Academic literature on the topic 'D-wave superconductor'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'D-wave superconductor.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "D-wave superconductor"

1

LIAO, YAN-HUA, JIAN LI, and FENG WANG. "INTERFACE SCATTERING EFFECT ON JOSEPHSON CURRENT IN A d-WAVE SUPERCONDUCTOR/d-WAVE SUPERCONDUCTOR JUNCTION." Modern Physics Letters B 25, no. 02 (2011): 131–40. http://dx.doi.org/10.1142/s0217984911025547.

Full text
Abstract:
By taking into account the interface scattering effect in a d-wave superconductor (S)/insulator layer (I)/d-wave superconductor (S) junction, the temperature dependence of the critical current and the current-phase relation are studied theoretically. It is found that both the barrier scattering and the roughness scattering at the interface always suppress the Andreev reflection and the current-phase relation is almost sinusoidal in the junction. The Josephson current strongly depends on the crystalline axis orientation of the d-wave superconductor in the junction. Some different phenomena appear depending on whether the crystal orientations of the superconductors on the two sides are the same or not, and this is mainly presented in the influence of the zero-energy states formation at the interface on the critical current which changes with temperature and phase.
APA, Harvard, Vancouver, ISO, and other styles
2

Park, Mi-Ae, M. H. Lee, and Yong-Jihn Kim. "Impurity Scattering in a d-Wave Superconductor." Modern Physics Letters B 11, no. 16n17 (1997): 719–26. http://dx.doi.org/10.1142/s0217984997000888.

Full text
Abstract:
The influence of (non-magnetic and magnetic) impurities on the transition temperature of a d-wave superconductor is studied anew within the framework of BCS theory. Pairing interaction decreases linearly with the impurity concentration. Accordingly T c suppression is proportional to the (potential or exchange) scattering rate, 1/τ, due to impurities. The initial slope versus 1/τ is found to depend on the superconductor contrary to Abrikosov–Gor'kov type theory. Near the critical impurity concentration T c drops abruptly to zero. Because the potential scattering rate is generally much larger than the exchange scattering rate, magnetic impurities will also act as non-magnetic impurities as far as the T c decrease is concerned. The implication for the impurity doping effect in high T c superconductors is also discussed.
APA, Harvard, Vancouver, ISO, and other styles
3

Morita, Y., M. Kohmoto, and K. Maki. "Aspects of a Single Vortex in d-Wave Superconductors." International Journal of Modern Physics B 12, no. 10 (1998): 989–1005. http://dx.doi.org/10.1142/s0217979298000557.

Full text
Abstract:
Physical properties of a single vortex in d-wave superconductors are studied theoretically. After a brief review on a single vortex in "conventional" s-wave superconductors and the d-wave superconductivity underlying the hole-doped high-T c cuprates, we go on to study the quasiparticle spectrum around a single vortex in the high-T c superconductors. One of the characteristics of the high-T c superconductors is that they are close to the "quantum limit" (pFξ ~ O(1)). A new picture emerges of the quasiparticle spectrum. Instead of thousands of bound states in a "conventional" s-wave superconductor, we find only a few peaks in the local density of states at the vortex center. Further there are low-lying excitations stretched in four diagonal directions and they have no counterpart in s-wave superconductors.
APA, Harvard, Vancouver, ISO, and other styles
4

Cucolo, A. M., M. Cuoco, and C. Noce. "d-Wave Tunnel Junctions." International Journal of Modern Physics B 13, no. 09n10 (1999): 1295–99. http://dx.doi.org/10.1142/s0217979299001338.

Full text
Abstract:
We study the tunneling spectra for superconductor-insulator-normal metal (S-I-N) tunnel junctions with an s -wave or a d -wave superconductor within the weak-coupling model. We deduce the temperature behavior of tunneling conductance and their peak positions as well as of the zero-bias conductance. The results obtained allow us to discriminate among the two singlet spin states.
APA, Harvard, Vancouver, ISO, and other styles
5

Belyavsky, V. I., V. V. Kapaev, and Yu V. Kopaev. "Topological d-wave superconductor." JETP Letters 96, no. 11 (2013): 724–29. http://dx.doi.org/10.1134/s002136401223004x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Popović, Zorica, Ljiljana Dobrosavljević-Grujić, and Radomir Zikic. "Quasiparticle Transport Properties of d-Wave Superconductor/Ferromagnet/d-Wave Superconductor Junctions." Journal of the Physical Society of Japan 82, no. 11 (2013): 114714. http://dx.doi.org/10.7566/jpsj.82.114714.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Liao, Y. H., Z. C. Dong, Z. F. Yin, and H. Fu. "Josephson current in ferromagnetic d-wave superconductor/ferromagnetic d-wave superconductor junction." Physics Letters A 372, no. 8 (2008): 1327–32. http://dx.doi.org/10.1016/j.physleta.2007.09.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Popović, Zorica, Predrag Miranović, and Radomir Zikic. "Zero Bias Conductance in d-Wave Superconductor/Ferromagnet/d-Wave Superconductor Trilayers." physica status solidi (b) 255, no. 6 (2018): 1700554. http://dx.doi.org/10.1002/pssb.201700554.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

HAN, QIANG. "VORTEX STATE IN f-WAVE SUPERCONDUCTORS." Modern Physics Letters B 21, no. 17 (2007): 1051–56. http://dx.doi.org/10.1142/s0217984907013377.

Full text
Abstract:
Motivated by the controversy concerning the pairing symmetry of the superconducting sodium-doped cobalt oxide, we investigate the microscopic electronic structure of an f-wave superconductor in the vortex state by diagonalizing an effective Hamiltonian specified in the triangular lattice self-consistently. We find that the low-lying vortex core states are in essence extended for the nodal f-wave superconductors. In comparison, we find localized bound states in the vortex core of the fully-gapped (d + id')-wave superconductors.
APA, Harvard, Vancouver, ISO, and other styles
10

Jin Xia, Dong Zheng-Chao, Liang Zhi-Peng, and Zhong Chong-Gui. "Josephson effect in ferromagnetic d-wave superconductor/ferromagnet/ferromagnetic d-wave superconductor junctions." Acta Physica Sinica 62, no. 4 (2013): 047401. http://dx.doi.org/10.7498/aps.62.047401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography