Academic literature on the topic 'Dark-matter search'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dark-matter search.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Dark-matter search"

1

Bernabei, R., P. Belli, F. Cappella, R. Cerulli, F. Montecchia, F. Nozzoli, A. Incicchitti, et al. "Dark Matter search." La Rivista del Nuovo Cimento 26, no. 1 (January 2003): 1–73. http://dx.doi.org/10.1007/bf03548916.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

LEE, Hyun Su, Nam-Young KIM, and Eunju JEON. "Dark Matter Search." Physics and High Technology 23, no. 9 (September 30, 2014): 4. http://dx.doi.org/10.3938/phit.23.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bernabei, R. "Dark Matter search." Progress in Particle and Nuclear Physics 48, no. 1 (January 2002): 263–82. http://dx.doi.org/10.1016/s0146-6410(02)00132-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

KLAPDOR-KLEINGROTHAUS, H. V. "DARK MATTER SEARCH." International Journal of Modern Physics A 17, no. 24 (September 30, 2002): 3421–31. http://dx.doi.org/10.1142/s0217751x0201282x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

GELMINI, GRACIELA B. "SEARCH FOR DARK MATTER." International Journal of Modern Physics A 23, no. 26 (October 20, 2008): 4273–88. http://dx.doi.org/10.1142/s0217751x08042729.

Full text
Abstract:
The search for dark matter is a very wide and active field of research, and I necessarily concentrate here only in some aspects of it. I will review the prospects for direct and indirect dark matter searches of Weakly Interacting Massive Particles in the dark halo of our galaxy and focus in particular on the data of GLAST, PAMELA and DAMA.
APA, Harvard, Vancouver, ISO, and other styles
6

Rau, Wolfgang. "Dark matter search experiments." Physics of Particles and Nuclei 42, no. 4 (July 2011): 650–60. http://dx.doi.org/10.1134/s1063779611040125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Meregaglia, Anselmo, Davide Franco, Marcello Messina, Claudio Montanari, and Francesco Pietropaolo. "Direct Dark Matter Search." Advances in High Energy Physics 2015 (2015): 1–2. http://dx.doi.org/10.1155/2015/967697.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Caldwell, David O. "Search for dark matter." Nuclear Physics B - Proceedings Supplements 13 (February 1990): 201–6. http://dx.doi.org/10.1016/0920-5632(90)90056-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Seidel, W., P. Colling, S. Cooper, D. Dummer, F. v. Feilitzsch, P. Ferger, G. Forster, et al. "Munich dark matter search." Journal of Low Temperature Physics 93, no. 3-4 (November 1993): 797–802. http://dx.doi.org/10.1007/bf00693515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shin, Seodong. "Non-minimal dark matter search in dark matter colliders." EPJ Web of Conferences 168 (2018): 06008. http://dx.doi.org/10.1051/epjconf/201816806008.

Full text
Abstract:
In the scenarios of dark matter (DM) with a non-minimal dark sector, we revisit a new detection strategy of observing two or three simultaneous signals from inelastic scattering of a boosted DM [1]. The relativistically incoming DM can scatter off inelastically to a heavier unstable dark sector particle which decays back in to the DM associated with visible Standard Model particles inside large volume neutrino detectors. The existence of the secondary procedure renders us to separate it from conventional neutrino scattering background. The relativistically incoming DM can come from the universe by the annihilation of heavy DM component in an inelastic boosted DM scenario or produced by the beam bombardments in fixed target experiments.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Dark-matter search"

1

Cozzini, Cristina. "CRESST dark matter search with cryogenic calorimeters." Diss., [S.l.] : [s.n.], 2003. http://edoc.ub.uni-muenchen.de/archive/00001299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stark, Schneebeli Luisa Sabrina. "Indirect dark matter search with the Magic telescope /." Zürich : ETH, 2007. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=17389.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Petricca, Federica. "Dark Matter Search with Cryogenic Phonon-Light Detectors." Diss., lmu, 2005. http://nbn-resolving.de/urn:nbn:de:bvb:19-37308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Marchese, J. T. "Background studies for the CRESST dark matter search." Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Navrer-Agasson, Anyssa. "Direct dark matter search with the DarkSide Experiment." Thesis, Université de Paris (2019-....), 2019. https://theses.md.univ-paris-diderot.fr/NAVRER-AGASSON_Anyssa_va2.pdf.

Full text
Abstract:
L'existence de la matière noire est connue en raison de ses effets gravitationnels et, bien que sa nature reste inconnue, un des candidats principaux est une particule massive interagissant faiblement (WIMP) ayant une masse de l'ordre de 100 GeV/c2 et un couplage avec la matière ordinaire à ou en dessous de l'échelle faible. Dans ce contexte, DarkSide-50 cherche à observer des collisions WIMP-nucléon dans une chambre de projection temporelle à double phase d'argon liquide située dans le sous-sol du Laboratoire National du Gran Sasso (LNGS), en Italie. Le travail présenté ici porte d'abord sur une étude de la réponse de l'argon aux reculs nucléaires et électroniques à basse énergie, réalisée par l’expérience ARIS. Le quenching nucléaire a été mesuré avec la meilleure précision à cette date et la probabilité de recombinaison a été comparée aux différents modèles décrivant le comportement de l’argon en présence d’un champ électrique. Une recherche de WIMP de faible masse effectuée avec les données DarkSide-50 est également présentée. Cette recherche porte sur le signal d'ionisation du TPC, conduisant à un seuil de détection beaucoup plus bas qu’en utilisant la scintillation. Les limites d'exclusion atteintes figurent parmi les meilleures pour des masses de WIMPs entre 2 et 6 GeV/c2 et sont les plus strictes pour une cible d'argon liquide. Enfin, une recherche préliminaire d'axions est présentée. Les axions sont un candidat alternatif à la matière noire, proposés comme solution au « problème CP fort ». Ils sont détectables dans DarkSide via leur couplage aux électrons. Cette recherche nécessitait l'amélioration de la modélisation des sources de fond en prenant en compte les effets atomiques dans les spectres d'émission bêta, ainsi qu'une redéfinition de l'échelle d'énergie convertissant l'énergie déposée dans l’argon en un certain nombre d'électrons extraits. Les résultats présentés montrent une sensibilité encourageante aux axions solaires et galactiques
The existence of dark matter is known because of its gravitational effects, and although its nature remains undisclosed, one of the leading candidate is the weakly interacting massive particle (WIMP) with mass of the order of 100 GeV/c2 and coupling with ordinary matter at or below the weak scale. In this context, DarkSide-50 aims to direct observe WIMP-nucleon collisions in a liquid argon dual phase time-projection chamber located deep underground at Gran Sasso National Laboratory, in Italy. This work first details the argon calibration realised by the ARIS experiment. ARIS characterised the argon response to low energy nuclear and electronic recoils, down to unprecedented energies. The nuclear quenching was measured with the best precision to this date, and the recombination probability extracted was compared to different models describing the behaviour of argon in presence of an electric field. A search for low mass WIMPs performed with DarkSide-50 data is also presented. This search focuses on the ionisation signal from the TPC, leading much to much lower detection threshold. The achieved exclusion limits are amongst the leading ones, and the most stringent for a liquid argon target. Finally a preliminary search for axions is presented. Axions are an alternative candidate to dark matter, proposed as a solution to the strong CP problem. They are detectable in DarkSide via their coupling to electrons. This search required the improvement of the modelling of the background sources, by taking into account atomic effects in beta emission spectra, as well as a redefinition of the energy scale converting the energy deposited into a number of extracted electrons. The results presented show an encouraging sensitivity to both solar and galactic axions
APA, Harvard, Vancouver, ISO, and other styles
6

GENTILE, VALERIO. "Directional dark matter search with the NEWSdm experiment." Doctoral thesis, Gran Sasso Science Institute, 2019. http://hdl.handle.net/20.500.12571/9706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Keeling, Robert Owen. "Studies of scintillators for the CRESST dark matter search." Thesis, University of Oxford, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270270.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Scovell, Paul Robert. "Results from the ZEPLIN-III dark matter search experiment." Thesis, University of Edinburgh, 2011. http://hdl.handle.net/1842/9592.

Full text
Abstract:
The existence of a significant non-baryonic component to the Universe is widely accepted, with worldwide efforts underway trying to detect this so-called dark matter. The ZEPLIN-III detector utilises liquid xenon (Xe) as a target medium in the search for the expected rare interactions of Weakly Interacting Massive Particles, or WIMPs, with ordinary baryonic matter. The neutralino, arising in supersymmetric extensions to the standard model of particle physics, provides a particularly well-motivated candidate. The ZEPLIN-III experiment, operating in two-phase (liquid/gas) mode, measures both the scintillation and ionisation signatures produced during an interaction. The first science run (FSR) of ZEPLIN-III was performed during three months in 2008. The run culminated in a published result which excluded a WIMP-nucleon interaction cross-section above 8:1 x 10-8 pb for a 60 GeVc-2 WIMP at the 90% confidence level. ZEPLIN-III then entered an upgrade period where the photomultiplier tube (PMT) array, previously the dominant source of background, was replaced with new, ultra-low background, PMTs. The radio-contamination of components used to make these PMTs has been thoroughly studied and their impact on the background rates in ZEPLIN-III characterised. Additionally, a new 1.5 tonne plastic scintillator veto detector was constructed, increasing the ability to reject WIMPlike signals caused by neutron induced nuclear recoil events and improving the γ-ray discrimination capability of ZEPLIN-III. The second science run (SSR) of ZEPLIN-III began in June 2010 and continued for 6 months, with a projected upper limit for the interaction cross-section of 1:52 x 10-8 pb for a 55 GeVc-2 WIMP at the 90% confidence level.
APA, Harvard, Vancouver, ISO, and other styles
9

Charif, Mohamad-ziad. "Indirect search for dark matter with the Antares telescope." Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4113/document.

Full text
Abstract:
L'un des problèmes les plus intéressants de la physique moderne est celui de la matière noire de l'Univers, qui reste de nature insaisissable. L'existence de la matière noire est inférée par des preuves indirectes telles que les mesures des courbes de rotation des galaxies, des dispersions de vitesse des galaxies dans les amas galactiques et les effets de lentille gravitationnelle. Ces observations fournissent des preuves sur l'existence d'une matière invisible dominant notre Univers. Il n'existe cependant aucune indication claire sur sa nature. Les observations actuelles en font le constituant dominant de l'Univers, par opposition à la matière baryonique "normale". Deux solutions sont proposées pour résoudre ce mystère. La première est basée sur une modification de la loi de la gravité comme dans la dynamique newtonienne modifiée qui pourrait expliquer les divergences entre prédictions et observations de la dynamique des masses dans l'Univers. L'autre idée consiste à proposer l'existence d'une nouvelle particule massive qui n'interagit pas avec la lumière (appelée WIMP pour "Weakly Interactive Massive Particle"), mais pouvant influencer la matière lumineuse par gravité. Plusieurs théories proposent l'existence de telles nouvelles particules. La plus célèbre de ces théories est la supersymétrie, qui est une extension du Modèle Standard de la Physique des Particules. Si l'un des partenaires supersymétriques des bosons neutres est une particule stable et le plus léger de tous les superpartenaires, il devient alors un candidat idéal pour la matière noire. La supersymétrie est en général le cadre le plus favorable pour l'existence de la matière noire
The early history of modern physics have been full of problems fixed with un-orthodox yet brilliant solutions. From the Hydrogen electron orbit, black bodyradiation and the ultraviolet catastrophe, to the perihelion precession of Mercury.Quantum Mechanics and General Relativity not only solved these problems butthey opened the path to new observations and predictions about the Universe welive in and the introduction of new problems to be solved.One of the more modern problems we are facing today in physics is the largediscrepancy among measurements of the visible mass in the Universe and the pre-dictions of laws of gravity. An indisputable mass of evidence from different partsof observational cosmology is showing again and again that the observed lumi-nous mass in the Universe constitutes a tiny fraction of the matter that actuallyexists. The proposed solutions of this problem comes in two completely differentflavors. One proposed solution is that the laws of gravity are not the same in thelimit of tiny accelerations. Theories of modified gravitational dynamics proposea non-linear term in Newton law of gravity that becomes relevant at small accel-erations which in turn can explains the missing matter. The other solution to themissing matter is the introduction of new type of matter that does not interact withlight, making it invisible yet inferred to exist by its gravitational effect. The newmatter becomes a new elementary particle to be added to list of already knownelementary particles. While there are many candidates to this new elementaryparticle the favored one is called a WIMP or Weakly Interacting Massive Particle
APA, Harvard, Vancouver, ISO, and other styles
10

Agnes, Paolo. "Direct search for dark matter with the DarkSide experiment." Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCC279/document.

Full text
Abstract:
L’Univers est principalement constitué d’un ensemble d’éléments non baryoniques et non lumineux appelé la matière noire. L’un des candidats actuellement favorisés est une particule massive interagissant faiblement avec la matière ordinaire (WIMP) issue du Big Bang. Le programme DarkSide vise à la détection directe de WIMPs à l’aide d’une chambre à projection temporelle utilisant de l’argon liquide en double phase. La première étape de l’expérience, DarkSide-50 ( (46 ± 0,7) kg de masse active) est en cours d’exécution. Une première campagne, avec un remplissage d’argon atmosphérique(AAr), a produit la meilleure limite sur la section efficace WIMP-nucleon jamais obtenue par une expérience à base d’argon. La deuxième phase, avec un remplissage d’argon souterrain (UAr, appauvri en Ar-39), représente une étape importante vers la construction de DarkSide-20k, une expérience à bas bruit de fond avec une masse fiducielle de 20 t. Ce travail est principalement consacré à la description de la simulation Monte Carlo de DarkSide (G4DS), et à ses applications. G4DS, basé sur GEANT4, fournit la description géométrique de chaque détecteur du programme DarkSide ; il a été calibré afin de reproduire la réponse de DarkSide-50 avec une précision de l’ordre de 1 % et intègre un modèle spécifiquement développé pour la description des mécanismes d’ionisation et de scintillation dans l’argon liquide, étalonné sur des données expérimentales. Les principales applications de la simulation comprennent l’estimation du bruit de fond dû aux neutrons et gammas pour DarkSide-50, la mesure du facteur d’appauvrissement de l’Ar-39 en UAr par rapport à l’AAr et les études de conception pour DarkSide-20k
A wide range of observational evidence suggests that the matter content of the Universe is dominated by a non-baryonic and non-luminous component: dark matter. One of the most favored candidate for dark matter is a big-bang relic population of Weakly Interacting Massive Particles (WIMPs). The DarkSide program aims to the direct detection of WIMPs with a dual-phase liquid argon TPC and a background free exposure. The first phase of the experiment, DarkSide-50, is running since Oct 2013 and has (46 ± 0.7) kg active mass. A first run, with an atmospheric argon fill (AAr), provided the most sensitive limit ever obtained by an argon-based experiment. The current run, with an underground argon fill (UAr, depleted in Ar-39), represents a milestone towards the construction of DarkSide-20k, a low-background dual-phase TPC with a fiducial mass of 20 t. This work is been mainly devoted to the description of G4DS, the DarkSide Monte Carlo simulation, and to its applications. G4DS is a GEANT4-based simulation, it provides the geometry description of each detector of the DarkSide program, it is tuned to reproduce the DarkSide-50 response at the percent level and incorporates a custom model for ionization and scintillation mechanisms in liquid argon, tuned on real data. The principal applications of the simulation include the estimate of the neutron and gamma backgrounds for DarkSide-50, the measurement of the Ar-39 depletion factor in UAr with respect to AAr and the design studies for DarkSide-20k
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Dark-matter search"

1

Pöttgen, Ruth. Search for Dark Matter with ATLAS. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41045-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jackson Kimball, Derek F., and Karl van Bibber, eds. The Search for Ultralight Bosonic Dark Matter. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-030-95852-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Krauss, Lawrence Maxwell. The fifth essence: The search for dark matter in the universe. New York: Basic Books, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mazure, Alain. Matter, Dark Matter, and Anti-Matter: In Search of the Hidden Universe. New York, NY: Springer Science+Business Media, LLC, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Krauss, Lawrence Maxwell. The fifth essence: The search for dark matter in the universe. London: Hutchinson Radius, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Krauss, Lawrence Maxwell. The fifth essence: The search for dark matter in the universe. London: Vintage, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gramling, Johanna. Search for Dark Matter with the ATLAS Detector. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95016-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lim, Kyungeun. XENON100 Dark Matter Search: Scintillation Response of Liquid Xenon to Electronic Recoils. [New York, N.Y.?]: [publisher not identified], 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Karl, Van Bibber, and United States. National Aeronautics and Space Administration., eds. A Proposed search for dark-matter axions in the 0.6-16 ueV range. Batavia, IL: Fermi National Accelerator Laboratory, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhu, Tianyu. The path to the search for rare event signals in XENON1T and XENONnT dark matter experiments. [New York, N.Y.?]: [publisher not identified], 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Dark-matter search"

1

Mazure, Alain, and Vincent Le Brun. "A constant search." In Matter, Dark Matter, and Anti-Matter, 113–33. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4419-8822-5_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pöttgen, Ruth. "Dark Matter." In Search for Dark Matter with ATLAS, 21–43. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41045-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jackson Kimball, Derek F., and Arran Phipps. "Dark Matter Radios." In The Search for Ultralight Bosonic Dark Matter, 201–18. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95852-7_7.

Full text
Abstract:
AbstractMany theories predict that ultralight bosonic dark matter (UBDM) can couple to photons and thus generate electromagnetic signals. In such scenarios, UBDM can be searched for using a radio: an antenna connected to a tunable LC circuit that is in turn connected to an amplifier. Such “dark matter radios” are particularly useful tools to search the broad range of UBDM wavelengths where resonant cavity dimensions are too large to be practical. In this chapter, we discuss how dark matter radios can be used to search for UBDM, focusing on the case of hidden photons.
APA, Harvard, Vancouver, ISO, and other styles
4

Gramling, Johanna. "Dark Matter." In Search for Dark Matter with the ATLAS Detector, 21–39. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95016-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Salgado, P. A., and T. P. Azevedo Perdicoúlis. "Dark-Matter Search Optimiser." In Advances in Automation, Mechanical and Design Engineering, 145–64. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09909-0_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Totsuka, Y. "Search for WIMPs." In Dark Matter in the Universe, 79–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-86029-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jackson Kimball, Derek F., and Dmitry Budker. "Introduction to Dark Matter." In The Search for Ultralight Bosonic Dark Matter, 1–30. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95852-7_1.

Full text
Abstract:
AbstractTo set the stage for our study of ultralight bosonic dark matter (UBDM), we review the evidence for the existence of dark matter: galactic and stellar dynamics, gravitational lensing studies, measurements of the cosmic microwave background radiation (CMB), surveys of the large-scale structure of the universe, and the observed abundance of light elements. This diverse array of observational evidence informs what we know about dark matter: its universal abundance, its spatial and velocity distribution, and that its explanation involves physics beyond the Standard Model. But what we know about dark matter is far outweighed by what we do not know. We examine UBDM in the context of several of the most prominent alternative hypotheses for the nature of dark matter: weakly interacting massive particles (WIMPs), sterile neutrinos, massive astrophysical compact halo objects (MACHOs), and primordial black holes (PBHs). Finally we examine some of the key general characteristics of UBDM, including its wavelike nature, coherence properties, and couplings to Standard Model particles and fields.
APA, Harvard, Vancouver, ISO, and other styles
8

Seidel, W., M. Bruckmayer, C. Bucci, S. Cooper, C. Cozzini, P. Di Stefano, F. v. Feilitzsch, et al. "The CRESST Dark Matter Search." In Dark Matter in Astro- and Particle Physics, 581–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56643-1_53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Köhler, Nicolas Maximilian. "The Search for Dark Matter." In Springer Theses, 161–79. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25988-4_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jochum, J., M. Bravin, M. Bruckmayer, C. Bucci, S. Cooper, C. Cozzini, P. DiStefano, et al. "The CRESST Dark Matter Search." In Sources and Detection of Dark Matter and Dark Energy in the Universe, 399–408. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04587-9_40.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Dark-matter search"

1

KLAPDOR-KLEINGROTHAUS, H. V. "DARK MATTER SEARCH." In Proceedings of the XX International Symposium on Lepton and Photon Interactions at High Energies. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777881_0034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

BUCCI, C., G. ANGLOHER, C. COZZINI, J. DONCEV, T. FRANK, D. HAUFF, F. PETRICCA, et al. "CRESST DARK MATTER SEARCH." In Proceedings of the Fourth International Workshop. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812791313_0044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhukov, V. "INDIRECT DARK MATTER SEARCH." In Proceedings of the 12th Lomonosov Conference on Elementary Particle Physics. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812772657_0020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

BRUCKMAYER, M., C. COZZINI, P. DI STEFANO, T. FRANK, D. HAUFF, F. PRÖBST, W. SEIDEL, et al. "CRESST DARK MATTER SEARCH." In Proceedings of the Third International Workshop. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812811363_0050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Petricca, Federica. "The CRESST Dark Matter Search." In Identification of dark matter 2008. Trieste, Italy: Sissa Medialab, 2009. http://dx.doi.org/10.22323/1.064.0014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fiorillo, Giuliana. "The WArP Dark Matter Search." In Identification of dark matter 2008. Trieste, Italy: Sissa Medialab, 2009. http://dx.doi.org/10.22323/1.064.0016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

McGuire, P. C., T. Bowen, D. L. Barker, P. G. Halverson, K. R. Kendall, T. S. Metcalfe, R. S. Norton, et al. "Balloon-borne direct search for ionizing massive particles as a component of the galactic halo dark matter (The Arizona-IMAX Collaboration)." In Dark matter. AIP, 1995. http://dx.doi.org/10.1063/1.48386.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

DAVOUR, Anna. "The PICASSO Dark Matter Search Project." In Identification of dark matter 2008. Trieste, Italy: Sissa Medialab, 2009. http://dx.doi.org/10.22323/1.064.0010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tosi, Mia, and Valerio Ippolito. "Search for Dark Matter (experiment)." In VII Workshop Italiano sulla fisica pp a LHC. Trieste, Italy: Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.278.0004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fiorillo, Giuliana, and Matteo Cadeddu. "Directionality in Dark Matter search." In Neutrino Oscillation Workshop. Trieste, Italy: Sissa Medialab, 2017. http://dx.doi.org/10.22323/1.283.0091.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Dark-matter search"

1

Wai, Lawrence L. GLAST DARK MATTER SEARCH. Office of Scientific and Technical Information (OSTI), November 2002. http://dx.doi.org/10.2172/808683.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Palladino, Kimberly J. Direct Search for Dark Matter. Office of Scientific and Technical Information (OSTI), December 2018. http://dx.doi.org/10.2172/1489160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pepin, Mark David. Low-Mass Dark Matter Search Results and Radiogenic Backgrounds for the Cryogenic Dark Matter Search. Office of Scientific and Technical Information (OSTI), December 2016. http://dx.doi.org/10.2172/1342205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Barnes, P. D. ,. Jr. The Cryogenic Dark Matter Search (CDMS). Office of Scientific and Technical Information (OSTI), January 1996. http://dx.doi.org/10.2172/1421741.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sikivie, P., N. S. Sullivan, and D. B. Tanner. Second-generation dark-matter axion search. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/458887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

van Bibber, K., and W. Stoeffl. Search for pseudoscalar cold dark matter. Office of Scientific and Technical Information (OSTI), May 1992. http://dx.doi.org/10.2172/10182465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Morselli, Aldo. Search for Dark Matter with GLAST. Office of Scientific and Technical Information (OSTI), July 2003. http://dx.doi.org/10.2172/813324.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Alton, Drew, Dan Durben, Kara Keeter, Michael Zehfus, Steve Brice, Aaron Chou, Jeter Hall, et al. Darkside: A Depleted Argon Dark Matter Search. Office of Scientific and Technical Information (OSTI), October 2009. http://dx.doi.org/10.2172/993872.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

McDermott, Samuel Dylan. Ratcheting Up The Search for Dark Matter. Office of Scientific and Technical Information (OSTI), January 2014. http://dx.doi.org/10.2172/1248210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Filippini, Jeffrey Peter. A Search for WIMP Dark Matter Using the First Five-Tower Run of the Cryogenic Dark Matter Search. Office of Scientific and Technical Information (OSTI), January 2008. http://dx.doi.org/10.2172/1415812.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography