Academic literature on the topic 'D-A semiconducting polymer'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'D-A semiconducting polymer.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "D-A semiconducting polymer"

1

Kim, Doyeon, Minho Yoon, and Jiyoul Lee. "Enhanced Performance of Cyclopentadithiophene-Based Donor-Acceptor-Type Semiconducting Copolymer Transistors Obtained by a Wire Bar-Coating Method." Polymers 14, no. 1 (December 21, 2021): 2. http://dx.doi.org/10.3390/polym14010002.

Full text
Abstract:
Herein, we report the fabrications of high-performance polymer field-effect transistors (PFETs) with wire bar-coated semiconducting polymer film as an active layer. For an active semiconducting material of the PFETs, we employed cyclopentadithiophene-alt-benzothiadiazole (CDT-BTZ) that is a D-A-type-conjugated copolymer consisting of a repeated electron-donating unit and an electron-accepting unit, and the other two CDT-based D-A-type copolymer analogues are cyclopentadithiophene-alt-fluorinated-benzothiadiazole (CDT-FBTZ) and cyclopentadithiophene-alt-thiadiazolopyridine (CDT-PTZ). The linear field-effect mobility values obtained from the transfer curve of the PFETs fabricated with the spin-coating were 0.04 cm2/Vs, 0.16 cm2/Vs, and 0.31 cm2/Vs, for CDT-BTZ, CDT-FBTZ, and CDT-PTZ, respectively, while the mobility values measured from the PFETs with the wire bar-coated CDT-BTZ film, CDT-FBTZ film, and CDT-PTZ film were 0.16 cm2/Vs, 0.28 cm2/Vs, and 0.95 cm2/Vs, respectively, which are about 2 to 4 times higher values than those of the PFETs with spin-coated films. These results revealed that the aligned molecular chain is beneficial for the D-A-type semiconducting copolymer even though the charge transport in the D-A-type semiconducting copolymer is known to be less critical to the degree of disorder in film.
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Siyu, Sultan Otep, Joost Kimpel, Takehiko Mori, and Tsuyoshi Michinobu. "N-Type Charge Carrier Transport Properties of BDOPV-Benzothiadiazole-Based Semiconducting Polymers." Electronics 9, no. 10 (October 1, 2020): 1604. http://dx.doi.org/10.3390/electronics9101604.

Full text
Abstract:
High-performance n-type organic semiconducting polymers are key components of next-generation organic electronics. Here, we designed and synthesized two electron deficient organic polymers composed of benzodifurandione-based oligo (p-phenylenevinylene) (BDOPV) and benzothiadiazole by Stille coupling polycondensation. BDOPV-benzothiadiazole-based copolymer (PBDOPV-BTT) possesses a D-A1-D-A2 type backbone with intramolecular charge–transfer interactions, while PBDOPV-BTTz is an all-acceptor polymer. The former has a higher molecular weight (Mn) of 109.7 kg∙mol−1 than the latter (Mn = 20.2 kg∙mol−1). The structural difference of these polymers was confirmed by the optical absorption spectra. PBDOPV-BTT showed a more bathochromically shifted absorption spectrum than PBDOPV-BTTz. The longer wavelength absorption of PBDOPV-BTT was due to the intramolecular charge transfer. Therefore, PBDOPV-BTT had a narrower band gap than PBDOPV-BTTz. However, this feature was not reflected by the lowest unoccupied molecular orbital (LUMO) levels. Both polymers displayed almost the same LUMO level of −3.8 eV. Accuracy of this observation was cross-verified by density functional theory (DFT) calculations. The electron-transporting properties were investigated by thin film transistors. PBDOPV-BTT showed an electron mobility (μe) of 1.02 × 10−2 cm2 V−1 s−1 under the optimized annealing conditions. PBDOPV-BTTz exhibited poorer transistor performances with the optimized μe of 9.54 × 10−6 cm2 V−1 s−1. Finally, the grazing-incidence wide angle X-ray scattering (GIWAXS) measurements of both polymer films revealed the higher crystallinity of PBDOPV-BTT with the edge-on orientation.
APA, Harvard, Vancouver, ISO, and other styles
3

Grobelny, Anna, Artur Grobelny, and Szczepan Zapotoczny. "Precise Stepwise Synthesis of Donor-Acceptor Conjugated Polymer Brushes Grafted from Surfaces." International Journal of Molecular Sciences 23, no. 11 (May 31, 2022): 6162. http://dx.doi.org/10.3390/ijms23116162.

Full text
Abstract:
Donor-acceptor (D-A) conjugated polymers are promising materials in optoelectronic applications, especially those forming ordered thin films. The processability of such conjugated macromolecules is typically enhanced by introducing bulky side chains, but it may affect their ordering and/or photophysical properties of the films. We show here the synthesis of surface-grafted D-A polymer brushes using alternating attachment of tailored monomers serving as electron donors (D) and acceptors (A) via coupling reactions. In such a stepwise procedure, alternating copolymer brushes consisting of thiophene and benzothiadiazole-based moieties with precisely tailored thickness and no bulky substituents were formed. The utilization of Sonogashira coupling was shown to produce densely packed molecular wires of tailored thickness, while Stille coupling and Huisgen cycloaddition were less efficient, likely because of the higher flexibility of D-A bridging groups. The D-A brushes exhibit reduced bandgaps, semiconducting properties and can form aggregates, which can be adjusted by changing the grafting density of the chains.
APA, Harvard, Vancouver, ISO, and other styles
4

Al-Azzawi, Ahmed G. S., Shujahadeen B. Aziz, Elham M. A. Dannoun, Ahmed Iraqi, Muaffaq M. Nofal, Ary R. Murad, and Ahang M. Hussein. "A Mini Review on the Development of Conjugated Polymers: Steps towards the Commercialization of Organic Solar Cells." Polymers 15, no. 1 (December 29, 2022): 164. http://dx.doi.org/10.3390/polym15010164.

Full text
Abstract:
This review article covers the synthesis and design of conjugated polymers for carefully adjusting energy levels and energy band gap (EBG) to achieve the desired photovoltaic performance. The formation of bonds and the delocalization of electrons over conjugated chains are both explained by the molecular orbital theory (MOT). The intrinsic characteristics that classify conjugated polymers as semiconducting materials come from the EBG of organic molecules. A quinoid mesomeric structure (D-A D+ = A−) forms across the major backbones of the polymer as a result of alternating donor–acceptor segments contributing to the pull–push driving force between neighboring units, resulting in a smaller optical EBG. Furthermore, one of the most crucial factors in achieving excellent performance of the polymer is improving the morphology of the active layer. In order to improve exciton diffusion, dissociation, and charge transport, the nanoscale morphology ensures nanometer phase separation between donor and acceptor components in the active layer. It was demonstrated that because of the exciton’s short lifetime, only small diffusion distances (10–20 nm) are needed for all photo-generated excitons to reach the interfacial region where they can separate into free charge carriers. There is a comprehensive explanation of the architecture of organic solar cells using single layer, bilayer, and bulk heterojunction (BHJ) devices. The short circuit current density (Jsc), open circuit voltage (Voc), and fill factor (FF) all have a significant impact on the performance of organic solar cells (OSCs). Since the BHJ concept was first proposed, significant advancement and quick configuration development of these devices have been accomplished. Due to their ability to combine great optical and electronic properties with strong thermal and chemical stability, conjugated polymers are unique semiconducting materials that are used in a wide range of applications. According to the fundamental operating theories of OSCs, unlike inorganic semiconductors such as silicon solar cells, organic photovoltaic devices are unable to produce free carrier charges (holes and electrons). To overcome the Coulombic attraction and separate the excitons into free charges in the interfacial region, organic semiconductors require an additional thermodynamic driving force. From the molecular engineering of conjugated polymers, it was discovered that the most crucial obstacles to achieving the most desirable properties are the design and synthesis of conjugated polymers toward optimal p-type materials. Along with plastic solar cells (PSCs), these materials have extended to a number of different applications such as light-emitting diodes (LEDs) and field-effect transistors (FETs). Additionally, the topics of fluorene and carbazole as donor units in conjugated polymers are covered. The Stille, Suzuki, and Sonogashira coupling reactions widely used to synthesize alternating D–A copolymers are also presented. Moreover, conjugated polymers based on anthracene that can be used in solar cells are covered.
APA, Harvard, Vancouver, ISO, and other styles
5

Mao, Zupan, Weifeng Zhang, Jianyao Huang, Keli Shi, Dong Gao, Zhihui Chen, and Gui Yu. "High-performance polymer field-effect transistors fabricated with low-bandgap DPP-based semiconducting materials." Polymer Chemistry 6, no. 36 (2015): 6457–64. http://dx.doi.org/10.1039/c5py00756a.

Full text
Abstract:
New π-conjugated D–A copolymers PDMOTT-n combining a diketopyrrolopyrrole unit and a 3,6-dimethoxythieno[3,2-b]thiophene moiety were synthesized, and their field-effect performances were successfully characterized.
APA, Harvard, Vancouver, ISO, and other styles
6

Tong, Junfeng, Lili An, Jie Lv, Pengzhi Guo, Xunchang Wang, Chunyan Yang, and Yangjun Xia. "Enhanced Photovoltaic Performance in D-π-A Copolymers Containing Triisopropylsilylethynyl-Substituted Dithienobenzodithiophene by Modulating the Electron-Deficient Units." Polymers 11, no. 1 (December 21, 2018): 12. http://dx.doi.org/10.3390/polym11010012.

Full text
Abstract:
Three alternated D-π-A type 5,10-bis(triisopropylsilylethynyl)dithieno[2,3-d:2′,3′-d′]-benzo[1,2-b:4,5-b′]dithiophene (DTBDT-TIPS)-based semiconducting conjugated copolymers (CPs), PDTBDT-TIPS-DTBT-OD, PDTBDT-TIPS-DTFBT-OD, and PDTBDT-TIPS-DTNT-OD, bearing different A units, including benzothiadiazole (BT), 5,6-difluorinated-BT (FBT) and naphtho[1,2-c:5,6-c′]-bis[1,2,5]thiadiazole (NT), were designed and synthesized to investigate the impact of the variation in electron-deficient units on the properties of these photovoltaic polymers. It was exhibited that the down-shifted highest occupied molecular orbital energy level (EHOMO), the enhanced aggregation in both the chlorobenzene solution and the solid film, as well as the better molecular planarity, were achieved using methods involving fluorination and the replacement of BT with NT on the polymer backbone. The absorption profile was little changed upon fluorination; however, it was greatly broadened during replacement of BT with NT. Consequently, the optimized photovoltaic device based on the PDTBDT-TIPS-DTNT-OD exhibited synchronous enhancements in the open-circuit voltage (VOC) of 0.88 V, the short-circuit current density (JSC) of 7.21 mA cm−2, and the fill factor (FF) of 52.99%, resulting in a drastic elevation in the PCE by 129% to 3.37% compared to that of the PDTBDT-TIPS-DTBT-OD. This was triggered by PDTBDT-TIPS-DTNT-OD’s broadened absorption, deepened EHOMO, improved coplanarity, and enhanced SCLC mobility (which increased 3.9 times), as well as a favorable morphology of the active layer. Unfortunately, the corresponding PCE deteriorated after incorporating fluorine into the BT, due to the oversized aggregation and large phase separation morphology in the blend films, severely impairing its JSC. Our preliminary results demonstrated that the replacement of BT with NT in a D-π-A type polymer backbone was an effective strategy of tuning the molecular structure to achieve highly efficient polymer solar cells (PSCs).
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Jinfeng, Caixia Yang, Rui Zhang, Rui Chen, Zhenyu Zhang, Wenjun Zhang, Shih-Hao Peng, et al. "Biocompatible D-A Semiconducting Polymer Nanoparticle with Light-Harvesting Unit for Highly Effective Photoacoustic Imaging Guided Photothermal Therapy." Advanced Functional Materials 27, no. 13 (February 15, 2017): 1605094. http://dx.doi.org/10.1002/adfm.201605094.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tian, Jianwu, Zitong Liu, Changchun Wu, Wenlin Jiang, Liangliang Chen, Dandan Shi, Xisha Zhang, Guanxin Zhang, and Deqing Zhang. "Simultaneous Incorporation of Two Types of Azo‐Groups in the Side Chains of a Conjugated D–A Polymer for Logic Control of the Semiconducting Performance by Light Irradiation." Advanced Materials 33, no. 8 (January 14, 2021): 2005613. http://dx.doi.org/10.1002/adma.202005613.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ahmad, Habib, Zachary Engel, Christopher M. Matthews, Sangho Lee, and W. Alan Doolittle. "Realization of homojunction PN AlN diodes." Journal of Applied Physics 131, no. 17 (May 7, 2022): 175701. http://dx.doi.org/10.1063/5.0086314.

Full text
Abstract:
Aluminum nitride (AlN) is an insulator that has shown little promise to be converted to a semiconductor via impurity doping. Some of the historic challenges for successfully doping AlN include a reconfigurable defect formation known as a DX center and subsequent compensation that causes an increase in dopant activation energy resulting in very few carriers of electricity, electrons, or holes, rendering doping inefficient. Using crystal synthesis methods that generate less compensating impurities and less lattice expansion, thus impeding the reconfiguration of dopants, and using new dopants, we demonstrate: (a) well behaved bulk semiconducting functionality in AlN, the largest direct bandgap semiconductor known with (b) substantial bulk p-type conduction (holes = 3.1 × 1018 cm−3, as recently reported in our prior work), (c) dramatic improvement in n-type bulk conduction (electrons = 6 × 1018 cm−3, nearly 6000 times the prior state-of-the-art), and (d) a PN AlN diode with a nearly ideal turn-on voltage of ∼6 V for a 6.1 eV bandgap semiconductor. A wide variety of AlN-based applications are enabled that will impact deep ultraviolet light-based viral and bacterial sterilization, polymer curing, lithography, laser machining, high-temperature, high-voltage, and high-power electronics.
APA, Harvard, Vancouver, ISO, and other styles
10

Sinha, M. K., B. R. Das, A. Srivastava, and A. K. Saxena. "Study of Electrospun Poly\acrylonitrile (PAN) and PAN/CNT Composite Nanofibrous Webs." Research Journal of Textile and Apparel 19, no. 1 (February 1, 2015): 36–45. http://dx.doi.org/10.1108/rjta-19-01-2015-b004.

Full text
Abstract:
The electrospinng of PAN and PAN/CNT composite webs is carried out with the commercially available Nanospider machine. The webs are spun under similar processes and coated on Polypropylene spun bonded nonwoven fabric. This research work reports on the influence of multi-walled carbon nano tube (MWCNT) on the morphology, tensile properties, conductivity, thermal, chemical and crystalline structure of PAN and PAN/CNT composite nanofibrous webs. The morphological developments are explained on the basis of nanofibre diameter and web density as depicted by FESEM images. An addition of CNT greatly affects the morphology of webs, increases fibre diameter, decreases web density and leads to a roughened web surface. The mechanical properties of PAN /CNT composite webs are also found to be influenced by CNT concentration. The addition of MWCNT to PAN enhances the conductive properties of webs. The specific conductivity of PAN/CNT composite webs is found to be in order of 10-6 S/cm, which falls in the semiconducting regime and follows Ohm's law of conductivity. The TGA plots confirmed that the PAN/CNT composite web is more thermally stable than the PAN web. The presence of CNT in the polymer matrix is evidenced by D and G band, indicating a successful electrospun coating process.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "D-A semiconducting polymer"

1

Wysocka-Żołopa, Monika, Emilia Grądzka, and Krzysztof Winkler. "Conducting Polymer 1-D Composites: Formation, Structure and Application." In Nanocomposite Materials [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.102484.

Full text
Abstract:
Recent advances in the study of the synthesis, structure and applications of 1-D composites containing conducting polymers are discussed in this review. Conducting composites can form 1-D structures with metal and metal oxides, 1-D carbon nanomaterials, semiconducting materials, crystals of metalloorganic complexes. Advanced synthetic approaches allow for the formation of well-organized structures with polymeric phase deposited both on the surface of 1-D material and inside of the 1-D tubes. 1-D polymeric wires can also serve as a matrix for the formation 1-D composites with other materials. 1-D nanocomposites containing conducting polymers exhibit many exceptional properties which allow for various practical applications including energy converting and energy storage devices, electronic nanodevices, chemical, electrochemical and biochemical sensors, catalysis and electrocatalysis.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "D-A semiconducting polymer"

1

Ayad, Mustafa, Robert Nawrocki, Richard M. Voyles, Junseok Lee, Hyowon Lee, and Daniel Leon-Salas. "NUCLEOs: Toward Rapid-Prototyping of Robotic Materials That Can Sense, Think and Act." In ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/smasis2018-8245.

Full text
Abstract:
Robotic Materials are materials that have sensing, computation and, possibly actuation, distributed throughout the bulk of the material. In such a material, we envision semiconducting polymer based sensing, actuation, and information processing for on-board decision making to be designed, in tandem, with the smart product that will be implemented with the smart material. Prior work in printing polymer semiconductors for sensing and cognition have focused on highly energetic inkjet printing. Alternatively, we are developing liquid polymer extrusion processes to work hand-in-hand with existing solid polymer extrusion processes (such as Fused Deposition Manufacturing - FDM) to simultaneously deposit sensing, computation, actuation and structure. We demonstrate the successful extrusion printing of conductors and capacitors to impedance-match a new, higher-performance organic transistor design that solves the cascading problem of the device previously reported and is more amenable to liquid extrusion printing. Consequently, these printed devices are integrated into a sheet material that is folded into a 3-D, six-legged walking machine with attached electric motor.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography