287.
Full textSalakhutdinov, Ruslan, and Geoffrey Hinton. "An Efficient Learning Procedure for Deep Boltzmann Machines." Neural Computation 24, no. 8 (August 2012): 1967–2006. http://dx.doi.org/10.1162/neco_a_00311.
Full textRen, Jing, Xishi Huang, and Raymond N. Huang. "Efficient Deep Reinforcement Learning for Optimal Path Planning." Electronics 11, no. 21 (November 7, 2022): 3628. http://dx.doi.org/10.3390/electronics11213628.
Full textBlank, Andreas, Lukas Baier, Oguz Kedilioglu, Xuebei Zhu, Maximilian Metzner, and Jörg Franke. "Effiziente KI-Adaption durch synthetische Daten/Efficient AI Adaption using Synthetic Data." wt Werkstattstechnik online 111, no. 10 (2021): 759–62. http://dx.doi.org/10.37544/1436-4980-2021-10-105.
Full textHao, Ruqian, Lin Liu, Jing Zhang, Xiangzhou Wang, Juanxiu Liu, Xiaohui Du, Wen He, Jicheng Liao, Lu Liu, and Yuanying Mao. "A Data-Efficient Framework for the Identification of Vaginitis Based on Deep Learning." Journal of Healthcare Engineering 2022 (February 27, 2022): 1–11. http://dx.doi.org/10.1155/2022/1929371.
Full textEide, Siri S., Michael A. Riegler, Hugo L. Hammer, and John Bjørnar Bremnes. "Deep Tower Networks for Efficient Temperature Forecasting from Multiple Data Sources." Sensors 22, no. 7 (April 6, 2022): 2802. http://dx.doi.org/10.3390/s22072802.
Full textShin, Tae-Ho, and Soo-Hyung Kim. "Utility Analysis about Log Data Anomaly Detection Based on Federated Learning." Applied Sciences 13, no. 7 (April 1, 2023): 4495. http://dx.doi.org/10.3390/app13074495.
Full textMoss, Adam. "Accelerated Bayesian inference using deep learning." Monthly Notices of the Royal Astronomical Society 496, no. 1 (May 28, 2020): 328–38. http://dx.doi.org/10.1093/mnras/staa1469.
Full textVengateshwaran, Mr M. "Efficient Deep Learning Approach for Dimensionality Reduction using Micro blogs from Big data." International Journal for Research in Applied Science and Engineering Technology V, no. III (March 9, 2017): 5–10. http://dx.doi.org/10.22214/ijraset.2017.3002.
Full textKhodaparast, Seyed Saeed, Xiao Lu, Ping Wang, and Uyen Trang Nguyen. "Deep Reinforcement Learning Based Energy Efficient Multi-UAV Data Collection for IoT Networks." IEEE Open Journal of Vehicular Technology 2 (2021): 249–60. http://dx.doi.org/10.1109/ojvt.2021.3085421.
Full textJiang, Rong, Zhipeng Wang, Bin He, Yanmin Zhou, Gang Li, and Zhongpan Zhu. "A data-efficient goal-directed deep reinforcement learning method for robot visuomotor skill." Neurocomputing 462 (October 2021): 389–401. http://dx.doi.org/10.1016/j.neucom.2021.08.023.
Full textNAMOZOV, A., and Y. I. CHO. "An Efficient Deep Learning Algorithm for Fire and Smoke Detection with Limited Data." Advances in Electrical and Computer Engineering 18, no. 4 (2018): 121–28. http://dx.doi.org/10.4316/aece.2018.04015.
Full textHassan, Mohammad Mehedi, Abdu Gumaei, Ahmed Alsanad, Majed Alrubaian, and Giancarlo Fortino. "A hybrid deep learning model for efficient intrusion detection in big data environment." Information Sciences 513 (March 2020): 386–96. http://dx.doi.org/10.1016/j.ins.2019.10.069.
Full textEshghi, Mohammad, Alireza Souri, Babak Majidi, and Amin Fadaeddini. "Data augmentation using fast converging CIELAB-GAN for efficient deep learning dataset generation." International Journal of Computational Science and Engineering 26, no. 4 (2023): 459–69. http://dx.doi.org/10.1504/ijcse.2023.10057257.
Full textFadaeddini, Amin, Babak Majidi, Alireza Souri, and Mohammad Eshghi. "Data augmentation using fast converging CIELAB-GAN for efficient deep learning dataset generation." International Journal of Computational Science and Engineering 26, no. 4 (2023): 459–69. http://dx.doi.org/10.1504/ijcse.2023.132152.
Full textWei, Shengyun, Zhaolong Sun, Zhenyi Wang, Feifan Liao, Zhen Li, and Haibo Mi. "An Efficient Data Augmentation Method for Automatic Modulation Recognition from Low-Data Imbalanced-Class Regime." Applied Sciences 13, no. 5 (March 1, 2023): 3177. http://dx.doi.org/10.3390/app13053177.
Full textXu, Wencai. "Efficient Distributed Image Recognition Algorithm of Deep Learning Framework TensorFlow." Journal of Physics: Conference Series 2066, no. 1 (November 1, 2021): 012070. http://dx.doi.org/10.1088/1742-6596/2066/1/012070.
Full textEltehewy, Rokaya, Ahmed Abouelfarag, and Sherine Nagy Saleh. "Efficient Classification of Imbalanced Natural Disasters Data Using Generative Adversarial Networks for Data Augmentation." ISPRS International Journal of Geo-Information 12, no. 6 (June 17, 2023): 245. http://dx.doi.org/10.3390/ijgi12060245.
Full textRix, Tom, Kris K. Dreher, Jan-Hinrich Nölke, Melanie Schellenberg, Minu D. Tizabi, Alexander Seitel, and Lena Maier-Hein. "Efficient Photoacoustic Image Synthesis with Deep Learning." Sensors 23, no. 16 (August 10, 2023): 7085. http://dx.doi.org/10.3390/s23167085.
Full textAyad, Hayder, Ikhlas Watan Ghindawi, and Mustafa Salam Kadhm. "Lung Segmentation Using Proposed Deep Learning Architecture." International Journal of Online and Biomedical Engineering (iJOE) 16, no. 15 (December 15, 2020): 141. http://dx.doi.org/10.3991/ijoe.v16i15.17115.
Full textKumar, Ravinder, and Lokesh Kumar Shrivastav. "Gradient Boosting Machine and Deep Learning Approach in Big Data Analysis." Journal of Information Technology Research 15, no. 1 (January 2022): 1–20. http://dx.doi.org/10.4018/jitr.2022010101.
Full textPolanski, Jaroslaw. "Unsupervised Learning in Drug Design from Self-Organization to Deep Chemistry." International Journal of Molecular Sciences 23, no. 5 (March 3, 2022): 2797. http://dx.doi.org/10.3390/ijms23052797.
Full textIstiaque, Shah Md, Asif Iqbal Khan, and Sajjad Waheed. "Smart Intrusion Detection System Comprised of Machine Learning and Deep Learning." European Journal of Engineering Research and Science 5, no. 10 (October 8, 2020): 1168–73. http://dx.doi.org/10.24018/ejers.2020.5.10.2128.
Full textIstiaque, Shah Md, Asif Iqbal Khan, and Sajjad Waheed. "Smart Intrusion Detection System Comprised of Machine Learning and Deep Learning." European Journal of Engineering and Technology Research 5, no. 10 (October 8, 2020): 1168–73. http://dx.doi.org/10.24018/ejeng.2020.5.10.2128.
Full text