Academic literature on the topic 'Cytosolic-3, 5-triiodo-L-thyronine(T3)-Binding Protein (CTBP)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cytosolic-3, 5-triiodo-L-thyronine(T3)-Binding Protein (CTBP).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Cytosolic-3, 5-triiodo-L-thyronine(T3)-Binding Protein (CTBP)"

1

Takeda, T., K. Ichikawa, M. Kobayashi, T. Miyamoto, S. Suzuki, Y. Nishii, A. Sakurai, et al. "Response of hepatic proteins to 3,5,3′-tri-iodo-l-thyronine in diabetic rats." Journal of Endocrinology 143, no. 1 (October 1994): 55–63. http://dx.doi.org/10.1677/joe.0.1430055.

Full text
Abstract:
Abstract In order to study whether peripheral action of thyroid hormones is altered in insulin deficiency and to elucidate the biological consequences of alteration of the cytosolic 3,5,3′-tri-iodo-l-thyronine (T3) binding protein (CTBP), we measured malic enzyme, T3-responsive nuclear n protein, CTBP and nuclear thyroid hormone receptor in the liver and kidney of streptozotocin (STZ)-induced diabetic rats that were treated with or without insulin and/or a receptor-saturating dose of T3. The following results were obtained. 1. Induction of malic enzyme by T3 was apparently diminished in diabetic rats. However, supplementary injection of insulin enabled previously given T3 to take effect in diabetic rats. 2. T3-responsiveness of other hepatic proteins (n protein and CTBP) was not altered by insulin in diabetic rats. 3. The level of n protein was increased by insulin in diabetic rats in vivo and in perfused rat liver, indicating that the hepatic n protein is a novel insulin-responsive protein. T3 and insulin increased the level of n protein non-synergistically in diabetic rat liver. 4. Hepatic nuclear receptor levels were not altered in diabetic rats. 5. Hepatic CTBP levels were decreased in diabetic rats. This was not due to the toxic effect of STZ. Low CTBP level was only partially increased by insulin after 30 days of diabetic period. Renal CTBP levels were not altered in diabetic rats with or without insulin treatment. These results indicate that reduction of CTBP did not influence the hepatic response to a receptor-saturating dose of T3, although CTBP may regulate the nuclear T3 transport, and that fundamental action of a receptor-saturating dose of T3 was not attenuated in diabetic rat liver. Journal of Endocrinology (1994) 143, 55–63
APA, Harvard, Vancouver, ISO, and other styles
2

Hashizume, Kiyoshi, Satoru Suzuki, Kazuo Ichikawa, and Teiji Takeda. "Purification of cytosolic 3,5,3′-triiodo-L-thyronine(T3)-binding protein(CTBP) which regulates nuclear T3 translocation." Biochemical and Biophysical Research Communications 174, no. 3 (February 1991): 1084–89. http://dx.doi.org/10.1016/0006-291x(91)91531-g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

NISHII, YUTAKA, KIYOSHI HASHIZUME, KAZUO ICHIKAWA, TEIJI TAKEDA, MUTSUHIRO KOBAYASHI, TAKESHI NAGASAWA, MIYUKI KATAI, HIROAKI KOBAYASHI, and AKIHIRO SAKURAI. "Induction of Cytosolic Triiodo-L-Thyronine (T3) Binding Protein (CTBP) by T3 in Primary Cultured Rat Hepatocytes." Endocrine Journal 40, no. 4 (1993): 399–404. http://dx.doi.org/10.1507/endocrj.40.399.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

HASHIZUME, KIYOSHI, TAKAHIDE MIYAMOTO, MUTSUHIRO KOBAYASHI, SATORU SUZUKI, KAZUO ICHIKAWA, KEISHI YAMAUCHI, HIROMI OHTSUKA, and TEIJI TAKEDA. "Cytosolic 3,5,3'-Triiodo-L-Thyronine (T3)-Binding Protein (CTBP) Regulation of Nuclear T3Binding: Evidence for the Presence of T3-CTBP Complex-Binding Sites in Nuclei." Endocrinology 124, no. 6 (June 1989): 2851–56. http://dx.doi.org/10.1210/endo-124-6-2851.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hashizume, K., T. Miyamoto, K. Ichikawa, K. Yamauchi, A. Sakurai, H. Ohtsuka, M. Kobayashi, Y. Nishii, and T. Yamada. "Evidence for the Presence of Two Active Forms of Cytosolic 3,5,3′-Triiodo-L-thyronine (T3)-binding Protein (CTBP) in Rat Kidney." Journal of Biological Chemistry 264, no. 9 (March 1989): 4864–71. http://dx.doi.org/10.1016/s0021-9258(18)83671-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Suzuki, S., J. Mori, M. Kobayashi, T. Inagaki, H. Inaba, A. Komatsu, K. Yamashita, et al. "Cell-specific expression of NADPH-dependent cytosolic 3,5,3'-triiodo-L-thyronine-binding protein (p38CTBP)." European Journal of Endocrinology, February 1, 2003, 259–68. http://dx.doi.org/10.1530/eje.0.1480259.

Full text
Abstract:
We have previously shown that cytosolic 3,5,3'-triiodo-L-thyronine (T3)-binding protein (CTBP) possesses a high affinity for T3 binding in the presence of nicotinamide adenine dinucleotide phosphate in vitro, and that p38CTBP increases intracellular content of T3, and suppresses T3-mediated transactivity. Screening of mRNA expression in 73 different human tIssues has demonstrated that p38CTBP mRNA is expressed at high levels in brain and heart. We have examined the intracellular localization and tissue-specific distribution of this protein by using a specific antibody against human p38CTBP. Western blotting and immunoprecipitation studies have shown that the antibody recognizes human p38CTBP. Interaction of p38CTBP with the antibody did not affect the T3-binding activity of p38CTBP, and its dimer formation in vitro. Western blotting analysis has shown that p38CTBP is expressed in brain and heart predominantly, similar to the distribution of mRNA. Immunohistochemical studies have demonstrated p38CTBP in neural cells and cardiac muscle cells. p38CTBP localizes in cytoplasm rather than in nuclei in neural cells. The evidence for the presence of tIssue-specific localization of p38CTBP has indicated that p38CTBP has a tIssue-specific function, such as the regulation of T3 delivery from cytoplasm to nuclei.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Cytosolic-3, 5-triiodo-L-thyronine(T3)-Binding Protein (CTBP)"

1

Hachi, Isma. "Etude structurale de biomarqueurs de neuropathologies : cas particulier de la protéine CRYM, une Cytosolic-3,3',5-triiodo-L-thyronine(T3)-Binding Protein." Grenoble, 2010. http://www.theses.fr/2010GRENV030.

Full text
Abstract:
Mon projet de thèse s'inscrit dans un vaste projet de caractérisation de protéines nouvellement identifiées dont l'expression est sélective à certaines régions du cerveau. Cette expression sélective pouvant être liée aux phénomènes de dégénérescence neuronale qui caractérisent les maladies neurodégénératives, ces protéines constituent donc des biomarqueurs potentiels. Une étude structurale et physico-chimique a été effectuée sur une dizaine de protéines, dont la protéine CRYM murine (mCRYM) qui fait parti de la famille des Cytosolic- 3,3',5-triiodo-L-thyronine(T3)-Binding Protein car elle régule la concentration en hormone thyroïdienne T3 libre dans la cellule. MCRYM appartient également à la famille des µ-crystallines et à la superfamille des µ-crystallines/Ornithines Cyclodésaminases. Les protéines présentant des homologies pour ces trois familles sont la plupart différentes par leur fonction (enzymatique ou structurale), leur localisation tissulaire et leurs caractéristiques physico-chimiques. Cette diversité est due au recrutement de gènes de la superfamille des crystallines pour diverses fonctions métaboliques tout en conservant le taxon spécifique des crystallines. Je suis parvenue à résoudre sa structure cristallographique complexée au NADP(H) et à l'hormone thyroïdienne T3 à une résolution de 1,75 Å. La protéine mCRYM est un exemple intéressant d'évolution par son appartenance à différentes familles de protéines et, à ce jour, aucune activité enzymatique n'a été identifiée. Sa caractérisation structurale et thermodynamique a donc permis de mettre en évidence les différences et les similitudes avec ses homologues enzymatiques et d'émettre des hypothèses quant à son évolution moléculaire. Ces résultats soulèvent de nouvelles questions concernant son rôle physiologique : mCRYM est-elle une enzyme ou une protéine structurale ? Comment intervient le couple redox NADPH/NADP+ pour réguler l'action génomique et/ou non génomique de l'hormone T3 ? L'hormone T3 est-il le seul ligand physiologique de CRYM dans le cerveau ?
My Ph. D. Work takes part of a larger project dedicated to the characterization of proteins newly involved into selective expression of certain mouse brain regions. This selective expression being potentially linked to neuronal degeneration associated with neurodegenerative diseases, the corresponding proteins are therefore potential biomarkers. A structural and physico-chemical study has been performed on about ten proteins including CRYM of mouse (mCRYM), which belongs to the Cytosolic-3,3',5-triiodo-L-thyronine(T3)-Binding Protein family since it regulates the concentration of free thyroid hormone, T3, in the cell. MCRYM also belongs to the µ-crystallin family and to the µ-crystallins/Ornithin Cyclodesaminases superfamily. Proteins displaying sequence homologies to these three families of proteins have generally different functions (enzymatic or structural), different tissue localisation and different physico-chemical properties. This diversity is due to the recruitment of genes of the crystalline superfamily to carry different metabolic functions while preserving the taxon-specific crystallins. I have managed to resolve the crystallographic structure of mCRYM in complex with NADP(H) and the thyroid hormone, T3, to 1. 75 Å resolution. MCRYM is a very interesting evolution specimen as it belongs to a different family of proteins. However, no enzymatic function has ever been demonstrated for mCRYM. Its structural and thermodynamical characterization has revealed similitudes and divergences with the enzymatic homologues of CRYM and has allowed us to make hypothesis relative to its molecular evolution. These results raise new questions concerning the physiological role of mammalian CRYM: is CRYM an enzyme or a structural protein? How does the NADPH/NADP+ redox couple regulates the genomic and/or non genomic action of the T3 hormone? Is the T3 hormone the only physiological ligand of CRYM in the brain?
APA, Harvard, Vancouver, ISO, and other styles
2

Hachi, Isma. "Etude structurale de biomarqueurs de neuropathologies : Cas particulier de la protéine CRYM, une Cytosolic-3,3',5-triiodo-L-thyronine(T3)-Binding Protein." Phd thesis, Université de Grenoble, 2010. http://tel.archives-ouvertes.fr/tel-00718112.

Full text
Abstract:
Mon projet de thèse s'inscrit dans un vaste projet de caractérisation de protéines nouvellement identifiées dont l'expression est sélective à certaines régions du cerveau. Cette expression sélective pouvant être liée aux phénomènes de dégénérescence neuronale qui caractérisent les maladies neurodégénératives, ces protéines constituent donc des biomarqueurs potentiels. Une étude structurale et physico-chimique a été effectuée sur une dizaine de protéines, dont la protéine CRYM murine (mCRYM) qui fait parti de la famille des Cytosolic- 3,3',5-triiodo-L-thyronine(T3)-Binding Protein car elle régule la concentration en hormone thyroïdienne T3 libre dans la cellule. mCRYM appartient également à la famille des µ-crystallines et à la superfamille des µ-crystallines/Ornithines Cyclodésaminases. Les protéines présentant des homologies pour ces trois familles sont la plupart différentes par leur fonction (enzymatique ou structurale), leur localisation tissulaire et leurs caractéristiques physico-chimiques. Cette diversité est due au recrutement de gènes de la superfamille des crystallines pour diverses fonctions métaboliques tout en conservant le taxon spécifique des crystallines. Je suis parvenue à résoudre sa structure cristallographique complexée au NADP(H) et à l'hormone thyroïdienne T3 à une résolution de 1,75 Å. La protéine mCRYM est un exemple intéressant d'évolution par son appartenance à différentes familles de protéines et, à ce jour, aucune activité enzymatique n'a été identifiée. Sa caractérisation structurale et thermodynamique a donc permis de mettre en évidence les différences et les similitudes avec ses homologues enzymatiques et d'émettre des hypothèses quant à son évolution moléculaire. Ces résultats soulèvent de nouvelles questions concernant son rôle physiologique : mCRYM est-elle une enzyme ou une protéine structurale ? Comment intervient le couple redox NADPH/NADP+ pour réguler l'action génomique et/ou non génomique de l'hormone T3 ? L'hormone T3 est-il le seul ligand physiologique de CRYM dans le cerveau ?
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography