Dissertations / Theses on the topic 'Data Cloud center'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Data Cloud center.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Sergejev, Ivan. "Exposing the Data Center." Thesis, Virginia Tech, 2014. http://hdl.handle.net/10919/51838.
Full textMaster of Architecture
Zhuang, Hao. "Performance Evaluation of Virtualization in Cloud Data Center." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-104206.
Full textAmazon Elastic Compute Cloud (EC2) har antagits av ett stort antal små och medelstora företag (SMB), t.ex. foursquare, Monster World, och Netflix, för att ge olika typer av tjänster. Det finns en del tidigare arbeten i den aktuella litteraturen som undersöker variationen och oförutsägbarheten av molntjänster. Dessa arbetenhar visat intressanta iakttagelser om molnerbjudanden, men de har misslyckats med att avslöja den underliggande kärnan hos de olika utseendena för molntjänster. I denna avhandling tittade vi på de underliggande schemaläggningsmekanismerna och maskinvarukonfigurationer i Amazon EC2, och undersökte deras inverkan på resultatet för de virtuella maskiners instanser som körs ovanpå. Närmare bestämt är det flera fall med standard- och hög-CPU instanser som omfattas att belysa uppgradering av hårdvara och utbyte av Amazon EC2. Stora instanser från standardfamiljen är valda för att genomföra en fokusanalys. För att bättre förstå olika beteenden av de olika instanserna har lokala kluster miljöer inrättas, dessa klustermiljöer består av två Intel Xeonservrar och har inrättats med hjälp av olika schemaläggningsalgoritmer. Genom en serie benchmarkmätningar observerade vi följande slutsatser: (1) Amazon använder mycket diversifierad hårdvara för att tillhandahållandet olika instanser. Från de olika instans-sub-typernas perspektiv leder hårdvarumångfald till betydande prestationsvariation som kan nå upp till 30%. (2) Två olika schemaläggningsmekanismer observerades, en liknande Simple Earliest Deadline Fist(SEDF) schemaläggare, medan den andra mer liknar Credit-schemaläggaren i Xenhypervisor. Dessa två schemaläggningsmekanismer ger även upphov till variationer i prestanda. (3) Genom att tillämpa en enkel "trial-and-failure" strategi för val av instans, är kostnadsbesparande förvånansvärt stor. Med tanke på fördelning av snabba och långsamma instanser kan kostnadsbesparingen uppgå till 30%, vilket är attraktivt för små och medelstora företag som använder Amazon EC2 plattform.
Tudoran, Radu-Marius. "High-Performance Big Data Management Across Cloud Data Centers." Electronic Thesis or Diss., Rennes, École normale supérieure, 2014. http://www.theses.fr/2014ENSR0004.
Full textThe easily accessible computing power offered by cloud infrastructures, coupled with the "Big Data" revolution, are increasing the scale and speed at which data analysis is performed. Cloud computing resources for compute and storage are spread across multiple data centers around the world. Enabling fast data transfers becomes especially important in scientific applications where moving the processing close to data is expensive or even impossible. The main objectives of this thesis are to analyze how clouds can become "Big Data - friendly", and what are the best options to provide data management services able to meet the needs of applications. In this thesis, we present our contributions to improve the performance of data management for applications running on several geographically distributed data centers. We start with aspects concerning the scale of data processing on a site, and continue with the development of MapReduce type solutions allowing the distribution of calculations between several centers. Then, we present a transfer service architecture that optimizes the cost-performance ratio of transfers. This service is operated in the context of real-time data streaming between cloud data centers. Finally, we study the viability, for a cloud provider, of the solution consisting in integrating this architecture as a service based on a flexible pricing paradigm, qualified as "Transfer-as-a-Service"
de, Carvalho Tiago Filipe Rodrigues. "Integrated Approach to Dynamic and Distributed Cloud Data Center Management." Research Showcase @ CMU, 2016. http://repository.cmu.edu/dissertations/739.
Full textRaad, Patrick. "Protocol architecture and algorithms for distributed data center networks." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066571/document.
Full textWhile many business and personal applications are being pushed to the cloud, offering a reliable and a stable network connectivity to cloud-hosted services becomes an important challenge to face in future networks. In this dissertation, we design advanced network protocols, algorithms and communication strategies to cope with this evolution in distributed data center architectures. We propose a user-centric distributed cloud network architecture that is able to: (i) migrate virtual resources between data centers with an optimized service downtime; (ii) offer resilient access to virtual resources; (iii) minimize the cloud access latency. We identify two main decision making problems: the virtual machine orchestration problem, also taking care of user mobility, and the routing locator switching configuration problem, taking care of both extra and intra data center link states. We evaluate our architecture using real test beds of geographically distributed data centers, and we also simulate realistic scenarios based on real mobility traces. We show that migrating virtual machines between data centers at negligible downtime is possible by enhancing overlay protocols. We then demonstrate that by linking cloud virtual resource mobility to user mobility we can get a considerable gain in the transfer rates. We prove by simulations using real traces that the virtual machine placement decision is more important than the routing locator switching decision problem when the goal is to increase the connection throughput: the cloud access performance is primarily affected by the former decision, while the latter decision can be left to intra data center traffic engineering solutions. Finally, we propose solutions to take profit from multipath transport protocols for accelerating cloud access performance in our architecture, and to let link-state intra data center routing fabrics piloting the cloud access routing locator switching
Pipkin, Everest R. "It Was Raining in the Data Center." Research Showcase @ CMU, 2018. http://repository.cmu.edu/theses/138.
Full textMahmud, A. S. M. Hasan. "Sustainable Resource Management for Cloud Data Centers." FIU Digital Commons, 2016. http://digitalcommons.fiu.edu/etd/2634.
Full textLi, Dawei. "On the Design and Analysis of Cloud Data Center Network Architectures." Diss., Temple University Libraries, 2016. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/413608.
Full textPh.D.
Cloud computing has become pervasive in the IT world, as well as in our daily lives. The underlying infrastructures for cloud computing are the cloud data centers. The Data Center Network (DCN) defines what networking devices are used and how different devices are interconnected in a cloud data center; thus, it has great impacts on the total cost, performances, and power consumption of the entire data center. Conventional DCNs use tree-based architectures, where a limited number of high-end switches and high-bandwidth links are used at the core and aggregation levels to provide required bandwidth capacity. A conventional DCN often suffers from high expenses and low fault-tolerance, because high-end switches are expensive and a failure of such a high-end switch will result in disastrous consequences in the network. To avoid the problems and drawbacks in conventional DCNs, recent works adopt an important design principle: using Commodity-Off-The-Shelf (COTS) cheap switches to scale out data centers to large sizes, instead of using high-end switches to scale up data centers. Based on this scale-out principle, a large number of novel DCN architectures have been proposed. These DCN architectures are classified into two categories: switch-centric and server-centric DCN architectures. In both switch-centric and server-centric architectures, COTS switches are used to scale out the network to a large size. In switch-centric DCNs, routing intelligence is placed on switches; each server usually uses only one port of the Network Interface Card (NIC) to connect to the switches. In server-centric DCNs, switches are only used as dummy cross-bars; servers in the network serve as both computation nodes and packet forwarding nodes that connect switches and other servers, and routing intelligence is placed on servers, where multiple NIC ports may be used. This dissertation considers two fundamental problems in designing DCN architectures using the scale-out principle. The first problem considers how to maximize the total number of dual-port servers in a server-centric DCN given a network diameter constraint. Motivated by the Moore Bound, which provides the upper bound on the number of nodes in a traditional graph given a node degree and diameter, we give an upper bound on the maximum number of dual-port servers in a DCN, given a network diameter constraint and a switch port number. Then, we propose three novel DCN architectures, SWCube, SWKautz, and SWdBruijn, whose numbers of servers are close to the upper bound, and are larger than existing DCN architectures in most cases. SWCube is based on the generalized hypercube. SWCube accommodates a comparable number of servers to that of DPillar, which is the largest existing one prior to our work. SWKautz and SWdBruijn are based on the Kautz graph and the de Bruijn graph, respectively. They always accommodate more servers than DPillar. We investigate various properties of SWCube, SWKautz, and SWdBruijn; we also compare them with various existing DCN architectures and demonstrate their advantages over existing architectures. The second problem focuses on the tradeoffs between network performances and power consumption in designing DCN architectures. We have two motivations for our work. The first one is that most existing works take extreme designs in terms of improving network performances and reducing the power consumption. Some DCNs use too many networking devices to improve the performances; their power consumption is very high. Other DCNs use two few networking devices, and their performances are very poor. We are interested in exploring the quantitative tradeoffs between network performances and power consumption in designing DCN architectures. The second motivation is that there do not exist important unified performance and power consumption metrics for general DCNs. Thus, we propose two important unified performance and power consumption metrics. Then, we propose three novel DCN architectures that achieve important tradeoff points in the design spectrum: FCell, FSquare, and FRectangle. Besides, we find that in all these three new architectures, routing intelligence can be placed on both servers and switches; thus they enjoy the advantages of both switch-centric and server-centric architectures, and can be regarded as a new category of DCN architectures, the dual-centric DCN architectures. We also investigate various other properties for our proposed architectures and verify that they are excellent candidates for practical cloud data centers.
Temple University--Theses
Soares, Maria José. "Data center - a importância de uma arquitectura." Master's thesis, Universidade de Évora, 2011. http://hdl.handle.net/10174/11604.
Full textIzumo, Naoki. "Clouded space: Internet physicality." Thesis, University of Iowa, 2017. https://ir.uiowa.edu/etd/5515.
Full textDab, Boutheina. "Optimization of routing and wireless resource allocation in hybrid data center networks." Thesis, Paris Est, 2017. http://www.theses.fr/2017PESC1068/document.
Full textThe high proliferation of smart devices and online services allows billions of users to connect with network while deploying a vast range of applications. Particularly, with the advent of the future 5G technology, it is expected that a tremendous mobile and data traffic will be crossing Internet network. In this regard, Cloud service providers are urged to rethink their data center architectures in order to cope with this unprecedented traffic explosion. Unfortunately, the conventional wired infrastructures struggle to resist to such a traffic growth and become prone to serious congestion problems. Therefore, new innovative techniques are required. In this thesis, we investigate a recent promising approach that augments the wired Data Center Network (DCN) with wireless communications. Indeed, motivated by the feasibility of the new emerging 60 GHz technology, offering an impressive data rate (≈ 7 Gbps), we envision, a Hybrid (wireless/wired) DCN (HDCN) architecture. Our HDCN is based on i) Cisco’s Massively Scalable Data Center (MSDC) model and ii) IEEE 802.11ad standard. Servers in the HDCN are regrouped into racks, where each rack is equipped with a: i) Ethernet top-of-rack (ToR) switch and ii) set of wireless antennas. Our research aims to optimize the routing and the allocation of wireless resources for inter-rack communications in HDCN while enhancing network performance and minimizing congestion. The problem of routing and resource allocation in HDCN is NP-hard. To deal with this difficulty, we will tackle the problem into three stages. In the first stage, we consider only one-hop inter-rack communications in HDCN, where all communicating racks are in the same transmission range. We will propound a new wireless channel allocation approach in HDCN to hardness both wireless and wired interfaces for incoming flows while enhancing network throughput. In the second stage, we deal with the multi-hop communications in HDCN where communicating racks can not communicate in one single-hop wireless path. We propose a new approach to jointly route and allocate channels for each single communication flow, in an online way. Finally, in the third stage, we address the batched arrival of inter-rack communications to the HDCN so as to further optimize the usage of wireless and wired resources. For that end, we propose: i) a heuristic-based and ii) an approximate, solutions, to solve the joint batch routing and channel assignment. Based on extensive simulations conducted in QualNet simulator while considering the full protocol stack, the obtained results for both real workload and uniform traces, show that our proposals outperform the prominent related strategies
Sanhaji, Ali. "Nouveaux paradigmes de contrôle de congestion dans un réseau d'opérateur." Phd thesis, Toulouse, INPT, 2016. http://oatao.univ-toulouse.fr/17304/1/sanhaji.pdf.
Full textFrancischetti, Emilio Junior. "Garanzie del servizio in ambienti di cloud computing: uno studio sperimentale." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2011. http://amslaurea.unibo.it/2323/.
Full textBilal, Kashif. "Analysis and Characterization of Cloud Based Data Center Architectures for Performance, Robustness, Energy Efficiency, and Thermal Uniformity." Diss., North Dakota State University, 2014. https://hdl.handle.net/10365/27323.
Full textKnauth, Thomas. "Energy Efficient Cloud Computing: Techniques and Tools." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-164391.
Full textBergström, Rasmus. "Predicting Container-Level Power Consumption in Data Centers using Machine Learning Approaches." Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-79416.
Full textChkirbene, Zina. "Network topologies for cost reduction and QoS improvement in massive data centers." Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCK002/document.
Full textData centers (DC) are being built around the world to provide various cloud computing services. One of the fundamental challenges of existing DC is to design a network that interconnects massive number of nodes (servers)1 while reducing DC' cost and energy consumption. Several solutions have been proposed (e.g. FatTree, DCell and BCube), but they either scale too fast (i.e., double exponentially) or too slow. Effcient DC topologies should incorporate high scalability, low latency, low Average Path Length (APL), high Aggregated Bottleneck Throughput (ABT) and low cost and energy consumption. Therefore, in this dissertation, different solutions have been proposed to overcome these problems. First, we propose a novel DC topology called LCT (Linked Cluster Topology) as a new solution for building scalable and cost effective DC networking infrastructures. The proposed topology reduces the number of redundant connections between clusters of nodes, while increasing the numbers of nodes without affecting the network bisection bandwidth. Furthermore, in order to reduce the DCs cost and energy consumption, we propose first a new static energy saving topology called VacoNet (Variable Connection Network) that connects the needed number of servers while reducing the unused materials (cables, switches). Also, we propose a new approach that exploits the correlation in time of internode communication and some topological features to maximize energy saving without too much impacting the average path length
Alharbi, Fares Abdi H. "Profile-based virtual machine management for more energy-efficient data centers." Thesis, Queensland University of Technology, 2019. https://eprints.qut.edu.au/129871/8/Fares%20Abdi%20H%20Alharbi%20Thesis.pdf.
Full textLópez, Saavedra Alejandra Esperanza. "Evaluación e implementación del rediseño del proceso de gestión de incidentes en el Data Center & Cloud de Sonda S.A." Tesis, Universidad de Chile, 2017. http://repositorio.uchile.cl/handle/2250/151226.
Full textHangwei, Qian. "Dynamic Resource Management of Cloud-Hosted Internet Applications." Case Western Reserve University School of Graduate Studies / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=case1338317801.
Full textWang, Chengwei. "Monitoring and analysis system for performance troubleshooting in data centers." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/50411.
Full textSutrisno, Harry. "Techno-Economic Study on The Alternative Power and Cooling Systems Design for Cost & Energy-Efficient Edge Cloud Data Center(s)." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-302990.
Full text5G-tekniken har möjliggjort prestandakänsliga applikationer med låg latens och höga bandbreddskrav, vilket har ställt högre krav på låg latens för datatjänster. För att möta detta behov förutspås ett småskaligt datacenter - edge cloud – växa i framtiden. På grund av dess användarnära natur kan tillväxten av edge clouds i tätområden orsaka problem med det befintliga kraftsystemet. Förutom denna kraftsystemutmaning kräver edge cloud också en högre resurskostnad än storskaliga datacenter på grund av skalfördelarna. I denna avhandling introduceras fyra alternativa energi- och kyltekniker för att hantera dessa utmaningar. Dessa fyra tekniker är solpanel, vertikalaxel vindturbin (VAWT), bakdörrvärmeväxlare (RDHx), och nedsänkningskylning. Detaljerad information om edge cloud erfordras för att förstå bidraget från dessa fyra tekniker. På grund av edge clouds tidiga stadium är all nödvändig data dock inte tillgänglig, vaför antaganden om görs. Förutom det krävs också en kostnadsmodell för edge cloud för att visa hur betydande bidraget från den alternativa tekniken är om den jämförs med den totala ägandekostnaden. I denna avhandling utökas kostnadsmodellen för edge cloud för de alternativa energi- och kylsystemscenarierna. Med antagen data för ett edge cloud genomförs en känslighetsanalys för att avgöra om alternativa energi- och kyltekniker kan sänka kostnaden för edge cloud-resurser eller inte. Kostnadsmodelleringen visar att VAWT och nedsänkningskylning inte är möjlig för det specifika antagna datacentret. Å andra sidan kan solpanel spara 4,55% av datacentrets elförbrukning (motsvarande 0,21% minskning av den totala kostnaden när den beräknas med det aktuella elpriset). Dessutom presterade RDHx bättre med 22,73% av datacenters elutgifter (motsvarande 8,35% av besparingen från totalkostnaden när den beräknas med det aktuella elpriset).
Vítek, Daniel. "Cloud computing s ohledem na technologické aspekty a změny v infrastruktuře." Master's thesis, Vysoká škola ekonomická v Praze, 2010. http://www.nusl.cz/ntk/nusl-72548.
Full textZhang, Yuan [Verfasser], Xiaoming [Akademischer Betreuer] Fu, K. K. [Akademischer Betreuer] Ramakrishnan, Dieter [Akademischer Betreuer] Hogrefe, Winfried [Akademischer Betreuer] Kurth, and Carsten [Akademischer Betreuer] Damm. "Dynamic Resource Scheduling in Cloud Data Center / Yuan Zhang. Betreuer: Xiaoming Fu. Gutachter: K. K. Ramakrishnan ; Dieter Hogrefe ; Winfried Kurth ; Carsten Damm." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2015. http://d-nb.info/1078150753/34.
Full textDegoutin, Stéphane. "Société-nuage." Thesis, Paris Est, 2019. http://www.theses.fr/2019PESC1009.
Full textThis book unfolds, like a Chinese landscape painting through which the viewer’s gaze wanders slowly. I describe a panorama. It is not made of mountains in the mist or bushes swept by the wind, but of data centers, automated warehouses, social network feeds...I explore the hypothesis that the Internet is part of a general process that reduces society and materials to small-scale components, which allow its mechanisms to become more fluid. A chemist’s idea – the decomposition of matter into powder to facilitate its recomposition – is also applied to social relations, memory and humans in general.Just as the reduction of matter accelerates chemical reactions, the reduction of society to powder allows for an accelerated decomposition and recomposition of all from which humans are made. It allows to multiply the reactions within society, to accelerate the productions of humanity and the social chemistry : combination of human passions (Charles Fourier), hyperfragmentation of work (Mechanical Turk), decomposition of knowledge (Paul Otlet), Internet of neurons (Michael Chorost), agregation of micro affects (Facebook). This is what I call the « society as cloud »
Paolucci, Fabio. "Migrazione concorrente di macchine virtuali su piattaforme open source." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/8454/.
Full textAl-ou'n, Ashraf M. S. "VM Allocation in Cloud Datacenters Based on the Multi-Agent System. An Investigation into the Design and Response Time Analysis of a Multi-Agent-based Virtual Machine (VM) Allocation/Placement Policy in Cloud Datacenters." Thesis, University of Bradford, 2017. http://hdl.handle.net/10454/16067.
Full textHanzlová, Marie. "Návrh bezpečné infrastruktury pro cloudové řešení." Master's thesis, Vysoká škola ekonomická v Praze, 2013. http://www.nusl.cz/ntk/nusl-197995.
Full textSalazar, Javier. "Resource allocation optimization algorithms for infrastructure as a service in cloud computing." Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCB074.
Full textThe cloud architecture offers on-demand computing, storage and applications. Within this structure, Cloud Providers (CPs) not only administer infrastructure resources but also directly benefit from leasing them. In this thesis, we propose three optimization models to assist CPs reduce the costs incurred in the resource allocation process when serving users’ demands. Implementing the proposed models will not only increase the CP’s revenue but will also enhance the quality of the services offered, benefiting all parties. We focus on Infrastructure as a Service (IaaS) resources which constitute the physical infrastructure of the cloud and are contained in datacenters (DCs). Following existing research in DC design and cloud computing applications, we propose the implementation of smaller DCs (Edge DCs) be located close to end users as an alternative to large centralized DCs. Lastly, we use the Column Generation optimization technique to handle large scale optimization models efficiently. The proposed formulation optimizes both the communications and information technology resources in a single phase to serve IaaS requests. Based on this formulation, we also propose a second model that includes QoS guarantees under the same Infrastructure as a Service resource allocation perspective, to provide different solutions to diverse aspects of the resource allocation problem such as cost and delay reduction while providing different levels of service. Additionally, we consider the multimedia cloud computing scenario. When Edge DCs architecture is applied to this scenario it results in the creation of the Multimedia Edge Cloud (MEC) architecture. In this context we propose a resource allocation approach to help with the placement of these DCs to reduce communication related problems such as jitter and latency. We also propose the implementation of optical fiber network technologies to enhance communication between DCs. Several studies can be found proposing new methods to improve data transmission and performance. For this study, we decided to implement Wavelength Division Multiplexing (WDM) to strengthen the link usage and light-paths and, by doing so, group different signals over the same wavelength. Using a realistic simulation environment, we evaluate the efficiency of the approaches proposed in this thesis using a scenario specifically designed for the DCs, comparing them with different benchmarks and also simulating the effect of the optical formulation on the network performance. The numerical results obtained show that by using the proposed models, a CP can efficiently reduce allocation costs while maintaining satisfactory request acceptance and QoS ratios
Roozbeh, Amir. "Resource monitoring in a Network Embedded Cloud : An extension to OSPF-TE." Thesis, KTH, Radio Systems Laboratory (RS Lab), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-124367.
Full textEtt "network embedded cloud", även känt som ett "network enabled cloud" eller ett "carrier cloud", är en ny teknik trend som syftar till att tillhandahålla nätverkstjänster medan on-demand egenskapen av moln-paradigmet utnyttjas. Traditionella telekommunikationsapplikationer bygger ofta på en distributed service model och kan använda ett "network enabled cloud" som dess exekverande plattform. Dock kommer sådana inbäddade servrar av naturliga skäl vara geografiskt utspridda, varför de är beroende av topologisk och geografisk lokalisering. Detta ändrar på resurshanteringsproblemet jämfört med resurshantering i datacentrum. I de fall med ett network enabled cloud, utöver informationen om tillgängliga CPU, RAM och lagring, behöver resursfördelningsfunktionen information om nätverkets topologi och tillgänglig bandbredd på länkarna som förbinder de olika noderna i det distribuerade molnet. Detta examensarbete har utformat, tillämpat och utvärderat ett experiment-orienterad undersökning av användningen av open shortest path first med traffich engineering (OSPF-TE) för resurshantering i det network enabled cloud. I synnerhet utvidgades OSPF-TE till att förmedla virtualisering och behandla relaterad information till alla noder i nätverket. Detta examensarbete utvärderar genomförbarheten och lämpligheten av denna metod, dess flexibilitet och prestanda. Analysen visade att den föreslagna lösningen kan förse nödvändiga uppgifter till cloud management system genom att skicka ett datacenters resursinformation i form av ny opaque LSA (kallat Cloud LSA) med ett minimumintervall av 5 sekunder och maximal nätverksbelastning av 38,4 byte per sekund per inbäddade data center.
Kočíbová, Iveta. "Návrh migrace části ICT infrastruktury do datového centra." Master's thesis, Vysoké učení technické v Brně. Fakulta podnikatelská, 2016. http://www.nusl.cz/ntk/nusl-241606.
Full textAlfonso, Laguna Carlos de. "Efficient and elastic management of computing infrastructures." Doctoral thesis, Universitat Politècnica de València, 2016. http://hdl.handle.net/10251/57187.
Full text[ES] En los Centros de Procesos de Datos (CPD) existe una gran concentración de dispositivos informáticos y de equipamiento electrónico. Sin embargo, algunos estudios han mostrado que la utilización media de los CPD está en torno al 50%, y que la utilización media de los servidores se encuentra entre el 10% y el 50%. Estos datos evidencian que existe una gran cantidad de energía destinada a alimentar equipamiento ocioso, y que podríamos conseguir un ahorro energético simplemente apagando los componentes que no se estén utilizando. En muchos CPD suele haber clusters de computadores que se utilizan para computación de altas prestaciones y para la creación de Clouds privados. Si bien se ha tratado de ahorrar energía utilizando componentes de bajo consumo, también es posible conseguirlo adaptando los sistemas a la carga de trabajo en cada momento. En los últimos años han surgido trabajos que investigan la aplicación de criterios energéticos a la hora de seleccionar en qué servidor, de entre los que forman un cluster, se debe ejecutar un trabajo o alojar una máquina virtual. En muchos casos se trata de conseguir equipos ociosos que puedan ser apagados, pero habitualmente se asume que dicho apagado se hace de forma automática, y que los equipos se encienden de nuevo cuando son necesarios. Sin embargo, es necesario hacer una planificación de encendido y apagado de máquinas para minimizar el impacto en el usuario final. En esta tesis nos planteamos la gestión elástica y eficiente de infrastructuras de cálculo tipo cluster, con el objetivo de reducir los costes asociados a los componentes ociosos. Para abordar este problema nos planteamos la automatización del encendido y apagado de máquinas en los clusters, así como la aplicación de técnicas de migración en vivo y de sobreaprovisionamiento de memoria para estimular la obtención de equipos ociosos que puedan ser apagados. Además, esta automatización es de interés para los clusters virtuales, puesto que también sufren el problema de los componentes ociosos, sólo que en este caso están compuestos por, en lugar de equipos físicos que gastan energía, por máquinas virtuales que gastan dinero en un proveedor Cloud comercial o recursos en un Cloud privado.
[CAT] En els Centres de Processament de Dades (CPD) hi ha una gran concentració de dispositius informàtics i d'equipament electrònic. No obstant això, alguns estudis han mostrat que la utilització mitjana dels CPD està entorn del 50%, i que la utilització mitjana dels servidors es troba entre el 10% i el 50%. Estes dades evidencien que hi ha una gran quantitat d'energia destinada a alimentar equipament ociós, i que podríem aconseguir un estalvi energètic simplement apagant els components que no s'estiguen utilitzant. En molts CPD sol haver-hi clusters de computadors que s'utilitzen per a computació d'altes prestacions i per a la creació de Clouds privats. Si bé s'ha tractat d'estalviar energia utilitzant components de baix consum, també és possible aconseguir-ho adaptant els sistemes a la càrrega de treball en cada moment. En els últims anys han sorgit treballs que investiguen l'aplicació de criteris energètics a l'hora de seleccionar en quin servidor, d'entre els que formen un cluster, s'ha d'executar un treball o allotjar una màquina virtual. En molts casos es tracta d'aconseguir equips ociosos que puguen ser apagats, però habitualment s'assumix que l'apagat es fa de forma automàtica, i que els equips s'encenen novament quan són necessaris. No obstant això, és necessari fer una planificació d'encesa i apagat de màquines per a minimitzar l'impacte en l'usuari final. En esta tesi ens plantegem la gestió elàstica i eficient d'infrastructuras de càlcul tipus cluster, amb l'objectiu de reduir els costos associats als components ociosos. Per a abordar este problema ens plantegem l'automatització de l'encesa i apagat de màquines en els clusters, així com l'aplicació de tècniques de migració en viu i de sobreaprovisionament de memòria per a estimular l'obtenció d'equips ociosos que puguen ser apagats. A més, esta automatització és d'interés per als clusters virtuals, ja que també patixen el problema dels components ociosos, encara que en este cas estan compostos per, en compte d'equips físics que gasten energia, per màquines virtuals que gasten diners en un proveïdor Cloud comercial o recursos en un Cloud privat.
Alfonso Laguna, CD. (2015). Efficient and elastic management of computing infrastructures [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/57187
TESIS
Hinz, Mauro. "Virtual power: um modelo de custo baseado no consumo de energia do processador por máquina virtual em nuvens IaaS." Universidade do Estado de Santa Catarina, 2015. http://tede.udesc.br/handle/handle/2051.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
The outsourcing of computing services has been through constant evolutions in the past years, due to the increase of demand for computing resources. Accordingly, data centers are the main suppliers of computing service and cloud-based computing services provide a new paradigm for the offer and consumption of these computing resources. A substantial motivator for using cloud computing is its pricing model, which enables to charge the customer only for the resources he used, thus adopting a pay-as-you-use cost model. Among cloud-based computing services, the service type Infrastructure-as-a-Service (IaaS) is the one mostly used by companies that would like to outsource their computing infrastructure. The IaaS service, in most cases, is offered through virtual machines. This paper revisits the cost models used by data centers and analyses the costs of supply of virtual machines based on IaaS. This analysis identifies that electricity represents a considerable portion of this cost and that much of the consumption comes from the use of processors in virtual machines, and that this aspect is not considered in the identified cost models. This paper describes the Virtual Power Model, a cost model based on energy consumption of the processor in cloud-based, virtual machines in IaaS. The model is based on the assumptions of energy consumption vs. processing load, among others, which are proven through experiments in a test environment of a small data center. As a result, the Virtual Power Model proves itself as a fairer pricing model for the consumed resources than the identified models. Finally, a case study is performed to compare the costs charged to a client using the cost model of Amazon for the AWS EC2 service and the same service charged using the Virtual Power Model.
A terceirização dos serviços de computação tem passado por evoluções constantes nos últimos anos em função do contínuo aumento na demanda por recursos computacionais. Neste sentido, os data centers são os principais fornecedores de serviço de computação e os serviços de computação em nuvem proporcionam um novo paradigma na oferta e consumo desses recursos computacionais. Um considerável motivador do uso das nuvens computacionais é o seu modelo de tarifação que possibilita a cobrança do cliente somente dos recursos que ele utilizou, adotando um modelo de custo do tipo pay-as-you-use. Dentre os serviços de computação em nuvem, o serviço do tipo IaaS (Infrastructure-as-a-Service) é um dos mais utilizados por empresas que desejam terceirizar a sua infraestrutura computacional. O serviço de IaaS, na grande maioria dos casos, é ofertado através de instâncias de máquinas virtuais. O presente trabalho revisita os modelos de custos empregados em data centers analisando a formação dos custos no fornecimento de máquina virtuais em nuvens baseadas em IaaS. Com base nesta análise identificasse que a energia elétrica possui uma parcela considerável deste custo e que boa parte deste consumo é proveniente do uso de processadores pelas máquinas virtuais, e que esse aspecto não é considerado nos modelos de custos identificados. Este trabalho descreve o Modelo Virtual Power, um modelo de custo baseado no consumo de energia do processador por máquina virtual em nuvens IaaS. A constituição do modelo está baseada nas premissas de consumo de energia vs. carga de processamento, entre outros, que são comprovados através de experimentação em um ambiente de testes em um data center de pequeno porte. Como resultado o Modelo Virtual Power mostra-se mais justo na precificação dos recursos consumidos do que os modelos identificados. Por fim, é realizado um estudo de caso comparando os custos tarifado a um cliente empregando o modelo de custo da Amazon no serviço AWS EC2 e o mesmo serviço tarifado utilizando o Modelo Virtual Power.
Jawad, Muhammad. "Energy Efficient Data Centers for On-Demand Cloud Services." Diss., North Dakota State University, 2015. http://hdl.handle.net/10365/25198.
Full textZhang, Gong. "Data and application migration in cloud based data centers --architectures and techniques." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41078.
Full textBayati, Léa. "Data centers energy optimization." Thesis, Paris Est, 2019. http://www.theses.fr/2019PESC0063.
Full textTo ensure both good data center service performance and reasonable power consumption, a detailed analysis of the behavior of these systems is essential for the design of efficient optimization algorithms to reduce energy consumption. This thesis fits into this context, and our main work is to design dynamic energy management systems based on stochastic models of controlled queues. The goal is to search for optimal control policies for data center management, which should meet the growing demands of reducing energy consumption and digital pollution while maintaining quality of service. We first focused on the modeling of dynamic energy management by a stochastic model for a homogeneous data center, mainly to study some structural properties of the optimal strategy, such as monotony. Afterwards, since data centers have a significant level of server heterogeneity in terms of energy consumption and service rates, we have generalized the homogeneous model to a heterogeneous model. In addition, since the data center server's wake-up and shutdown are not instantaneous and a server requires a little more time to go from sleep mode to ready-to-work mode, we have extended the model to the purpose of including this server time latency. Throughout this exact optimization, arrivals and service rates are specified with histograms that can be obtained from actual traces, empirical data, or traffic measurements. We have shown that the size of the MDP model is very large and leads to the problem of the explosion of state space and a large computation time. Thus, we have shown that optimal optimization requiring a MDP is often difficult or almost impossible to apply for large data centers. Especially if we take into account real aspects such as server heterogeneity or latency. So, we have suggested what we call the greedy-window algorithm that allows to find a sub-optimal strategy better than that produced when considering a special mechanism like threshold approaches. And more importantly, unlike the MDP approach, this algorithm does not require the complete construction of the structure that encodes all possible strategies. Thus, this algorithm gives a strategy very close to the optimal strategy with very low space-time complexities. This makes this solution practical, scalable, dynamic and can be put online
Castro, Pedro Henrique Pires de. "Estratégias para uso eficiente de recursos em centros de dados considerando consumo de CPU e RAM." Universidade Federal de Goiás, 2014. http://repositorio.bc.ufg.br/tede/handle/tede/4124.
Full textApproved for entry into archive by Erika Demachki (erikademachki@gmail.com) on 2015-02-05T20:00:48Z (GMT) No. of bitstreams: 2 Dissertação - Pedro Henrique Pires de Castro - 2014.pdf: 1908182 bytes, checksum: edac87bddd8346a2bcce5d9b5f00301d (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Made available in DSpace on 2015-02-05T20:00:48Z (GMT). No. of bitstreams: 2 Dissertação - Pedro Henrique Pires de Castro - 2014.pdf: 1908182 bytes, checksum: edac87bddd8346a2bcce5d9b5f00301d (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2014-08-04
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
Cloud computing is being consolidated as a new distributed systems paradigm, offering computing resources in a virtualized way and with unprecedented levels of flexibility, reliability, and scalability. Unfortunately, the benefits of cloud computing come at a high cost with regard to energy, mainly because of one of its core enablers, the data center. There are a number of proposals that seek to enhance energy efficiency in data centers. However, most of them focus only on the energy consumed by CPU and ignore the remaining hardware, e.g., RAM. In this work, we show the considerable impact that RAM can have on total energy consumption, particularly in servers with large amounts of this memory. We also propose three new approaches for dynamic consolidation of virtual machines (VMs) that take into account both CPU and RAM usage. We have implemented and evaluated our proposals in the CloudSim simulator using real-world traces and compared the results with state-of-the-art solutions. By adopting a wider view of the system, our proposals are able to reduce not only energy consumption but also the number of SLA violations, i.e., they provide a better service at a lower cost.
A computação em nuvem tem levado os sistemas distribuídos a um novo patamar, oferecendo recursos computacionais de forma virtualizada, flexível, robusta e escalar. Essas vantagens, no entanto, surgem juntamente com um alto consumo de energia nos centros de dados, ambientes que podem ter até centenas de milhares de servidores. Existem muitas propostas para alcançar eficiência energética em centros de dados para computação em nuvem. Entretanto, muitas propostas consideram apenas o consumo proveniente do uso de CPU e ignoram os demais componentes de hardware, e.g., RAM. Neste trabalho, mostramos o impacto considerável que RAM pode ter sobre o consumo total de energia, principalmente em servidores com grandes quantidades dessa memória. Também propomos três novas abordagens para consolidação dinâmica de máquinas virtuais, levando em conta tanto o consumo de CPU quanto de RAM. Nossas propostas foram implementadas e avaliadas no simulador CloudSim utilizando cargas de trabalho do mundo real. Os resultados foram comparados com soluções do estado-da-arte. Pela adoção de uma visão mais ampla do sistema, nossas propostas não apenas são capazes de reduzir o consumo de energia como também reduzem violações de SLA, i.e., proveem um serviço melhor a um custo mais baixo.
Penumetsa, Swetha. "A comparison of energy efficient adaptation algorithms in cloud data centers." Thesis, Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-17374.
Full textGao, Xing. "Investigating Emerging Security Threats in Clouds and Data Centers." W&M ScholarWorks, 2018. https://scholarworks.wm.edu/etd/1550153840.
Full textTakouna, Ibrahim. "Energy-efficient and performance-aware virtual machine management for cloud data centers." Phd thesis, Universität Potsdam, 2014. http://opus.kobv.de/ubp/texte_eingeschraenkt_verlag/2014/7239/.
Full textVirtualized cloud data centers provide on-demand resources, enable agile resource provisioning, and host heterogeneous applications with different resource requirements. These data centers consume enormous amounts of energy, increasing operational expenses, inducing high thermal inside data centers, and raising carbon dioxide emissions. The increase in energy consumption can result from ineffective resource management that causes inefficient resource utilization. This dissertation presents detailed models and novel techniques and algorithms for virtual resource management in cloud data centers. The proposed techniques take into account Service Level Agreements (SLAs) and workload heterogeneity in terms of memory access demand and communication patterns of web applications and High Performance Computing (HPC) applications. To evaluate our proposed techniques, we use simulation and real workload traces of web applications and HPC applications and compare our techniques against the other recently proposed techniques using several performance metrics. The major contributions of this dissertation are the following: proactive resource provisioning technique based on robust optimization to increase the hosts' availability for hosting new VMs while minimizing the idle energy consumption. Additionally, this technique mitigates undesirable changes in the power state of the hosts by which the hosts' reliability can be enhanced in avoiding failure during a power state change. The proposed technique exploits the range-based prediction algorithm for implementing robust optimization, taking into consideration the uncertainty of demand. An adaptive range-based prediction for predicting workload with high fluctuations in the short-term. The range prediction is implemented in two ways: standard deviation and median absolute deviation. The range is changed based on an adaptive confidence window to cope with the workload fluctuations. A robust VM consolidation for efficient energy and performance management to achieve equilibrium between energy and performance trade-offs. Our technique reduces the number of VM migrations compared to recently proposed techniques. This also contributes to a reduction in energy consumption by the network infrastructure. Additionally, our technique reduces SLA violations and the number of power state changes. A generic model for the network of a data center to simulate the communication delay and its impact on VM performance, as well as network energy consumption. In addition, a generic model for a memory-bus of a server, including latency and energy consumption models for different memory frequencies. This allows simulating the memory delay and its influence on VM performance, as well as memory energy consumption. Communication-aware and energy-efficient consolidation for parallel applications to enable the dynamic discovery of communication patterns and reschedule VMs using migration based on the determined communication patterns. A novel dynamic pattern discovery technique is implemented, based on signal processing of network utilization of VMs instead of using the information from the hosts' virtual switches or initiation from VMs. The result shows that our proposed approach reduces the network's average utilization, achieves energy savings due to reducing the number of active switches, and provides better VM performance compared to CPU-based placement. Memory-aware VM consolidation for independent VMs, which exploits the diversity of VMs' memory access to balance memory-bus utilization of hosts. The proposed technique, Memory-bus Load Balancing (MLB), reactively redistributes VMs according to their utilization of a memory-bus using VM migration to improve the performance of the overall system. Furthermore, Dynamic Voltage and Frequency Scaling (DVFS) of the memory and the proposed MLB technique are combined to achieve better energy savings.
Yanggratoke, Rerngvit. "Contributions to Performance Modeling and Management of Data Centers." Licentiate thesis, KTH, Kommunikationsnät, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-129296.
Full textQC 20131001
Peloso, Pietro. "Possibili soluzioni per garantire qos nelle comunicazioni inter-data centers in ambienti cloud computing." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amslaurea.unibo.it/6205/.
Full textAtchukatla, Mahammad suhail. "Algorithms for efficient VM placement in data centers : Cloud Based Design and Performance Analysis." Thesis, Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-17221.
Full text- Perform simulation of algorithms in CloudSim simulator. Estimate and compare the energy consumption of different packing algorithms. Design an OpenStack testbed to implement the Bin packing algorithm. Methods: We use CloudSim simulator to estimate the energy consumption of the First fit, the First fit decreasing, Best fit and Enhanced best-fit algorithms. Design a heuristic model for implementation in the OpenStack environment for optimizing the energy consumption for the physical machines. Server consolidation and live migration are used for the algorithms design in the OpenStack implementation. Our research also extended to the Nova scheduler functionality in an OpenStack environment. Results: Most of the case the enhanced best-fit algorithm gives the better results. The results are obtained from the default OpenStack VM placement algorithm as well as from the heuristic algorithm developed in this simulation work. The comparison of results indicates that the total energy consumption of the data center is reduced without affecting potential service level agreements. Conclusions: The research tells that energy consumption of the physical machines can be optimized without compromising the offered service quality. A Python wrapper was developed to implement this model in the OpenStack environment and minimize the energy consumption of the Physical machine by shutdown the unused physical machines. The results indicate that CPU Utilization does not vary much when live migration of the virtual machine is performed.
Le, Trung. "Towards Sustainable Cloud Computing: Reducing Electricity Cost and Carbon Footprint for Cloud Data Centers through Geographical and Temporal Shifting of Workloads." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23082.
Full textRostirolla, Gustavo. "Ordonnancement dans un centre de calculs alimenté par des sources d'énergie renouvelables sans connexion au réseau avec une charge de travail mixte basée sur des phases." Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30160.
Full textDue to the increase of cloud, web-services and high performance computing demands all over the world, datacenters are now known to be one of the biggest actors when talking about energy consumption. In 2006 alone, datacenters were responsible for consuming 61.4 billion kWh in the United States. When looking at the global scenario, datacenters are currently consuming more energy than the entire United Kingdom, representing about 1.3\% of world's electricity consumption, and being even called the factories of the digital age. Supplying datacenters with clean-to-use renewable energy is therefore essential to help mitigate climate change. The vast majority of cloud provider companies that claim to use green energy supply on their datacenters consider the classical grid, and deploy the solar panels/wind turbines somewhere else and sell the energy to electricity companies, which incurs in energy losses when the electricity travels throughout the grid. Even though several efforts have been conducted at the computing level in datacenters partially powered by renewable energy sources, the scheduling considering on site renewable energy sources and its variations, without connection to the grid can still be widely explored. Since energy efficiency in datacenters is directly related to the resource consumption of the computing nodes, performance optimization and an efficient load scheduling are essential for energy saving. Today, we observe the use of cloud computing as the basis of datacenters, either in a public or private fashion. The main particularity of our approach is that we consider a power envelope composed only by renewable energy as a constraint, hence with a variable amount of power available at each moment. The scheduling under this kind of constraint becomes more complex: without further checks, we are not ensured that a running task will run until completion. We start by addressing the IT load scheduling of batch tasks, which are characterized by their release time, due date and resource demand, in a cloud datacenter while respecting the aforementioned power envelope. The data utilized for the batch tasks comes from datacenter traces, containing CPU, memory and network values. The power envelopes considered, represent an estimation which would be provided by a power decision module and is the expected power production based on weather forecasts. The aim is to maximize the Quality of Service with a variable constraint on electrical power. Furthermore, we explore a workload composed by batch and services, where the resources consumption varies over time. The traces utilized for the service tasks originate from business critical datacenter. In this case we rely on the concept of phases, where each significant resource change in the resources consumption constitutes a new phase of the given task. In this task model phases could also receive less resources than requested. The reduction of resources can impact the QoS and consequently the datacenter profit. In this approach we also include the concept of cross-correlation to evaluate where to place a task under a power curve, and what is the best node to place tasks together (i.e. sharing resources). Finally, considering the previous workload of batch tasks and services, we present an approach towards handling unexpected events in the datacenter. More specifically we focus on IT related events such as tasks arriving at any given time, demanding more or less resources than expected, or having a different finish time than what was initially expected. We adapt the proposed algorithms to take actions depending on which event occurs, e.g. task degradation to reduce the impact on the datacenter profit
Roozbeh, Amir. "Toward Next-generation Data Centers : Principles of Software-Defined “Hardware” Infrastructures and Resource Disaggregation." Licentiate thesis, KTH, Kommunikationssystem, CoS, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-249618.
Full textQC 20190415
Dagala, Wadzani Jabani. "Analysis of Total Cost of Ownership for Medium Scale Cloud Service Provider with emphasis on Technology and Security." Thesis, Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-15003.
Full text
Khaleel, Ali. "Optimisation of a Hadoop cluster based on SDN in cloud computing for big data applications." Thesis, Brunel University, 2018. http://bura.brunel.ac.uk/handle/2438/17076.
Full textMadi, wamba Gilles. "Combiner la programmation par contraintes et l’apprentissage machine pour construire un modèle éco-énergétique pour petits et moyens data centers." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2017. http://www.theses.fr/2017IMTA0045/document.
Full textOver the last decade, cloud computing technologies have considerably grown, this translates into a surge in data center power consumption. The magnitude of the problem has motivated numerous research studies around static or dynamic solutions to reduce the overall energy consumption of a data center. The aim of this thesis is to integrate renewable energy sources into dynamic energy optimization models in a data center. For this we use constraint programming as well as machine learning techniques. First, we propose a global constraint for tasks intersection that takes into account a ressource with variable cost. Second, we propose two learning models for the prediction of the work load of a data center and for the generation of such curves. Finally, we formalize the green energy aware scheduling problem (GEASP) and propose a global model based on constraint programming as well as a search heuristic to solve it efficiently. The proposed model integrates the various aspects inherent to the dynamic planning problem in a data center : heterogeneous physical machines, various application types (i.e., ractive applications and batch applications), actions and energetic costs of turning ON/OFF physical machine, interrupting/resuming batch applications, CPU and RAM ressource consumption of applications, migration of tasks and energy costs related to the migrations, prediction of green energy availability, variable energy consumption of physical machines
Feller, Eugen. "Autonomic and Energy-Efficient Management of Large-Scale Virtualized Data Centers." Phd thesis, Université Rennes 1, 2012. http://tel.archives-ouvertes.fr/tel-00785090.
Full text