Academic literature on the topic 'Damage and detection'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Damage and detection.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Damage and detection"
Vafaei, Mohammadreza, Azlan bin Adnan, and Mohammadreza Yadollahi. "Seismic Damage Detection Using Pushover Analysis." Advanced Materials Research 255-260 (May 2011): 2496–99. http://dx.doi.org/10.4028/www.scientific.net/amr.255-260.2496.
Full textCarminati, M., and S. Ricci. "Structural Damage Detection Using Nonlinear Vibrations." International Journal of Aerospace Engineering 2018 (September 25, 2018): 1–21. http://dx.doi.org/10.1155/2018/1901362.
Full textStoykov, Stanislav, Emil Manoach, and Maosen Cao. "Vibration Based Damage Detection of Rotating Beams." MATEC Web of Conferences 148 (2018): 14008. http://dx.doi.org/10.1051/matecconf/201814814008.
Full textRiddihough, G. "Damage Detection." Science Signaling 1, no. 24 (June 17, 2008): ec227-ec227. http://dx.doi.org/10.1126/scisignal.124ec227.
Full textZhang, Yu, Xin Feng, Zhe Fan, Shuang Hou, Tong Zhu, and Jing Zhou. "Experimental investigations on seismic damage monitoring of concrete dams using distributed lead zirconate titanate sensor network." Advances in Structural Engineering 20, no. 2 (July 28, 2016): 170–79. http://dx.doi.org/10.1177/1369433216660002.
Full textNASERALAVI, S. S., S. GERIST, E. SALAJEGHEH, and J. SALAJEGHEH. "ELABORATE STRUCTURAL DAMAGE DETECTION USING AN IMPROVED GENETIC ALGORITHM AND MODAL DATA." International Journal of Structural Stability and Dynamics 13, no. 06 (July 2, 2013): 1350024. http://dx.doi.org/10.1142/s0219455413500247.
Full textPark, Sang-Eun, and Yoon Taek Jung. "Detection of Earthquake-Induced Building Damages Using Polarimetric SAR Data." Remote Sensing 12, no. 1 (January 1, 2020): 137. http://dx.doi.org/10.3390/rs12010137.
Full textDuarte, D., F. Nex, N. Kerle, and G. Vosselman. "DAMAGE DETECTION ON BUILDING FAÇADES USING MULTI-TEMPORAL AERIAL OBLIQUE IMAGERY." ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences IV-2/W5 (May 29, 2019): 29–36. http://dx.doi.org/10.5194/isprs-annals-iv-2-w5-29-2019.
Full textTiturus, Branislav, Michael I. Friswell, and Ladislav Starek. "Damage detection using generic elements: Part II. Damage detection." Computers & Structures 81, no. 24-25 (September 2003): 2287–99. http://dx.doi.org/10.1016/s0045-7949(03)00318-3.
Full textHuang, Ming-Chih, Yen-Po Wang, and Ming-Lian Chang. "Damage Detection of Structures Identified with Deterministic-Stochastic Models Using Seismic Data." Scientific World Journal 2014 (2014): 1–14. http://dx.doi.org/10.1155/2014/879341.
Full textDissertations / Theses on the topic "Damage and detection"
Cockerill, Aaron. "Damage detection of rotating machinery." Thesis, Cardiff University, 2017. http://orca.cf.ac.uk/105671/.
Full textAl, Jailawi Samer Saadi Hussein. "Damage detection using angular velocity." Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6539.
Full textDissanayake, Amal S. "Electrostatic discharge damage detection method." Thesis, Kansas State University, 1997. http://hdl.handle.net/2097/13512.
Full textGharibnezhad, Fahit. "Robust damage detection in smart structures." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/277544.
Full textLa presente tesis doctoral se dedica a la exploración y presentación de técnicas novedosas para la Monitorización y detección de defectos en estructuras (Structural Health Monitoring -SHM-) SHM es un campo actualmente en desarrollo que pretende asegurarse que las estructuras permanecen en su condición deseada para evitar cualquier catástrofe. En SHM se presentan diferentes niveles de diagnóstico, Este trabajo se concentra en el primer nivel, que se considera el más importante, la detección de los defectos. Las nuevas técnicas presentadas en esta tesis se basan en diferentes métodos estadísticos y de procesamiento de señales tales como el Análisis de Componentes Princpales (PCA) y sus variaciones robustas, Transformada wavelets, lógica difusa, gráficas de Andrew, etc. Estas técnicas de aplican sobre las ondas de vibración que se generan y se miden en la estructura utilizando trasductores apropiados. Dispositivos piezocerámicos (PZT's) se han escogido para este trabajo ya que presentan características especiales tales como: alto rendimiento, bajo consumo de energia y bajo costo. Para garantizar la eficacia de la metodología propuesta,se ha validado en diferentes laboratorios y estructuras a escala real: placas de aluminio y de material compuesto, fuselage de un avión, revestimiento del ala de un avóin, tubería, etc. Debido a la gran variedad de estructuras utilizadas, su aplicación en la industria aeroespacial y/o petrolera es prometedora. Por otra parte, los cambios ambientales pueden afectar al rendimiento de la detección de daños y propagación de la onda significativamente . En este trabajo , se estudia el efecto de las variaciones de temperatura ya que es uno de los principales factores de fluctuación del medio ambiente . Para examinar su efecto en la detección de daños, en primer lugar, todos los métodos propuestos se prueban para comprobar si son sensibles a los cambios de temperatura o no. Finalmente , se aplica un método de compensación de temperatura para garantizar que los métodos propuestos son estables y robustos incluso cuando las estructuras se someten a condiciones ambientales variantes
Matlack, Kathryn H. "Nonlinear ultrasound for radiation damage detection." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51965.
Full textHuethwohl, Philipp Karl. "Bridge damage detection and BIM mapping." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/285562.
Full textMalik, Shoaib Ahmad. "Damage detection using self-sensing composites." Thesis, University of Birmingham, 2011. http://etheses.bham.ac.uk//id/eprint/1750/.
Full textAsnaashari, Erfan. "Vibration-based damage detection in structures." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/vibrationbased-damage-detection-in-structures(09061582-55fb-4fba-846e-2156dd4ef172).html.
Full textTadros, Nader Nabil Aziz. "Structural damage detection using ambient vibrations." Thesis, Kansas State University, 2014. http://hdl.handle.net/2097/18178.
Full textDepartment of Civil Engineering
Hani G. Melhem
The objective of this research is to use structure ambient random vibration response to detect damage level and location. The use of ambient vibration is advantageous because excitation is caused by service conditions such as normal vehicle traffic on a highway bridge, train passage on a railroad bridge, or wind loads on a tall building. This eliminates the need to apply a special impact or dynamic load, or interrupt traffic on a bridge in regular service. This research developed an approach in which free vibration of a structure is extracted from the response of this structure to a random excitation in the time domain (acceleration versus time) by averaging out the random component of the response. The result is the free vibration that includes all modes based on the sampling rate on time. Then this free vibration is transferred to the frequency domain using a Fast Fourier Transform (FFT). Variations in frequency response are a function of structural stiffness and member end-conditions. Such variations are used as a measure to identify the change in the structural dynamic properties, and ultimately detect damage. A physical model consisting of a 20 × 20 × 1670 -mm long steel square tube was used to validate this approach. The beam was tested under difference supports conditions varying from a single- to three-span continuous configuration. Random excitation was applied to the beam, and the dynamic response was measured by an accelerometer placed at various locations on the span. A numerical model was constructed in ABAQUS and the dynamic response was obtained from the finite element model subjected to similar excitation as in the physical model. Numerical results were correlated against results from the physical model, and comparison was made between the different span/support configurations. A subsequent step would be to induce damage that simulates loss of stiffness or cracking condition of the beam cross section, and that would be reflected as a change in the frequency and other dynamic properties of the structure. The approach achieved good results for a structure with a limited number of degrees of freedom. Further research is needed for structures with a larger number of degrees of freedom and structures with damage in symmetrical locations relative to the accelerometer position.
Dixit, Akash. "Damage modeling and damage detection for structures using a perturbation method." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/43575.
Full textBooks on the topic "Damage and detection"
Didenko, Vladimir V., ed. Fast Detection of DNA Damage. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7187-9.
Full textMasters, JE, ed. Damage Detection in Composite Materials. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1992. http://dx.doi.org/10.1520/stp1128-eb.
Full textBaruch, Menahem. Damage detection based on reduced measurements. [Haifa]: Technion-Israel Institute of Technology, Faculty of Aerospace Engineering, 1995.
Find full textDecker, Arthur J. Damage detection using holography and interferometry. Cleveland, Ohio: National Aeronautics and Space Administration, Glenn Research Center, 2003.
Find full textEftekhar Azam, Saeed. Online Damage Detection in Structural Systems. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02559-9.
Full textDidenko, Vladimir V. In Situ Detection of DNA Damage. New Jersey: Humana Press, 2002. http://dx.doi.org/10.1385/1592591795.
Full textMahall, Karl. Quality assessment of textiles: Damage detection bymicroscopy. Berlin: Springer-Verlag, 1993.
Find full textMorassi, Antonino, and Fabrizio Vestroni, eds. Dynamic Methods for Damage Detection in Structures. Vienna: Springer Vienna, 2008. http://dx.doi.org/10.1007/978-3-211-78777-9.
Full textMahall, Karl. Quality assessment of textiles: Damage detection by microscopy. Berlin: Springer-Verlag, 1993.
Find full textMahall, Karl. Quality Assessment of Textiles: Damage Detection by Microscopy. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003.
Find full textBook chapters on the topic "Damage and detection"
Frangopol, Dan M., and Sunyong Kim. "Probabilistic Damage Detection." In Life-Cycle of Structures Under Uncertainty, 51–71. Boca Raton, FL : CRC Press, 2019. | “A science publishers book.”: CRC Press, 2019. http://dx.doi.org/10.1201/9780429053283-3.
Full textXu, You-Lin, and Jia He. "Structural damage detection." In Smart Civil Structures, 333–88. Boca Raton : Taylor & Francis, CRC Press, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315368917-15.
Full textGhosh, Bidisha, Michael O’Byrne, Franck Schoefs, and Vikram Pakrashi. "Surface damage detection." In Image-Based Damage Assessment for Underwater Inspections, 97–126. Boca Raton : Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa, plc, [2018]: CRC Press, 2018. http://dx.doi.org/10.1201/9781351052580-6.
Full textHirao, Masahiko, and Hirotsugu Ogi. "Creep Damage Detection." In Electromagnetic Acoustic Transducers, 337–45. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-56036-4_17.
Full textLimongelli, Maria Pina, Emil Manoach, Said Quqa, Pier Francesco Giordano, Basuraj Bhowmik, Vikram Pakrashi, and Alfredo Cigada. "Vibration Response-Based Damage Detection." In Structural Health Monitoring Damage Detection Systems for Aerospace, 133–73. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72192-3_6.
Full textUhl, Tadeusz, Tadeusz Stepinski, and Wieslaw Staszewski. "Introduction." In Advanced Structural Damage Detection, 1–15. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118536148.ch1.
Full textKohut, Piotr, and Krzysztof Holak. "Vision-Based Monitoring System." In Advanced Structural Damage Detection, 279–320. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118536148.ch10.
Full textPaćko, Paweł. "Numerical Simulation of Elastic Wave Propagation." In Advanced Structural Damage Detection, 17–56. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118536148.ch2.
Full textGallina, Alberto, Paweł Paćko, and Łukasz Ambroziński. "Model Assisted Probability of Detection in Structural Health Monitoring." In Advanced Structural Damage Detection, 57–72. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118536148.ch3.
Full textKlepka, Andrzej. "Nonlinear Acoustics." In Advanced Structural Damage Detection, 73–107. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118536148.ch4.
Full textConference papers on the topic "Damage and detection"
Gawronski, Wodek, and Jerzy T. Sawicki. "Structural Damage Detection Using Modal Norms." In ASME 1999 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/detc99/vib-8374.
Full textGhazi, Reza Mohammadi, James Long, and Oral Buyukozturk. "Structural Damage Detection Based on Energy Transfer Between Intrinsic Modes." In ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/smasis2013-3022.
Full textMyers, Oliver J., and Sourav Banerjee. "Coupled Damage Precursor Detection." In ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/smasis2015-8950.
Full textWimmer, Stephanie A., and Virginia G. DeGiorgi. "Damage detection using wavelets." In NDE for Health Monitoring and Diagnostics, edited by Tribikram Kundu. SPIE, 2003. http://dx.doi.org/10.1117/12.483820.
Full textZhong, Shuncong, and S. Olutunde Oyadiji. "Wavelet-Based Structural Damage Detection." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35632.
Full textFeng, Wei, Qiaofeng Li, and Qiuhai Lu. "A Hierarchical Bayesian Method for Time Domain Structure Damage Detection." In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-97026.
Full textDouti, Dam-Bé L., Sherazade Aknoun, Serge Monneret, Christophe Hecquet, Mireille Commandré, and Laurent Gallais. "In-line quantitative phase imaging for damage detection and analysis." In SPIE Laser Damage, edited by Gregory J. Exarhos, Vitaly E. Gruzdev, Joseph A. Menapace, Detlev Ristau, and MJ Soileau. SPIE, 2014. http://dx.doi.org/10.1117/12.2068178.
Full textMedici, Ezequiel, Andres Cecchini, David Serrano, and Frederick Just. "Damage Detection in Composite Beam Using the Temperature Distribution." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-16073.
Full textSoni, Sunilkumar, Santanu Das, and Aditi Chattopadhyay. "Optimal Sensor Placement for Damage Detection in Complex Structures." In ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2009. http://dx.doi.org/10.1115/smasis2009-1419.
Full textAdachi, Yukio, Shigeki Unjoh, Masuo Kondoh, and Michio Ohsumi. "Nondestructive damage detection and evaluation technique for seismically damaged structures." In Nondestructive Evaluation Techniques for Aging Infrastructures & Manufacturing, edited by Steven B. Chase. SPIE, 1999. http://dx.doi.org/10.1117/12.339935.
Full textReports on the topic "Damage and detection"
Farrar, Charles R., Keith Worden, Michael D. Todd, Gyuhae Park, Jonathon Nichols, Douglas E. Adams, Matthew T. Bement, and Kevin Farinholt. Nonlinear System Identification for Damage Detection. Office of Scientific and Technical Information (OSTI), November 2007. http://dx.doi.org/10.2172/922532.
Full textMiller, Tim, and R. Lasser. Composite Damage Detection Using Novel Experimental Methods. Fort Belvoir, VA: Defense Technical Information Center, September 2002. http://dx.doi.org/10.21236/ada407271.
Full textHartman, George A. Infrared Damage Detection System (IDDS) for Real-Time, Small-Scale Damage Monitoring. Fort Belvoir, VA: Defense Technical Information Center, January 2007. http://dx.doi.org/10.21236/ada467885.
Full textMiller, T. C., Bob Lasser, and Burt VanderHeiden. Composite Damage Detection Using a Novel Ultrasonic Method. Fort Belvoir, VA: Defense Technical Information Center, January 2003. http://dx.doi.org/10.21236/ada410224.
Full textHaworth, W. L. Fatigue Damage Detection in Steels by Optical Correlation. Fort Belvoir, VA: Defense Technical Information Center, March 1985. http://dx.doi.org/10.21236/ada155830.
Full textMishra, Pranay, Asha Hall, and Michael Coatney. Embedded Carbon Nanotube Networks for Damage Precursor Detection. Fort Belvoir, VA: Defense Technical Information Center, January 2014. http://dx.doi.org/10.21236/ada599174.
Full textBily, Mollie A., Young W. Kwon, and Randall D. Pollak. Damage Detection in Composite Interfaces through Carbon Nanotube Reinforcement. Fort Belvoir, VA: Defense Technical Information Center, February 2010. http://dx.doi.org/10.21236/ada516359.
Full textClark, G., C. Robbins, K. Wade, and P. Souza. Cable Damage Detection System and Algorithms Using Time Domain Reflectometry. Office of Scientific and Technical Information (OSTI), March 2009. http://dx.doi.org/10.2172/971773.
Full textAlfred E. Crouch, Alan Dean, Carl Torres, and Jeff Aron. DEVELOPMENT OF NONLINEAR HARMONIC SENSORS FOR DETECTION OF MECHANICAL DAMAGE. Office of Scientific and Technical Information (OSTI), March 2004. http://dx.doi.org/10.2172/825669.
Full textIslam, Abu S., and Kevin Craig. Damage Detection and Mitigation of Composite Structures using Smart Materials. Fort Belvoir, VA: Defense Technical Information Center, January 1993. http://dx.doi.org/10.21236/ada261121.
Full text