Academic literature on the topic 'Data Classification'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Data Classification.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Data Classification"
Geethika, Paruchuri, and Voleti Prasanthi. "Booster in High Dimensional Data Classification." International Journal of Trend in Scientific Research and Development Volume-2, Issue-3 (April 30, 2018): 1186–90. http://dx.doi.org/10.31142/ijtsrd11368.
Full textAlhaisoni, Majed Mohaia, Rabie A. Ramadan, and Ahmed Y. Khedr. "SCF: Smart Big Data Classification Framework." Indian Journal of Science and Technology 12, no. 37 (October 10, 2019): 1–8. http://dx.doi.org/10.17485/ijst/2019/v12i37/148647.
Full textS, Gowtham, and Karuppusamy S. "Review of Data Mining Classification Techniques." Bonfring International Journal of Software Engineering and Soft Computing 9, no. 2 (April 30, 2019): 8–11. http://dx.doi.org/10.9756/bijsesc.9013.
Full textUprichard, Emma. "Dirty Data: Longitudinal Classification Systems." Sociological Review 59, no. 2_suppl (December 2011): 93–112. http://dx.doi.org/10.1111/j.1467-954x.2012.02058.x.
Full textAnam, Mamoona, Dr Kantilal P. Rane, Ali Alenezi, Ruby Mishra, Dr Swaminathan Ramamurthy, and Ferdin Joe John Joseph. "Content Classification Tasks with Data Preprocessing Manifestations." Webology 19, no. 1 (January 20, 2022): 1413–30. http://dx.doi.org/10.14704/web/v19i1/web19094.
Full textRani, A. Nithya, and Dr Antony Selvdoss Davamani. "Classification on Missing Data for Multiple Imputations." International Journal of Trend in Scientific Research and Development Volume-2, Issue-3 (April 30, 2018): 745–49. http://dx.doi.org/10.31142/ijtsrd9566.
Full textN.J., Anjala. "Algorithmic Assessment of Text based Data Classification in Big Data Sets." Journal of Advanced Research in Dynamical and Control Systems 12, SP4 (March 31, 2020): 1231–34. http://dx.doi.org/10.5373/jardcs/v12sp4/20201598.
Full textBian, Jiang, Dayong Tian, Yuanyan Tang, and Dacheng Tao. "Trajectory Data Classification." ACM Transactions on Intelligent Systems and Technology 10, no. 4 (August 29, 2019): 1–34. http://dx.doi.org/10.1145/3330138.
Full textSuthaharan, Shan. "Big data classification." ACM SIGMETRICS Performance Evaluation Review 41, no. 4 (April 17, 2014): 70–73. http://dx.doi.org/10.1145/2627534.2627557.
Full textAnonymous. "Sonar data classification." Eos, Transactions American Geophysical Union 69, no. 38 (1988): 868. http://dx.doi.org/10.1029/88eo01128.
Full textDissertations / Theses on the topic "Data Classification"
Morshedzadeh, Iman. "Data Classification in Product Data Management." Thesis, Högskolan i Skövde, Institutionen för teknik och samhälle, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-14651.
Full textCurrie, Sheila. "Data classification for choropleth mapping." Thesis, University of Ottawa (Canada), 1989. http://hdl.handle.net/10393/5725.
Full textGómez, Juan Martínez. "Automatic classification of neural data." Thesis, University of Leicester, 2011. http://hdl.handle.net/2381/9696.
Full textPötzelberger, Klaus, and Helmut Strasser. "Data Compression by Unsupervised Classification." Department of Statistics and Mathematics, WU Vienna University of Economics and Business, 1997. http://epub.wu.ac.at/974/1/document.pdf.
Full textSeries: Forschungsberichte / Institut für Statistik
Soukhoroukova, Nadejda. "Data classification through nonsmooth optimization." Thesis, University of Ballarat [Mt. Helen, Vic.] :, 2003. http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/42220.
Full textKröger, Viktor. "Classification in Functional Data Analysis : Applications on Motion Data." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-184963.
Full textFrämre korsbandsskador är vanliga och välkända skador, speciellt bland idrottsutövare. Skadornakräver ofta operationer och långa rehabiliteringsprogram, och kan leda till funktionell nedsättningoch återskador (Marshall et al., 1977). Målet med det här arbetet är att utforska möjligheten attklassificera knän utifrån funktionalitet, där utfallet är känt. Detta genom att använda olika typerav modeller, och genom att testa olika indelningar av grupper. Datat som används är insamlatunder ett prestandatest, där personer hoppat på ett ben med rörelsesensorer på kroppen. Deninsamlade datan representerar position över tid, och betraktas som funktionell data.Med funktionell dataanalys (FDA) kan en process analyseras som en kontinuerlig funktion av tid,istället för att reduceras till ett ändligt antal datapunkter. FDA innehåller många användbaraverktyg, men även utmaningar. En funktionell observation kan till exempel deriveras, ett händigtverktyg som inte återfinns i den multivariata verktygslådan. Hastigheten och accelerationen kandå beräknas utifrån den insamlade datan. Hur "likhet" är definierat, å andra sidan, är inte likauppenbart som med punkt-data. I det här arbetet används FDA för att klassificera knärörelsedatafrån en långtidsuppföljningsstudie av främre korsbandsskador.I detta arbete studeras både funktionella kärnklassificerare och k-närmsta grannar-metoder, och ut-för signifikanstest av modellträffsäkerheten genom omprovtagning. Vidare kan modellerna urskiljaolika egenskaper i datat, beroende på hur närhet definieras. Ensemblemetoder används i ett försökatt nyttja mer av informationen, men lyckas inte överträffa någon av de enskilda modellerna somutgör ensemblen. Vidare så visas också att klassificering på optimerade deldefinitionsmängder kange en högre förklaringskraft än klassificerare som använder hela definitionsmängden.
Lan, Liang. "Data Mining Algorithms for Classification of Complex Biomedical Data." Diss., Temple University Libraries, 2012. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/214773.
Full textPh.D.
In my dissertation, I will present my research which contributes to solve the following three open problems from biomedical informatics: (1) Multi-task approaches for microarray classification; (2) Multi-label classification of gene and protein prediction from multi-source biological data; (3) Spatial scan for movement data. In microarray classification, samples belong to several predefined categories (e.g., cancer vs. control tissues) and the goal is to build a predictor that classifies a new tissue sample based on its microarray measurements. When faced with the small-sample high-dimensional microarray data, most machine learning algorithm would produce an overly complicated model that performs well on training data but poorly on new data. To reduce the risk of over-fitting, feature selection becomes an essential technique in microarray classification. However, standard feature selection algorithms are bound to underperform when the size of the microarray data is particularly small. The best remedy is to borrow strength from external microarray datasets. In this dissertation, I will present two new multi-task feature filter methods which can improve the classification performance by utilizing the external microarray data. The first method is to aggregate the feature selection results from multiple microarray classification tasks. The resulting multi-task feature selection can be shown to improve quality of the selected features and lead to higher classification accuracy. The second method jointly selects a small gene set with maximal discriminative power and minimal redundancy across multiple classification tasks by solving an objective function with integer constraints. In protein function prediction problem, gene functions are predicted from a predefined set of possible functions (e.g., the functions defined in the Gene Ontology). Gene function prediction is a complex classification problem characterized by the following aspects: (1) a single gene may have multiple functions; (2) the functions are organized in hierarchy; (3) unbalanced training data for each function (much less positive than negative examples); (4) missing class labels; (5) availability of multiple biological data sources, such as microarray data, genome sequence and protein-protein interactions. As participants in the 2011 Critical Assessment of Function Annotation (CAFA) challenge, our team achieved the highest AUC accuracy among 45 groups. In the competition, we gained by focusing on the 5-th aspect of the problem. Thus, in this dissertation, I will discuss several schemes to integrate the prediction scores from multiple data sources and show their results. Interestingly, the experimental results show that a simple averaging integration method is competitive with other state-of-the-art data integration methods. Original spatial scan algorithm is used for detection of spatial overdensities: discovery of spatial subregions with significantly higher scores according to some density measure. This algorithm is widely used in identifying cluster of disease cases (e.g., identifying environmental risk factors for child leukemia). However, the original spatial scan algorithm only works on static spatial data. In this dissertation, I will propose one possible solution for spatial scan on movement data.
Temple University--Theses
Lozano, Albalate Maria Teresa. "Data Reduction Techniques in Classification Processes." Doctoral thesis, Universitat Jaume I, 2007. http://hdl.handle.net/10803/10479.
Full textThe aim of any condensing technique is to obtain a reduced training set in order to spend as few time as possible in classification. All that without a significant loss in classification accuracy. Some
new approaches to training set size reduction based on prototypes are presented. These schemes basically consist of defining a small number of prototypes that represent all the original instances. That includes those approaches that select among the already existing examples (selective condensing algorithms), and those which generate new representatives (adaptive condensing algorithms).
Those new reduction techniques are experimentally compared to some traditional ones, for data represented in feature spaces. In order to test them, the classical 1-NN rule is here applied. However, other classifiers (fast classifiers) have been considered here, as linear and quadratic ones constructed in dissimilarity spaces based on prototypes, in order to realize how editing and condensing concepts work for this different family of classifiers.
Although the goal of the algorithms proposed in this thesis is to obtain a strongly reduced set of representatives, the performance is empirically evaluated over eleven real data sets by comparing not only the reduction rate but also the classification accuracy with those of other condensing techniques. Therefore, the ultimate aim is not only to find a strongly reduced set, but also a balanced one.
Several ways to solve the same problem could be found. So, in the case of using a rule based on distance as a classifier, not only the option of reducing the training set can be afford. A different family of approaches consists of applying several searching methods. Therefore, results obtained by the use of the algorithms here presented are compared in terms of classification accuracy and time, to several efficient search techniques.
Finally, the main contributions of this PhD report could be briefly summarised in four principal points. Firstly, two selective algorithms based on the idea of surrounding neighbourhood. They obtain better results than other algorithms presented here, as well as better than other traditional schemes. Secondly, a generative approach based on mixtures of Gaussians. It presents better results in classification accuracy and size reduction than traditional adaptive algorithms, and similar to those of the LVQ. Thirdly, it is shown that classification rules other than the 1-NN can be used, even leading to better results. And finally, it is deduced from the experiments carried on, that with some databases (as the ones used here) the approaches here presented execute the classification processes in less time that the efficient search techniques.
Aygar, Alper. "Doppler Radar Data Processing And Classification." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/12609890/index.pdf.
Full textLee, Ho-Jin. "Functional data analysis: classification and regression." Texas A&M University, 2004. http://hdl.handle.net/1969.1/2805.
Full textBooks on the topic "Data Classification"
Balderjahn, Ingo, Rudolf Mathar, and Martin Schader, eds. Classification, Data Analysis, and Data Highways. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-72087-1.
Full textData analysis, data modeling, and classification. New York: McGraw-Hill, 1992.
Find full textJajuga, Krzysztof, Krzysztof Najman, and Marek Walesiak, eds. Data Analysis and Classification. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75190-6.
Full textBatagelj, Vladimir, Hans-Hermann Bock, Anuška Ferligoj, and Aleš Žiberna, eds. Data Science and Classification. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-34416-0.
Full textJajuga, Krzysztof, Jacek Batóg, and Marek Walesiak, eds. Classification and Data Analysis. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52348-0.
Full textPalumbo, Francesco, Carlo Natale Lauro, and Michael J. Greenacre, eds. Data Analysis and Classification. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-03739-9.
Full textVichi, Maurizio, and Otto Opitz, eds. Classification and Data Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-60126-2.
Full textGiusti, Antonio, Gunter Ritter, and Maurizio Vichi, eds. Classification and Data Mining. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-28894-4.
Full textGiusti, Antonio. Classification and Data Mining. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Find full textJajuga, Krzysztof, Grażyna Dehnel, and Marek Walesiak, eds. Modern Classification and Data Analysis. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-10190-8.
Full textBook chapters on the topic "Data Classification"
Runkler, Thomas A. "Classification." In Data Analytics, 85–101. Wiesbaden: Vieweg+Teubner Verlag, 2012. http://dx.doi.org/10.1007/978-3-8348-2589-6_8.
Full textRunkler, Thomas A. "Classification." In Data Analytics, 91–109. Wiesbaden: Springer Fachmedien Wiesbaden, 2016. http://dx.doi.org/10.1007/978-3-658-14075-5_8.
Full textRunkler, Thomas A. "Classification." In Data Analytics, 95–115. Wiesbaden: Springer Fachmedien Wiesbaden, 2020. http://dx.doi.org/10.1007/978-3-658-29779-4_8.
Full textChristen, Peter. "Classification." In Data Matching, 129–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31164-2_6.
Full textAggarwal, Charu C. "Data Classification." In Data Mining, 285–344. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14142-8_10.
Full textBergel, Alexandre. "Data Classification." In Agile Artificial Intelligence in Pharo, 89–116. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-5384-7_5.
Full textPaluszek, Michael, and Stephanie Thomas. "Data Classification." In MATLAB Machine Learning, 113–41. Berkeley, CA: Apress, 2016. http://dx.doi.org/10.1007/978-1-4842-2250-8_8.
Full textSlocum, Terry A., Robert B. McMaster, Fritz C. Kessler, and Hugh H. Howard. "Data Classification." In Thematic Cartography and Geovisualization, 83–98. 4th ed. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003150527-6.
Full textToelle, Erica. "Data Classification." In Microsoft 365 Compliance, 61–99. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-5778-4_3.
Full textRutkowski, Leszek, Maciej Jaworski, and Piotr Duda. "Classification." In Studies in Big Data, 287–308. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13962-9_13.
Full textConference papers on the topic "Data Classification"
"Content-Adaptive Data Fusion." In The Second International Workshop on Biosignal Processing and Classification. SciTePress - Science and and Technology Publications, 2006. http://dx.doi.org/10.5220/0001222100230032.
Full textSimas, Tiago, Gabriel Silva, Bruno Miranda, Andre Moitinho, Rita Ribeiro, and Coryn A. L. Bailer-Jones. "Knowledge Discovery in Large Data Sets." In CLASSIFICATION AND DISCOVERY IN LARGE ASTRONOMICAL SURVEYS: Proceedings of the International Conference: “Classification and Discovery in Large Astronomical Surveys”. AIP, 2008. http://dx.doi.org/10.1063/1.3059044.
Full textBorne, K., J. Becla, I. Davidson, A. Szalay, J. A. Tyson, and Coryn A. L. Bailer-Jones. "The LSST Data Mining Research Agenda." In CLASSIFICATION AND DISCOVERY IN LARGE ASTRONOMICAL SURVEYS: Proceedings of the International Conference: “Classification and Discovery in Large Astronomical Surveys”. AIP, 2008. http://dx.doi.org/10.1063/1.3059074.
Full textBonner, Stephen, John Brennan, Georgios Theodoropoulos, Ibad Kureshi, and Andrew Stephen McGough. "Deep topology classification: A new approach for massive graph classification." In 2016 IEEE International Conference on Big Data (Big Data). IEEE, 2016. http://dx.doi.org/10.1109/bigdata.2016.7840988.
Full textFerrara, Alfio, Lorenzo Genta, and Stefano Montanelli. "Linked data classification." In the Joint EDBT/ICDT 2013 Workshops. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2457317.2457330.
Full textAnnapoorna, P. V. Srilakshmi, and T. T. Mirnalinee. "Streaming data classification." In 2016 Fifth International Conference on Recent Trends in Information Technology (ICRTIT). IEEE, 2016. http://dx.doi.org/10.1109/icrtit.2016.7569525.
Full textHeasley, J. N., and Coryn A. L. Bailer-Jones. "The Pan-STARRS Data Processing and Science Analysis Software Systems." In CLASSIFICATION AND DISCOVERY IN LARGE ASTRONOMICAL SURVEYS: Proceedings of the International Conference: “Classification and Discovery in Large Astronomical Surveys”. AIP, 2008. http://dx.doi.org/10.1063/1.3059075.
Full textHe, Jing Selena, Meng Han, Lei Yu, and Chao Mei. "Lung Pattern Classification Via DCNN." In 2020 IEEE International Conference on Big Data (Big Data). IEEE, 2020. http://dx.doi.org/10.1109/bigdata50022.2020.9378090.
Full textZhang, Jason, Krerkkiat Chusap, Wei Zhang, and Chang Liu. "Improving Paper Classification Using Forecasting." In 2022 IEEE International Conference on Big Data (Big Data). IEEE, 2022. http://dx.doi.org/10.1109/bigdata55660.2022.10020764.
Full textShinde, Neeta, Chandana S, Shashank Anand Patil, K. Siri Chandana, Neha Tarannum Pendari, P. G. Sunitha Hiremath, and Shankar Gangisetty. "Stacked LSTM Based Wafer Classification." In 2021 IEEE International Conference on Big Data (Big Data). IEEE, 2021. http://dx.doi.org/10.1109/bigdata52589.2021.9671835.
Full textReports on the topic "Data Classification"
Newhouse, Bill. Implementing Data Classification Practices. Gaithersburg, MD: National Institute of Standards and Technology, 2023. http://dx.doi.org/10.6028/nist.sp.1800-39.ipd.
Full textFiebiger, Frank. Map Classification In Image Data. Fort Belvoir, VA: Defense Technical Information Center, September 2015. http://dx.doi.org/10.21236/ad1008925.
Full textGorsich, David J., Robert E. Karlsen, and Grant R. Gerhart. Classification Consequences of Preprocessing Radar Data. Fort Belvoir, VA: Defense Technical Information Center, January 2000. http://dx.doi.org/10.21236/ada457937.
Full textJimenez, Luis O., Miguel Velez, and Shawn Hunt. Unsupervised Classification System for Hyperspectral Data Analysis. Fort Belvoir, VA: Defense Technical Information Center, May 2001. http://dx.doi.org/10.21236/ada398803.
Full textLades, M. Motion description for data compression and classification. Office of Scientific and Technical Information (OSTI), February 1998. http://dx.doi.org/10.2172/8300.
Full textKirby, Michael, and Chris Peterson. Classification of Data Bundles via Parameter Spaces. Fort Belvoir, VA: Defense Technical Information Center, December 2011. http://dx.doi.org/10.21236/ada563706.
Full textVilim, R. B., E. E. Feldman, W. D. Pointer, and T. Y. C. Wei. Initial VHTR accident scenario classification: models and data. Office of Scientific and Technical Information (OSTI), September 2005. http://dx.doi.org/10.2172/925358.
Full textHawkins, Rupert S., K. F. Heideman, and Ira G. Smotroff. Cloud Data Set for Neural Network Classification Studies. Fort Belvoir, VA: Defense Technical Information Center, January 1992. http://dx.doi.org/10.21236/ada256181.
Full textMaule, R. W., Gordon Schacher, Shelley Gallup, Charles Marashian, and Bryan McClain. Ethnographic Qualitative Knowledge Management System Data Classification Schema. Fort Belvoir, VA: Defense Technical Information Center, June 2000. http://dx.doi.org/10.21236/ada384029.
Full textStaenz, K., J. W. Schwarz, L. Vernaccini, F. Vachon, and C. Nadeau. Classification of Hyperspectral Agricultural Data with Spectral Matching Techniques. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1999. http://dx.doi.org/10.4095/219608.
Full text