Dissertations / Theses on the topic 'Data-driven maintenance'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 18 dissertations / theses for your research on the topic 'Data-driven maintenance.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Sedghi, Mahdieh. "Data-driven predictive maintenance planning and scheduling." Licentiate thesis, Luleå tekniska universitet, Industriell Ekonomi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-80828.
Full textRoychowdhury, Sayak. "Data-Driven Policies for Manufacturing Systems and Cyber Vulnerability Maintenance." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1493905616531091.
Full textOkwori, Emmanuel. "Data-driven approaches for proactive maintenance planning of sewer blockage management." Licentiate thesis, Luleå tekniska universitet, Arkitektur och vatten, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-83891.
Full textJiang, Tianyu. "Data-Driven Cyber Vulnerability Maintenance of Network Vulnerabilities with Markov Decision Processes." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1494203777781845.
Full textLarsson, Olsson Christoffer, and Erik Svensson. "Early Warning Leakage Detection for Pneumatic Systems on Heavy Duty Vehicles : Evaluating Data Driven and Model Driven Approach." Thesis, KTH, Mekatronik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-261207.
Full textModerna tunga fordon består av ett stort antal komponenter och används i många olika miljöer. Då värdet för tunga fordon ofta består i hur mycket gods som transporteras uppstår ett incitament till att förebygga oplanerade stopp. Detta görs med fördel med hjälp av tillståndsbaserat underhåll. Denna avhandling undersöker användbarheten av den data-drivna metoden Consensus SelfOrganizing Models (COSMO) kontra en modellbaserad patentserie för att upptäcka läckage på luftsystem i tunga fordon. Metoderna ställs mot varandra med hjälp av Area Under Curve-värdet som kommer från Receiver Operating Characteristics-kurvor från beskrivande signaler. Detta gjordes genom att utvärdera tre kriterier. Dels hur hyperparametrar influerar COSMOmetoden för att avgöra en rimlig storlek på fordonsflottan, dels huruvida omgivningsförhållanden påverkar resultatet och slutligen till vilken grad metoden påverkas av att fordonsflottan inte är identisk. Slutsatsen är att COSMO-metoden med fördel kan användas sålänge antalet representationer överstiger 60 och att fordonen inom flottan är likvärdiga och har använts inom liknande omgivningsförhållanden. Om fordonsflottan är heterogen så föredras en fysisk modell av systemet då detta ger ett mer stabilt resultat jämfört med COSMO-metoden.
Dinmohammadi, Fateme. "Data-driven risk-based modelling approaches to maintenance optimisation of railway transport assets." Thesis, Glasgow Caledonian University, 2018. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.743925.
Full textLundgren, Andreas. "Data-Driven Engine Fault Classification and Severity Estimation Using Residuals and Data." Thesis, Linköpings universitet, Fordonssystem, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-165736.
Full textKullenda, Kuben. "Enabling firm performance through data driven decision making in maintenance management : a dynamic capabilities view." Diss., University of Pretoria, 2020. http://hdl.handle.net/2263/79594.
Full textMini Dissertation (MBA)--University of Pretoria, 2020.
pt2021
Gordon Institute of Business Science (GIBS)
MBA
Unrestricted
Ponomarenko, Maksym. "Maintenance of the Quality Monitor Web-Application." Thesis, Linnéuniversitetet, Institutionen för datavetenskap (DV), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-28816.
Full textLembke, Benjamin. "Bearing Diagnosis Using Fault Signal Enhancing Teqniques and Data-driven Classification." Thesis, Linköpings universitet, Fordonssystem, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-158240.
Full textNguyen, Hoang-Phuong. "Model-based and data-driven prediction methods for prognostics." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASC021.
Full textDegradation is an unavoidable phenomenon that affects engineering components and systems, and which may lead to their failures with potentially catastrophic consequences depending on the application. The motivation of this Thesis is trying to model, analyze and predict failures with prognostic methods that can enable a predictive management of asset maintenance. This would allow decision makers to improve maintenance planning, thus increasing system availability and safety by minimizing unexpected shutdowns. To this aim, research during the Thesis has been devoted to the tailoring and use of both model-based and data-driven approaches to treat the degradation processes that can lead to different failure modes in industrial components, making use of different information and data sources for performing predictions on the degradation evolution and estimating the Remaining Useful Life (RUL).The Ph.D. work has addressed two specific prognostic applications: model-based prognostics for fatigue crack growth prediction and data-driven prognostics for multi-step ahead predictions of time series data of Nuclear Power Plant (NPP) components.Model-based prognostics relies on the choice of the adopted Physics-of-Failure (PoF) models. However, each degradation model is appropriate only to certain degradation process under certain operating conditions, which are often not precisely known. To generalize this, ensembles of multiple degradation models have been embedded in the model-based prognostic method in order to take advantage of the different accuracies of the models specific to different degradations and conditions. The main contributions of the proposed ensemble of models-based prognostic approaches are the integration of filtering approaches, including recursive Bayesian filtering and Particle Filtering (PF), and novel weighted ensemble strategies considering the accuracies of the individual models in the ensemble at the previous time steps of prediction. The proposed methods have been validated by case studies of fatigue crack growth simulated with time-varying operating conditions.As for multi-step ahead prediction, it remains a difficult task of Prognostics and Health Management (PHM) because prediction uncertainty tends to increase with the time horizon of the prediction. Large prediction uncertainty has limited the development of multi-step ahead prognostics in applications. To address the problem, novel multi-step ahead prediction models based on Long Short- Term Memory (LSTM), a deep neural network developed for dealing with the long-term dependencies in the time series data have been developed in this Thesis. For realistic practical applications, the proposed methods also address the additional issues of anomaly detection, automatic hyperparameter optimization and prediction uncertainty quantification. Practical case studies have been considered, concerning time series data collected from Steam Generators (SGs) and Reactor Coolant Pumps (RCPs) of NPPs
Berg, Martin, and Albin Eriksson. "Toward predictive maintenance in surface treatment processes : A DMAIC case study at Seco Tools." Thesis, Luleå tekniska universitet, Institutionen för ekonomi, teknik, konst och samhälle, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-84923.
Full textWileman, Andrew John. "An investigation into the prognosis of electromagnetic relays." Thesis, Cranfield University, 2016. http://dspace.lib.cranfield.ac.uk/handle/1826/13665.
Full textEker, Ömer F. "A hybrid prognostic methodology and its application to well-controlled engineering systems." Thesis, Cranfield University, 2015. http://dspace.lib.cranfield.ac.uk/handle/1826/9269.
Full textKrupa, Miroslav. "Metody technické prognostiky aplikovatelné v embedded systémech." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2012. http://www.nusl.cz/ntk/nusl-233568.
Full textWu, Bai Rong. "Condition based maintenance optimization using data driven methods." Thesis, 2013. http://spectrum.library.concordia.ca/977934/1/Wu_PhD_F2013.pdf.
Full textChen, Kuan-Yu, and 陳冠宇. "Applying Data Driven Approach to Cluster Components for Preventive Maintenance." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/479gt4.
Full text國立中央大學
企業管理學系
106
Utilizing preventive maintenance can reduce machine’s shutdown and improve the equipment efficiency. Traditional preventive maintainance methods focus on maintaining single component. The research, however, strives to maintain a group of components to further reduce the maintenance time. Components are clustered into group according to the their distributions of lifespans. Clusters that save the most maintenance costs are recommended to managers for maintenance scheduling. The methodology is applied to an auto component company for experiments. The results show that OEE is improved from 81% to 84%.
Zschech, Patrick. "Data Science and Analytics in Industrial Maintenance: Selection, Evaluation, and Application of Data-Driven Methods." 2020. https://tud.qucosa.de/id/qucosa%3A72318.
Full textDatengetriebene Instandhaltung birgt das Potential, aus den in Industrieumgebungen vielfältig anfallenden Datensammlungen unterschiedliche Nutzeneffekte zu erzielen. Unter Verwendung von modernen Methoden und Technologien aus dem Bereich Data Science und Analytics (DSA) ist es beispielsweise möglich, das Verhalten komplexer technischer Prozesse besser nachzuvollziehen oder bevorstehende Maschinenausfälle und Fehler frühzeitig zu erkennen. Eine erfolgreiche Umsetzung von DSA-Projekten erfordert jedoch multidisziplinäres Expertenwissen, welches sich nur selten von einzelnen Personen bzw. Einheiten innerhalb einer Organisation abdecken lässt. Dies umfasst beispielsweise ein fundiertes Domänenverständnis, Kenntnisse über zahlreiche Analysemethoden, Erfahrungen im Umgang mit verschiedenen Quellsystemen und Datenstrukturen sowie die Fähigkeit, geeignete Lösungsansätze in Informationssysteme zu überführen. Vor diesem Hintergrund haben sich in den letzten Jahren verschiedene Ansätze herausgebildet, um die Durchführung von DSA-Projekten für breitere Anwendergruppen zugänglich zu machen. Dazu gehören strukturierte Vorgehensmodelle, Systematisierungs- und Modellierungsframeworks, domänenspezifische Benchmark-Studien zur Veranschaulichung von Best Practices, Standardlösungen für DSA-Software und intelligente Assistenzsysteme. An diese Arbeiten knüpft die vorliegende Dissertation an und liefert weitere Artefakte, um insbesondere die Selektion, Evaluation und Anwendung datengetriebener Methoden im Bereich der industriellen Instandhaltung zu unterstützen. Insgesamt erstreckt sich die Abhandlung auf vier Artefakte, die in einzelnen Publikationen erarbeitet wurden. Dies umfasst (i) ein umfangreiches Systematisierungsframework zur Beschreibung zentraler Ausprägungen wiederkehrender Datenanalyseprobleme im Bereich der industriellen Instandhaltung, (ii) ein textbasiertes Assistenzsystem, welches ausgehend von natürlichsprachlichen und domänenspezifischen Problembeschreibungen eine geeignete Klasse von Analysemethoden vorschlägt, (iii) ein taxonomisches Evaluationsframework zur systematischen Bewertung von datengetriebenen Methoden unter verschiedenen Rahmenbedingungen sowie (iv) einen neuartigen Lösungsansatz zur Entwicklung von prognostischen Entscheidungsmodellen im Fall von eingeschränkter Informationslage. Die Konstruktion der Artefakte wird durch einzelne Forschungsziele im Rahmen eines systematischen Forschungsdesigns angeleitet. Neben der Darstellung der einzelnen Forschungsbeiträge unter Bezugnahme auf die erzielten Ergebnisse der dazugehörigen Publikationen werden auch die Verbindungen zwischen den entwickelten Artefakten beleuchtet und Zusammenhänge zu angrenzenden Arbeiten hergestellt. Zudem erfolgt eine kritische Reflektion der Ergebnisse hinsichtlich ihrer Verallgemeinerung und Übertragung auf andere Rahmenbedingungen. Dadurch liefert die vorliegende Abhandlung nicht nur einen Beitrag anhand der erzeugten Artefakte, sondern ebnet auch den Weg für fortführende Forschungsarbeiten, wofür eine detaillierte Forschungsagenda erarbeitet wird.:List of Figures List of Tables List of Abbreviations 1 Introduction 1.1 Motivation 1.2 Conceptual Background 1.3 Related Work 1.4 Research Design 1.5 Structure of the Thesis 2 Systematization of the Field 2.1 The Current State of Research 2.2 Systematization Framework 2.3 Exemplary Framework Application 3 Intelligent Assistance System for Automated Method Selection 3.1 Elicitation of Requirements 3.2 Design Principles and Design Features 3.3 Prototypical Instantiation and Evaluation 4 Taxonomic Framework for Method Evaluation 4.1 Survey of Prognostic Solutions 4.2 Taxonomic Evaluation Framework 4.3 Exemplary Framework Application 5 Method Application Under Industrial Conditions 5.1 Conceptualization of a Solution Approach 5.2 Prototypical Implementation and Evaluation 6 Discussion of the Results 6.1 Connections Between Developed Artifacts and Related Work 6.2 Generalization and Transferability of the Results 7 Concluding Remarks Bibliography Appendix I: Implementation Details Appendix II: List of Publications A Publication P1: Focus Area Systematization B Publication P2: Focus Area Method Selection C Publication P3: Focus Area Method Selection D Publication P4: Focus Area Method Evaluation E Publication P5: Focus Area Method Application