Academic literature on the topic 'Data compression'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Data compression.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Data compression"
Shevchuk, Yury Vladimirovich. "Memory-efficient sensor data compression." Program Systems: Theory and Applications 13, no. 2 (April 4, 2022): 35–63. http://dx.doi.org/10.25209/2079-3316-2022-13-2-35-63.
Full textSaidhbi, Sheik. "An Intelligent Multimedia Data Encryption and Compression and Secure Data Transmission of Public Cloud." Asian Journal of Engineering and Applied Technology 8, no. 2 (May 5, 2019): 37–40. http://dx.doi.org/10.51983/ajeat-2019.8.2.1141.
Full textMcGeoch, Catherine C. "Data Compression." American Mathematical Monthly 100, no. 5 (May 1993): 493. http://dx.doi.org/10.2307/2324310.
Full textHelman, D. R., and G. G. Langdon. "Data compression." IEEE Potentials 7, no. 1 (February 1988): 25–28. http://dx.doi.org/10.1109/45.1889.
Full textLelewer, Debra A., and Daniel S. Hirschberg. "Data compression." ACM Computing Surveys 19, no. 3 (September 1987): 261–96. http://dx.doi.org/10.1145/45072.45074.
Full textMcGeoch, Catherine C. "Data Compression." American Mathematical Monthly 100, no. 5 (May 1993): 493–97. http://dx.doi.org/10.1080/00029890.1993.11990441.
Full textBookstein, Abraham, and James A. Storer. "Data compression." Information Processing & Management 28, no. 6 (November 1992): 675–80. http://dx.doi.org/10.1016/0306-4573(92)90060-d.
Full textNithya, P., T. Vengattaraman, and M. Sathya. "Survey On Parameters of Data Compression." REST Journal on Data Analytics and Artificial Intelligence 2, no. 1 (March 1, 2023): 1–7. http://dx.doi.org/10.46632/jdaai/2/1/1.
Full textRyabko, Boris. "Time-Universal Data Compression." Algorithms 12, no. 6 (May 29, 2019): 116. http://dx.doi.org/10.3390/a12060116.
Full textMishra, Amit Kumar. "Versatile Video Coding (VVC) Standard: Overview and Applications." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 10, no. 2 (September 10, 2019): 975–81. http://dx.doi.org/10.17762/turcomat.v10i2.13578.
Full textDissertations / Theses on the topic "Data compression"
Williams, Ross Neil. "Adaptive data compression." Adelaide, 1989. http://web4.library.adelaide.edu.au/theses/09PH/09phw7262.pdf.
Full textSteinruecken, Christian. "Lossless data compression." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709134.
Full textLindsay, Robert A., and B. V. Cox. "UNIVERSAL DATA COMPRESSION." International Foundation for Telemetering, 1985. http://hdl.handle.net/10150/615552.
Full textUniversal and adaptive data compression techniques have the capability to globally compress all types of data without loss of information but have the disadvantage of complexity and computation speed. Advances in hardware speed and the reduction of computational costs have made universal data compression feasible. Implementations of the Adaptive Huffman and Lempel-Ziv compression algorithms are evaluated for performance. Compression ratios versus run times for different size data files are graphically presented and discussed in the paper. Required adjustments needed for optimum performance of the algorithms relative to theoretical achievable limits will be outlined.
Radhakrishnan, Radhika. "Genome data modeling and data compression." abstract and full text PDF (free order & download UNR users only), 2007. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1447611.
Full textGarcía, Sobrino Francisco Joaquín. "Sounder spectral data compression." Doctoral thesis, Universitat Autònoma de Barcelona, 2018. http://hdl.handle.net/10803/663984.
Full textThe Infrared Atmospheric Sounding Interferometer (IASI) is a Fourier Transform Spectrometer implemented on the MetOp satellite series. The instrument is intended to measure infrared radiation emitted from the Earth. IASI produces data with unprecedented accuracy and spectral resolution. Notably, the sounder harvests spectral information to derive temperature and moisture profiles, as well as concentrations of trace gases, essential for the understanding of weather, for climate monitoring, and for atmospheric forecasts. The large spectral, spatial, and temporal resolution of the data collected by the instrument involves generating products with a considerably large size, about 16 Gigabytes per day by each of the IASI-A and IASI-B instruments currently operated. The amount of data produced by IASI demands efficient compression techniques to improve both the transmission and the storage capabilities. This thesis supplies a comprehensive analysis of IASI data compression and provides effective recommendations to produce useful reconstructed spectra. The study analyzes data at different processing stages. Specifically, we use data transmitted by the instrument to the reception stations (IASI L0 products) and end-user data disseminated to the Numerical Weather Prediction (NWP) centres and the scientific community (IASI L1C products). In order to better understand the nature of the data collected by the instrument, we analyze the information statistics and the compression performance of several coding strategies and techniques on IASI L0 data. The order-0 entropy and the order-1, order-2, and order-3 context-based entropies are analyzed in several IASI L0 products. This study reveals that the size of the data could be considerably reduced by exploiting the order-0 entropy. More significant gains could be achieved if contextual models were used. We also investigate the performance of several state-of-the-art lossless compression techniques. Experimental results suggest that a compression ratio of 2.6:1 can be achieved, which involves that more data could be transmitted at the original transmission rate or, alternatively, the transmission rate of the instrument could be further decreased. A comprehensive study of IASI L1C data compression is performed as well. Several state-of-the-art spectral transforms and compression techniques are evaluated on IASI L1C spectra. Extensive experiments, which embrace lossless, near-lossless, and lossy compression, are carried out over a wide range of IASI-A and IASI-B orbits. For lossless compression, compression ratios over 2.5:1 can be achieved. For near-lossless and lossy compression, higher compression ratios can be achieved, while producing useful reconstructed spectra. Even though near-lossless and lossy compression produce higher compression ratios compared to lossless compression, the usefulness of the reconstructed spectra may be compromised because some information is removed during the compression stage. Therefore, we investigate the impact of near-lossless and lossy compression on end-user applications. Specifically, the impact of compression on IASI L1C data is evaluated when statistical retrieval algorithms are later used to retrieve physical information. Experimental results reveal that the reconstructed spectra can enable competitive retrieval performance, improving the results achieved for the uncompressed data, even at high compression ratios. We extend the previous study to a real scenario, where spectra from different disjoint orbits are used in the retrieval stage. Experimental results suggest that the benefits produced by compression are still significant. We also investigate the origin of these benefits. On the one hand, results illustrate that compression performs signal filtering and denoising, which benefits the retrieval methods. On the other hand, compression is an indirect way to produce spectral and spatial regularization, which helps pixel-wise statistical algorithms.
Du, Toit Benjamin David. "Data Compression and Quantization." Diss., University of Pretoria, 2014. http://hdl.handle.net/2263/79233.
Full textDissertation (MSc)--University of Pretoria, 2014.
Statistics
MSc
Unrestricted
Roguski, Łukasz 1987. "High-throughput sequencing data compression." Doctoral thesis, Universitat Pompeu Fabra, 2017. http://hdl.handle.net/10803/565775.
Full textGràcies als avenços en el camp de les tecnologies de seqüenciació, en els darrers anys la recerca biomèdica ha viscut una revolució, que ha tingut com un dels resultats l'explosió del volum de dades genòmiques generades arreu del món. La mida típica de les dades de seqüenciació generades en experiments d'escala mitjana acostuma a situar-se en un rang entre deu i cent gigabytes, que s'emmagatzemen en diversos arxius en diferents formats produïts en cada experiment. Els formats estàndards actuals de facto de representació de dades genòmiques són en format textual. Per raons pràctiques, les dades necessiten ser emmagatzemades en format comprimit. En la majoria dels casos, aquests mètodes de compressió es basen en compressors de text de caràcter general, com ara gzip. Amb tot, no permeten explotar els models d'informació especifícs de dades de seqüenciació. És per això que proporcionen funcionalitats limitades i estalvi insuficient d'espai d'emmagatzematge. Això explica per què operacions relativament bàsiques, com ara el processament, l'emmagatzematge i la transferència de dades genòmiques, s'han convertit en un dels principals obstacles de processos actuals d'anàlisi. Per tot això, aquesta tesi se centra en mètodes d'emmagatzematge i compressió eficients de dades generades en experiments de sequenciació. En primer lloc, proposem un compressor innovador d'arxius FASTQ de propòsit general. A diferència de gzip, aquest compressor permet reduir de manera significativa la mida de l'arxiu resultant del procés de compressió. A més a més, aquesta eina permet processar les dades a una velocitat alta. A continuació, presentem mètodes de compressió que fan ús de l'alta redundància de seqüències present en les dades de seqüenciació. Aquests mètodes obtenen la millor ratio de compressió d'entre els compressors FASTQ del marc teòric actual, sense fer ús de cap referència externa. També mostrem aproximacions de compressió amb pèrdua per emmagatzemar dades de seqüenciació auxiliars, que permeten reduir encara més la mida de les dades. En últim lloc, aportem un sistema flexible de compressió i un format de dades. Aquest sistema fa possible generar de manera semi-automàtica solucions de compressió que no estan lligades a cap mena de format específic d'arxius de dades genòmiques. Per tal de facilitar la gestió complexa de dades, diversos conjunts de dades amb formats heterogenis poden ser emmagatzemats en contenidors configurables amb l'opció de dur a terme consultes personalitzades sobre les dades emmagatzemades. A més a més, exposem que les solucions simples basades en el nostre sistema poden obtenir resultats comparables als compressors de format específic de l'estat de l'art. En resum, les solucions desenvolupades i descrites en aquesta tesi poden ser incorporades amb facilitat en processos d'anàlisi de dades genòmiques. Si prenem aquestes solucions conjuntament, aporten una base sòlida per al desenvolupament d'aproximacions completes encaminades a l'emmagatzematge i gestió eficient de dades genòmiques.
Frimpong-Ansah, K. "Adaptive data compression with memory." Thesis, Imperial College London, 1986. http://hdl.handle.net/10044/1/38008.
Full textKretzmann, Jane Lee. "Compression of bitmapped graphic data." Thesis, Monterey, California. Naval Postgraduate School, 1989. http://hdl.handle.net/10945/25761.
Full textBarr, Kenneth C. (Kenneth Charles) 1978. "Energy aware lossless data compression." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/87316.
Full textBooks on the topic "Data compression"
Salomon, David. Data Compression. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4757-2939-9.
Full textSalomon, David. Data Compression. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-86092-8.
Full textHuang, Bormin, ed. Satellite Data Compression. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1183-3.
Full textWilliams, Ross N. Adaptive Data Compression. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-4046-5.
Full textMotta, Giovanni, Francesco Rizzo, and James A. Storer, eds. Hyperspectral Data Compression. Boston: Kluwer Academic Publishers, 2006. http://dx.doi.org/10.1007/0-387-28600-4.
Full textHuang, Bormin. Satellite data compression. New York, NY: Springer Science+Business Media, LLC, 2011.
Find full textGiovanni, Motta, Rizzo Francesco, and Storer James A. 1953-, eds. Hyperspectral data compression. New York: Springer, 2005.
Find full textWilliams, Ross N. Adaptive Data Compression. Boston: Kluwer Academic Publishers, 1991.
Find full textData compression: The complete reference. New York: Springer, 1998.
Find full textMark, Nelson. The data compression book: Featuring fast, efficient data compresssion techniques in C. Redwood City, CA: M & T, 1991.
Find full textBook chapters on the topic "Data compression"
Salomon, David. "Image Compression." In Data Compression, 163–249. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4757-2939-9_4.
Full textSalomon, David. "Image Compression." In Data Compression, 221–456. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-86092-8_5.
Full textSalomon, David. "Video Compression." In Data Compression, 581–630. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-86092-8_7.
Full textSalomon, David. "Audio Compression." In Data Compression, 631–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-86092-8_8.
Full textSalomon, David. "Basic Techniques." In Data Compression, 1–19. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4757-2939-9_1.
Full textSalomon, David. "Error Correcting Codes." In Data Compression, 337–48. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4757-2939-9_10.
Full textSalomon, David. "Fourier Transform." In Data Compression, 349–53. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4757-2939-9_11.
Full textSalomon, David. "Group 4 Codes Summary." In Data Compression, 355–56. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4757-2939-9_12.
Full textSalomon, David. "Hashing." In Data Compression, 357–60. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4757-2939-9_13.
Full textSalomon, David. "Interpolating Polynomials." In Data Compression, 361–66. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4757-2939-9_14.
Full textConference papers on the topic "Data compression"
Qin, Liang, and Jie Sun. "Model Compression for Data Compression: Neural Network Based Lossless Compressor Made Practical." In 2023 Data Compression Conference (DCC). IEEE, 2023. http://dx.doi.org/10.1109/dcc55655.2023.00013.
Full textMarin, Jeison, Leonardo Betancur, and Henry Arguello. "Compression Ratio Design in Compressive Spectral Imaging." In 2016 Data Compression Conference (DCC). IEEE, 2016. http://dx.doi.org/10.1109/dcc.2016.81.
Full text"Author Index." In Data Compression Conference. IEEE, 2005. http://dx.doi.org/10.1109/dcc.2005.19.
Full textSangho Yoon, Chee Sun Won, Kyungsuk Pyun, and R. M. Gray. "Image classification using GMM with context information and with a solution of singular covariance problem." In Data Compression Conference. IEEE, 2003. http://dx.doi.org/10.1109/dcc.2003.1194076.
Full text"Author index." In Data Compression Conference. IEEE, 2003. http://dx.doi.org/10.1109/dcc.2003.1194078.
Full text"Proceedings. DCC 2005. Data Compression Conference." In Data Compression Conference. IEEE, 2005. http://dx.doi.org/10.1109/dcc.2005.28.
Full text"Table of Contents." In Data Compression Conference. IEEE, 2005. http://dx.doi.org/10.1109/dcc.2005.84.
Full text"Title Page." In Data Compression Conference. IEEE, 2005. http://dx.doi.org/10.1109/dcc.2005.89.
Full text"Proceedings DCC 2003. Data Compression Conference." In Data Compression Conference. IEEE, 2003. http://dx.doi.org/10.1109/dcc.2003.1193990.
Full textMishali, Moshe, and Yonina C. Eldar. "Xampling: Analog Data Compression." In 2010 Data Compression Conference. IEEE, 2010. http://dx.doi.org/10.1109/dcc.2010.39.
Full textReports on the topic "Data compression"
Creusere, Charles D., and Jim Witham. Data Compression Project. Fort Belvoir, VA: Defense Technical Information Center, October 1999. http://dx.doi.org/10.21236/ada370497.
Full textPan, David. Efficient Data Compression Techniques for Weather Data. Fort Belvoir, VA: Defense Technical Information Center, January 2011. http://dx.doi.org/10.21236/ada540395.
Full textChoi, Junho, and Mitchell R. Grunes. Lossless Data Compression of Packet Data Streams,. Fort Belvoir, VA: Defense Technical Information Center, February 1996. http://dx.doi.org/10.21236/ada304792.
Full textGryder, R., and K. Hake. Survey of data compression techniques. Office of Scientific and Technical Information (OSTI), September 1991. http://dx.doi.org/10.2172/10107839.
Full textGryder, R., and K. Hake. Survey of data compression techniques. Office of Scientific and Technical Information (OSTI), September 1991. http://dx.doi.org/10.2172/5926128.
Full textDuff, C. R. W. Data compression and computation speed. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1986. http://dx.doi.org/10.4095/315270.
Full textClark, D. Argon Excluder Foam Compression Data. Office of Scientific and Technical Information (OSTI), July 1991. http://dx.doi.org/10.2172/1031764.
Full textHoran, Shield. Data Compression Techniques to Reduce Bandwidth. Fort Belvoir, VA: Defense Technical Information Center, August 2000. http://dx.doi.org/10.21236/ada399290.
Full textSenecal, Joshua G. Length-Limited Data Transformation and Compression. Office of Scientific and Technical Information (OSTI), September 2005. http://dx.doi.org/10.2172/877882.
Full textPerkins, William W. Data Compression With Application to Geo-Location. Fort Belvoir, VA: Defense Technical Information Center, August 2010. http://dx.doi.org/10.21236/ada532376.
Full text