Dissertations / Theses on the topic 'Damage and detection'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Damage and detection.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Cockerill, Aaron. "Damage detection of rotating machinery." Thesis, Cardiff University, 2017. http://orca.cf.ac.uk/105671/.
Full textAl, Jailawi Samer Saadi Hussein. "Damage detection using angular velocity." Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6539.
Full textDissanayake, Amal S. "Electrostatic discharge damage detection method." Thesis, Kansas State University, 1997. http://hdl.handle.net/2097/13512.
Full textGharibnezhad, Fahit. "Robust damage detection in smart structures." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/277544.
Full textLa presente tesis doctoral se dedica a la exploración y presentación de técnicas novedosas para la Monitorización y detección de defectos en estructuras (Structural Health Monitoring -SHM-) SHM es un campo actualmente en desarrollo que pretende asegurarse que las estructuras permanecen en su condición deseada para evitar cualquier catástrofe. En SHM se presentan diferentes niveles de diagnóstico, Este trabajo se concentra en el primer nivel, que se considera el más importante, la detección de los defectos. Las nuevas técnicas presentadas en esta tesis se basan en diferentes métodos estadísticos y de procesamiento de señales tales como el Análisis de Componentes Princpales (PCA) y sus variaciones robustas, Transformada wavelets, lógica difusa, gráficas de Andrew, etc. Estas técnicas de aplican sobre las ondas de vibración que se generan y se miden en la estructura utilizando trasductores apropiados. Dispositivos piezocerámicos (PZT's) se han escogido para este trabajo ya que presentan características especiales tales como: alto rendimiento, bajo consumo de energia y bajo costo. Para garantizar la eficacia de la metodología propuesta,se ha validado en diferentes laboratorios y estructuras a escala real: placas de aluminio y de material compuesto, fuselage de un avión, revestimiento del ala de un avóin, tubería, etc. Debido a la gran variedad de estructuras utilizadas, su aplicación en la industria aeroespacial y/o petrolera es prometedora. Por otra parte, los cambios ambientales pueden afectar al rendimiento de la detección de daños y propagación de la onda significativamente . En este trabajo , se estudia el efecto de las variaciones de temperatura ya que es uno de los principales factores de fluctuación del medio ambiente . Para examinar su efecto en la detección de daños, en primer lugar, todos los métodos propuestos se prueban para comprobar si son sensibles a los cambios de temperatura o no. Finalmente , se aplica un método de compensación de temperatura para garantizar que los métodos propuestos son estables y robustos incluso cuando las estructuras se someten a condiciones ambientales variantes
Matlack, Kathryn H. "Nonlinear ultrasound for radiation damage detection." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51965.
Full textHuethwohl, Philipp Karl. "Bridge damage detection and BIM mapping." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/285562.
Full textMalik, Shoaib Ahmad. "Damage detection using self-sensing composites." Thesis, University of Birmingham, 2011. http://etheses.bham.ac.uk//id/eprint/1750/.
Full textAsnaashari, Erfan. "Vibration-based damage detection in structures." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/vibrationbased-damage-detection-in-structures(09061582-55fb-4fba-846e-2156dd4ef172).html.
Full textTadros, Nader Nabil Aziz. "Structural damage detection using ambient vibrations." Thesis, Kansas State University, 2014. http://hdl.handle.net/2097/18178.
Full textDepartment of Civil Engineering
Hani G. Melhem
The objective of this research is to use structure ambient random vibration response to detect damage level and location. The use of ambient vibration is advantageous because excitation is caused by service conditions such as normal vehicle traffic on a highway bridge, train passage on a railroad bridge, or wind loads on a tall building. This eliminates the need to apply a special impact or dynamic load, or interrupt traffic on a bridge in regular service. This research developed an approach in which free vibration of a structure is extracted from the response of this structure to a random excitation in the time domain (acceleration versus time) by averaging out the random component of the response. The result is the free vibration that includes all modes based on the sampling rate on time. Then this free vibration is transferred to the frequency domain using a Fast Fourier Transform (FFT). Variations in frequency response are a function of structural stiffness and member end-conditions. Such variations are used as a measure to identify the change in the structural dynamic properties, and ultimately detect damage. A physical model consisting of a 20 × 20 × 1670 -mm long steel square tube was used to validate this approach. The beam was tested under difference supports conditions varying from a single- to three-span continuous configuration. Random excitation was applied to the beam, and the dynamic response was measured by an accelerometer placed at various locations on the span. A numerical model was constructed in ABAQUS and the dynamic response was obtained from the finite element model subjected to similar excitation as in the physical model. Numerical results were correlated against results from the physical model, and comparison was made between the different span/support configurations. A subsequent step would be to induce damage that simulates loss of stiffness or cracking condition of the beam cross section, and that would be reflected as a change in the frequency and other dynamic properties of the structure. The approach achieved good results for a structure with a limited number of degrees of freedom. Further research is needed for structures with a larger number of degrees of freedom and structures with damage in symmetrical locations relative to the accelerometer position.
Dixit, Akash. "Damage modeling and damage detection for structures using a perturbation method." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/43575.
Full textPreisler, Andreas [Verfasser]. "Efficient Damage Detection and Assessment Based on Structural Damage Indicators / Andreas Preisler." Düren : Shaker, 2020. http://d-nb.info/1205239669/34.
Full textAydogan, Mustafa Ozgur. "Damage Detection In Structures Using Vibration Measurements." Master's thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/1058809/index.pdf.
Full textYanilmaz, Huseyin. "Damage Detection In Beams By Wavelet Analysis." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12609162/index.pdf.
Full textBearzotti, Riccardo. "Structural damage detection using deep learning networks." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Find full textDincal, Selcuk. "Structural damage detection using frequency response functions." Thesis, Texas A&M University, 2005. http://hdl.handle.net/1969.1/3129.
Full textMustapha, Faizal. "Damage detection and localisation using novelty indices." Thesis, University of Sheffield, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.434514.
Full textGerbo, Evan Jamison. "Structural Damage Detection Utilizing Experimental Mode Shapes." DigitalCommons@CalPoly, 2014. https://digitalcommons.calpoly.edu/theses/1247.
Full textVillani, Luis Gustavo Giacon. "Robust damage detection in uncertain nonlinear systems /." Ilha Solteira, 2019. http://hdl.handle.net/11449/191200.
Full textAbstract: Structural Health Monitoring (SHM) methodologies aim to develop techniques able to detect, localize, quantify and predict the progress of damages in civil, aerospatial and mechanical structures. In the hierarchical process, the damage detection is the first and most important step. Despite the existence of numerous methods of damage detection based on vibration signals, two main problems can complicate the application of classical approaches: the nonlinear phenomena and the uncertainties. This thesis demonstrates the importance of the use of a stochastic nonlinear model in the damage detection problem considering the intrinsically nonlinear behavior of mechanical structures and the measured data variation. A new stochastic version of the Volterra series combined with random Kautz functions is proposed to predict the behavior of nonlinear systems, considering the presence of uncertainties. The stochastic model proposed is used in the damage detection process based on hypothesis tests. Firstly, the method is applied in a simulated study assuming a random Duffing oscillator exposed to the presence of a breathing crack modeled as a bilinear oscillator. Then, an experimental application considering a nonlinear beam subjected to the presence of damage with linear characteristics (loss of mass in a bolted connection) is performed, with the direct comparison between the results obtained using a deterministic and a stochastic model. Finally, an experimental application considering a n... (Complete abstract click electronic access below)
Resumo: As metodologias de Monitoramento da Integridade Estrutural (SHM) visam desenvolver técnicas capazes de detectar, localizar, quantificar e prever o progresso de danos em estruturas civis, aeroespaciais e mecânicas. Nesse processo hierárquico, a detecção de danos é o primeiro e mais importante passo. Apesar da existência de inúmeros métodos de detecção de danos baseados em sinais de vibração, dois problemas principais podem complicar a aplicação de abordagens clássicas: os fenômenos não lineares e as incertezas. Esta tese demonstra a importância do uso de um modelo não linear estocástico no problema de detecção de danos, considerando o comportamento intrinsecamente não linear de estruturas mecânicas e a variação dos dados medidos. Uma nova versão estocástica das séries de Volterra, combinada com funções aleatórias de Kautz, é proposta para prever o comportamento de sistemas não lineares, considerando a presença de incertezas. O modelo estocástico proposto é utilizado no processo de detecção de danos com base em testes de hipótese. Primeiramente, o método é aplicado em um estudo simulado, assumindo um oscilador Duffing aleatório exposto à presença de uma trinca respiratória modelada como um oscilador bilinear. Em seguida, uma aplicação experimental é realizada considerando uma viga não linear sujeita à presença de um dano com características lineares (perda de massa em uma conexão parafusada), com a comparação direta entre os resultados obtidos utilizando um modelo determinístic... (Resumo completo, clicar acesso eletrônico abaixo)
Doutor
Mejia, Paloma Yasmin. "Smart Systems for Damage Detection and Prognosis." Miami University Honors Theses / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=muhonors1114101552.
Full textKim, Daewon. "Phased Array Damage Detection and Damage Classification in Guided Wave Structural Health Monitoring." Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/77073.
Full textPh. D.
Campbell, Marvin G. "Structural damage detection using frequency domain error localization." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1994. http://handle.dtic.mil/100.2/ADA289932.
Full textKannappan, Laxmikant Aerospace Civil & Mechanical Engineering Australian Defence Force Academy UNSW. "Damage detection in structures using natural frequency measurements." Awarded by:University of New South Wales - Australian Defence Force Academy. Aerospace, Civil & Mechanical Engineering, 2009. http://handle.unsw.edu.au/1959.4/44852.
Full textKumar, Yadav Susheel. "Damage Detection and Characterization in Plate Like Structures." Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/306997.
Full textAmraoui, Mohamed Yacine. "Non-invasive damage detection and structural health monitoring." Thesis, University of Bristol, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271865.
Full textQiao, Long. "Structural damage detection using signal-based pattern recognition." Diss., Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/1385.
Full textLertpaitoonpan, Wirat. "Bridge damage detection using a system identification method." [Florida] : State University System of Florida, 2000. http://etd.fcla.edu/etd/uf/2000/amt2446/WiratDissertation3-10-00.pdf.
Full textTitle from first page of PDF file. Document formatted into pages; contains xvi, 155 p.; also contains graphics. Vita. Includes bibliographical references (p. 152-154).
Sawatzky, Rene. "Vibration Based Planetary Gear Analysis and Damage Detection." DigitalCommons@CalPoly, 2014. https://digitalcommons.calpoly.edu/theses/1378.
Full textDavis, Ivan Christopher. "Damage Detection in Aluminum Cylinders Using Modal Analysis." Thesis, Virginia Tech, 2002. http://hdl.handle.net/10919/34317.
Full textMaster of Science
Lu, Kan. "Dynamics Based Damage Detection of Plate-Type Structures." University of Akron / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=akron1133818717.
Full textLiu, Ning. "Composite materials impact damage detection using neural networks." Thesis, Aston University, 2002. http://publications.aston.ac.uk/11838/.
Full textMurugesan, Kaviraj. "Damage detection on railway bridges using system identification." Thesis, Karlstads universitet, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-28595.
Full textRule, Ruth Anne. "Vibration-based damage detection in ceramics and glass." Thesis, Loughborough University, 2000. https://dspace.lboro.ac.uk/2134/27153.
Full textLucas, Lynda T. "Detection of DNA damage caused by N-nitrosoindoles." Thesis, University of Leicester, 2001. http://hdl.handle.net/2381/30755.
Full textAcharya, Dabit. "COMPARATIVE EXPERIMENTAL STUDIES FOR GLOBAL DAMAGE DETECTION IN PLATES USING THE SCANNING LASER VIBROMETER TECHNIQUES." University of Akron / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=akron1155079600.
Full textGul, Mustafa. "INVESTIGATION OF DAMAGE DETECTION METHODOLOGIES FOR STRUCTURAL HEALTH MONITORING." Doctoral diss., University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3317.
Full textPh.D.
Department of Civil and Environmental Engineering
Engineering and Computer Science
Civil Engineering PhD
Camacho, Navarro Jhonatan. "Robust structural damage detection by using statistical hybrid algorithms." Doctoral thesis, Universitat Politècnica de Catalunya, 2019. http://hdl.handle.net/10803/667239.
Full textEsta tesis presenta los resultados de la aplicación de un enfoque híbrido estadístico para el monitoreo de salud estructural utilizando señales piezoeléctrica. Donde, al combinar procesamiento estadístico basado en análisis de componentes principales (PCA), funciones de correlación cruzada y métodos de reconocimiento de patrones fue posible detectar, clasificar y localizar daños en diferentes condiciones ambientales y posibles fallas en los sensores. La metodología desarrollada consiste en primero transmitir ondas guiadas a lo largo de la superficie de la estructura monitorizada mediante el uso de dispositivos piezoeléctricos (PZT). Luego, las señales de correlación cruzada calculadas sobre las mediciones piezoeléctricas se representan estadísticamente por medio de un modelo de línea base obtenido mediante PCA. Posteriormente, los daños se identifican mediante índices de error calculados a partir del modelo estadístico de referencia. Finalmente, se utilizan métodos de aprendizaje no supervisado y gráficos de dispersión para verificar el rendimiento del algoritmo propuesto. En esta tesis se presentan nuevas técnicas o versiones mejoradas para lograr un diagnóstico más confiable con alta robustez y buen rendimiento. Específicamente, se utilizan algoritmos genéticos diferenciales para ajustar automáticamente los parámetros en un algoritmo de clasificación y detección de daños basado en PCA y Mapas auto-organizados (SOM). Además, se analiza Ensemble Learning como un enfoque para obtener un diagnóstico más eficiente con mejores fronteras de separación entre condiciones con y sin daño, combinando diferentes algoritmos de aprendizaje construidos a partir de PCA no lineal y lineal así como un esquema activo de multiactuación de piezodiagnóstico. Adicionalmente, se implementa una versión modificada del algoritmo de reconstrucción para la inspección probabilística de daños (RAPID) para estimar la localización del daño. La metodología propuesta se validó experimentalmente en diferentes estructuras, como un circuito de tubería de acero al carbono, una placa laminada, alas de avión y un generador de viento a escala, entre otros; donde se estudiaron diferentes escenarios de daños, incluidos escenarios de fugas, agregación de masa y grietas. Se demuestra la efectividad de la metodología propuesta para detectar, localizar y clasificar daños en diferentes condiciones ambientales y operativas. Del mismo modo, la viabilidad del monitoreo continuo se valida implementando el código del algoritmo propuesto en un sistema embebido, cuya capacidad para detectar daños estructurales se demostró. Como resultado, la combinación del enfoque de piezodiagnóstico, análisis de correlación cruzada, análisis de componentes principales, técnicas de aprendizaje no supervisado y Ensemble Learning se obtiene una solución prometedora en el campo del monitoreo de la salud estructural y específicamente para lograr una solución robusta para la detección de daños y la ubicación.
Ge, Ma. "Structural damage detection and identification using system dynamic parameters." Related electronic resource: Current Research at SU : database of SU dissertations, recent titles available full text, 2005. http://wwwlib.umi.com/cr/syr/main.
Full textBrett, Peter T. B. "Urban damage detection in high resolution amplitude SAR images." Thesis, University of Surrey, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.604334.
Full textDutta, Debaditya. "Ultrasonic Techniques for Baseline-Free Damage Detection in Structures." Research Showcase @ CMU, 2010. http://repository.cmu.edu/dissertations/3.
Full textSmit, Wynand Gerhardus. "Fan blade damage detection using on-line vibration monitoring." Diss., Pretoria : [s.n.], 2002. http://upetd.up.ac.za/thesis/available/etd-11302005-091637/.
Full textUwayed, Ahmed Noori. "Damage detection in laminated composite structures using dynamic analysis." Thesis, University of Leicester, 2018. http://hdl.handle.net/2381/42921.
Full textPolimeno, Umberto. "Non linear spectroscopy for damage detection on aerospace materials." Thesis, University of Bath, 2010. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.535639.
Full textGong, Peng. "Ultrasonic Signal Processing for Structural Damage Detection and Quantification." Research Showcase @ CMU, 2015. http://repository.cmu.edu/dissertations/674.
Full textGoi, Yoshinao. "Bayesian Damage Detection for Vibration Based Bridge Health Monitoring." Kyoto University, 2018. http://hdl.handle.net/2433/232013.
Full textAnderson, Matthew Francis. "Parametric investigation of strain gauges in structural damage detection." Thesis, University of Iowa, 2013. https://ir.uiowa.edu/etd/2436.
Full textLong, James Ph D. Massachusetts Institute of Technology. "Automated structural damage detection using one class machine learning." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/90062.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 101-103).
Measuring and analysing the vibration of structures using sensors can help identify and detect damage, potentially prolonging the life of structures and preventing disasters. Wireless sensor systems promise to make this technology more affordable and more widely applicable. Data driven structural health monitoring methodologies take raw signals obtained from sensor networks, and process them to obtain damage sensitive features. New measurements are then compared with baselines to detect damage. Because damage-sensitive features also exhibit variation due to environmental and operational changes, these comparisons are not always straightforward and sophisticated statistical analysis is necessary in order to detect abnormal changes in the damage sensitive features. In this thesis, an automated methodology which uses the one-class support vector machine (OCSVM) for damage detection and localisation is proposed. The OCSVM is a nonparametric machine learning method which can accurately classify new data points based only on data from the baseline condition of the structure. This methodology combines feature extraction, by means of autoregressive modeling, and wavelet analysis, with statistical pattern recognition using the OCSVM. The potential for embedding this damage detection methodology at the sensor level is also discussed. Efficacy is demonstrated using real experimental data from a steel frame laboratory structure, for various damage locations and scenarios.
by James Long.
S.M.
Sharma, Utshree. "Damage Detection in a Steel Beam using Vibration Response." Youngstown State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1596222984454508.
Full textMahmood, Lutphy A. "The detection of laser-induced damage in optical materials." Thesis, Loughborough University, 1985. https://dspace.lboro.ac.uk/2134/28137.
Full textAngelopoulos, Nikolaos. "Damage detection and damage evolution monitoring of composite materials for naval applications using acoustic emission testing." Thesis, University of Birmingham, 2017. http://etheses.bham.ac.uk//id/eprint/7597/.
Full textZemmour, Arnaud I. "The Hilbert-Huang transform for damage detection in plate structures." College Park, Md. : University of Maryland, 2006. http://hdl.handle.net/1903/3832.
Full textThesis research directed by: Dept. of Aerospace Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.