Journal articles on the topic '(cyclopentadienone)iron complexe'

To see the other types of publications on this topic, follow the link: (cyclopentadienone)iron complexe.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic '(cyclopentadienone)iron complexe.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Ndiaye, Daouda, Sébastien Coufourier, Mbaye Diagne Mbaye, Sylvain Gaillard, and Jean-Luc Renaud. "Cyclopentadienone Iron Tricarbonyl Complexes-Catalyzed Hydrogen Transfer in Water." Molecules 25, no. 2 (January 20, 2020): 421. http://dx.doi.org/10.3390/molecules25020421.

Full text
Abstract:
The development of efficient and low-cost catalytic systems is important for the replacement of robust noble metal complexes. The synthesis and application of a stable, phosphine-free, water-soluble cyclopentadienone iron tricarbonyl complex in the reduction of polarized double bonds in pure water is reported. In the presence of cationic bifunctional iron complexes, a variety of alcohols and amines were prepared in good yields under mild reaction conditions.
APA, Harvard, Vancouver, ISO, and other styles
2

Del Grosso, Alessandro, Alexander E. Chamberlain, Guy J. Clarkson, and Martin Wills. "Synthesis and applications to catalysis of novel cyclopentadienone iron tricarbonyl complexes." Dalton Transactions 47, no. 5 (2018): 1451–70. http://dx.doi.org/10.1039/c7dt03250a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rosas-Hernández, Alonso, Pamela G. Alsabeh, Enrico Barsch, Hernrik Junge, Ralf Ludwig, and Matthias Beller. "Highly active and selective photochemical reduction of CO2 to CO using molecular-defined cyclopentadienone iron complexes." Chemical Communications 52, no. 54 (2016): 8393–96. http://dx.doi.org/10.1039/c6cc01671e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Brenna, D., S. Rossi, F. Cozzi, and M. Benaglia. "Iron catalyzed diastereoselective hydrogenation of chiral imines." Organic & Biomolecular Chemistry 15, no. 27 (2017): 5685–88. http://dx.doi.org/10.1039/c7ob01123g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Piarulli, Umberto, Sofia Vailati Fachini, and Luca Pignataro. "Enantioselective Reductions Promoted by (Cyclopentadienone)iron Complexes." CHIMIA International Journal for Chemistry 71, no. 9 (September 27, 2017): 580–85. http://dx.doi.org/10.2533/chimia.2017.580.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pignataro, Luca, and Cesare Gennari. "Recent Catalytic Applications of (Cyclopentadienone)iron Complexes." European Journal of Organic Chemistry 2020, no. 22 (March 4, 2020): 3192–205. http://dx.doi.org/10.1002/ejoc.201901925.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cingolani, Andrea, Cristiana Cesari, Stefano Zacchini, Valerio Zanotti, Maria Cristina Cassani, and Rita Mazzoni. "Straightforward synthesis of iron cyclopentadienone N-heterocyclic carbene complexes." Dalton Transactions 44, no. 44 (2015): 19063–67. http://dx.doi.org/10.1039/c5dt03071d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rosas-Hernández, Alonso, Henrik Junge, Matthias Beller, Michael Roemelt, and Robert Francke. "Cyclopentadienone iron complexes as efficient and selective catalysts for the electroreduction of CO2 to CO." Catalysis Science & Technology 7, no. 2 (2017): 459–65. http://dx.doi.org/10.1039/c6cy02352e.

Full text
Abstract:
Robust and easy-to-synthesize cyclopentadienone iron(0) complexes selectively catalyze the electrochemical conversion of CO2 to CO. Cooperation between the metal center and the coordinated organic ligand is a key factor for activity of these novel electrocatalysts.
APA, Harvard, Vancouver, ISO, and other styles
9

Quintard, Adrien, and Jean Rodriguez. "Iron Cyclopentadienone Complexes: Discovery, Properties, and Catalytic Reactivity." Angewandte Chemie International Edition 53, no. 16 (March 18, 2014): 4044–55. http://dx.doi.org/10.1002/anie.201310788.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ge, Hongyu, Xiangyang Chen, and Xinzheng Yang. "A mechanistic study and computational prediction of iron, cobalt and manganese cyclopentadienone complexes for hydrogenation of carbon dioxide." Chemical Communications 52, no. 84 (2016): 12422–25. http://dx.doi.org/10.1039/c6cc05069g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Pearson, Anthony J., Raymond J. Shively, and Robert A. Dubbert. "Iron carbonyl promoted conversion of .alpha.,.omega.-diynes to (cyclopentadienone)iron complexes." Organometallics 11, no. 12 (December 1992): 4096–104. http://dx.doi.org/10.1021/om00060a028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Akter, Monalisa, and Pazhamalai Anbarasan. "(Cyclopentadienone)iron Complexes: Synthesis, Mechanism and Applications in Organic Synthesis." Chemistry – An Asian Journal 16, no. 13 (June 2021): 1703–24. http://dx.doi.org/10.1002/asia.202100400.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Nährig, Florian, Nelly Nunheim, Kifah S. M. Salih, Jae‐Yeon Chung, Dominik Gond, Yu Sun, Sabine Becker, and Werner R. Thiel. "A Novel Cyclopentadienone and its Ruthenium and Iron Tricarbonyl Complexes." European Journal of Inorganic Chemistry 2021, no. 46 (November 23, 2021): 4832–41. http://dx.doi.org/10.1002/ejic.202100745.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Quintard, Adrien, and Jean Rodriguez. "ChemInform Abstract: Iron Cyclopentadienone Complexes: Discovery, Properties, and Catalytic Reactivity." ChemInform 45, no. 25 (June 5, 2014): no. http://dx.doi.org/10.1002/chin.201425230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Johnson, Tarn C., Guy J. Clarkson, and Martin Wills. "(Cyclopentadienone)iron Shvo Complexes: Synthesis and Applications to Hydrogen Transfer Reactions." Organometallics 30, no. 7 (April 11, 2011): 1859–68. http://dx.doi.org/10.1021/om101101r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Gajewski, Piotr, Marc Renom-Carrasco, Sofia Vailati Facchini, Luca Pignataro, Laurent Lefort, Johannes G. de Vries, Raffaella Ferraccioli, Alessandra Forni, Umberto Piarulli, and Cesare Gennari. "Chiral (Cyclopentadienone)iron Complexes for the Catalytic Asymmetric Hydrogenation of Ketones." European Journal of Organic Chemistry 2015, no. 9 (February 13, 2015): 1887–93. http://dx.doi.org/10.1002/ejoc.201500146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Cettolin, Mattia, Xishan Bai, Dennis Lübken, Marco Gatti, Sofia Vailati Facchini, Umberto Piarulli, Luca Pignataro, and Cesare Gennari. "Improving C=N Bond Reductions with (Cyclopentadienone)iron Complexes: Scope and Limitations." European Journal of Organic Chemistry 2019, no. 4 (October 12, 2018): 647–54. http://dx.doi.org/10.1002/ejoc.201801348.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Bai, Xishan, Francesco Aiolfi, Mattia Cettolin, Umberto Piarulli, Alberto Dal Corso, Luca Pignataro, and Cesare Gennari. "Hydrogen-Borrowing Amination of Secondary Alcohols Promoted by a (Cyclopentadienone)iron Complex." Synthesis 51, no. 18 (June 26, 2019): 3545–55. http://dx.doi.org/10.1055/s-0039-1690101.

Full text
Abstract:
Thanks to a highly active catalyst, the scope of the (cyclopentadienone)iron complex-promoted ‘hydrogen-borrowing’ (HB) amination has been expanded to secondary alcohols, which had previously been reported to react only in the presence of large amounts of co-catalysts. A range of cyclic and acyclic secondary alcohols were reacted with aromatic and aliphatic amines giving fair to excellent yields of the substitution products. The catalyst was also able to promote the cyclization of diols bearing a secondary alcohol group with primary amines to generate saturated N-heterocycles.
APA, Harvard, Vancouver, ISO, and other styles
19

Pearson, Anthony J., and Raymond J. Shively. "Iron Carbonyl Promoted Cyclocarbonylation of 3-Hydroxy .alpha.,.omega.-Diynes To Give (Cyclopentadienone)Iron Tricarbonyl Complexes." Organometallics 13, no. 2 (February 1994): 578–84. http://dx.doi.org/10.1021/om00014a032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Oberem, Elisabeth, Arend F. Roesel, Alonso Rosas-Hernández, Tobias Kull, Steffen Fischer, Anke Spannenberg, Henrik Junge, et al. "Mechanistic Insights into the Electrochemical Reduction of CO2 Catalyzed by Iron Cyclopentadienone Complexes." Organometallics 38, no. 6 (September 20, 2018): 1236–47. http://dx.doi.org/10.1021/acs.organomet.8b00517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Gajewski, Piotr, Marc Renom-Carrasco, Sofia Vailati Facchini, Luca Pignataro, Laurent Lefort, Johannes G. de Vries, Raffaella Ferraccioli, Alessandra Forni, Umberto Piarulli, and Cesare Gennari. "ChemInform Abstract: Chiral (Cyclopentadienone)iron Complexes for the Catalytic Asymmetric Hydrogenation of Ketones." ChemInform 46, no. 31 (July 16, 2015): no. http://dx.doi.org/10.1002/chin.201531051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Moulin, Solenne, Hélène Dentel, Anastassiya Pagnoux-Ozherelyeva, Sylvain Gaillard, Albert Poater, Luigi Cavallo, Jean-François Lohier, and Jean-Luc Renaud. "Bifunctional (Cyclopentadienone)Iron-Tricarbonyl Complexes: Synthesis, Computational Studies and Application in Reductive Amination." Chemistry - A European Journal 19, no. 52 (November 15, 2013): 17881–90. http://dx.doi.org/10.1002/chem.201302432.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Casey, Charles P., and Hairong Guan. "Cyclopentadienone Iron Alcohol Complexes: Synthesis, Reactivity, and Implications for the Mechanism of Iron-Catalyzed Hydrogenation of Aldehydes." Journal of the American Chemical Society 131, no. 7 (February 25, 2009): 2499–507. http://dx.doi.org/10.1021/ja808683z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

van Slagmaat, Christian A. M. R., Khi Chhay Chou, Lukas Morick, Darya Hadavi, Burgert Blom, and Stefaan M. A. De Wildeman. "Synthesis and Catalytic Application of Knölker-Type Iron Complexes with a Novel Asymmetric Cyclopentadienone Ligand Design." Catalysts 9, no. 10 (September 22, 2019): 790. http://dx.doi.org/10.3390/catal9100790.

Full text
Abstract:
Asymmetric catalysis is an essential tool in modern chemistry, but increasing environmental concerns demand the development of new catalysts based on cheap, abundant, and less toxic iron. As a result, Knölker-type catalysts have emerged as a promising class of iron catalysts for various chemical transformations, notably the hydrogenation of carbonyls and imines, while asymmetric versions are still under exploration to achieve optimal enantio-selectivities. In this work, we report a novel asymmetric design of a Knölker-type catalyst, in which the C2-rotational symmetric cyclopentadienone ligand possesses chiral substituents on the 2- and 5-positions near the active site. Four examples of the highly modular catalyst design were synthesized via standard organic procedures, and their structures were confirmed with NMR, IR, MS, and polarimetry analysis. Density functional theory (DFT) calculations were conducted to elucidate the spatial conformation of the catalysts, and therewith to rationalize the influence of structural alterations. Transfer- and H2-mediated hydrogenations were successfully established, leading to appreciable enantiomeric excesses (ee) values up to 70%. Amongst all reported Knölker-type catalysts, our catalyst design achieves one of the highest ee values for hydrogenation of acetophenone and related compounds.
APA, Harvard, Vancouver, ISO, and other styles
25

Rück-Braun, Karola, and Jörg Köuhn. "Cationic Iron Aminocarbene Complexes as Dienophiles in Diels-Alder Reaction with Cyclopentadiene." Chemische Berichte 129, no. 9 (September 1996): 1057–59. http://dx.doi.org/10.1002/cber.19961290913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

PEARSON, A. J., and R. J. JUN SHIVELY. "ChemInform Abstract: Iron Carbonyl Promoted Cyclocarbonylation of 3-Hydroxy α,ω- Diynes To Give (Cyclopentadienone)iron Tricarbonyl Complexes." ChemInform 25, no. 22 (August 19, 2010): no. http://dx.doi.org/10.1002/chin.199422056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Mérel, Delphine S., Sylvain Gaillard, Thomas R. Ward, and Jean-Luc Renaud. "Achiral Cyclopentadienone Iron Tricarbonyl Complexes Embedded in Streptavidin: An Access to Artificial Iron Hydrogenases and Application in Asymmetric Hydrogenation." Catalysis Letters 146, no. 3 (January 18, 2016): 564–69. http://dx.doi.org/10.1007/s10562-015-1681-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Hodgkinson, Roy, Alessandro Del Grosso, Guy Clarkson, and Martin Wills. "Iron cyclopentadienone complexes derived from C2-symmetric bis-propargylic alcohols; preparation and applications to catalysis." Dalton Transactions 45, no. 9 (2016): 3992–4005. http://dx.doi.org/10.1039/c5dt04610f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Moulin, Solenne, Helene Dentel, Anastassiya Pagnoux-Ozherelyeva, Sylvain Gaillard, Albert Poater, Luigi Cavallo, Jean-Francois Lohier, and Jean-Luc Renaud. "ChemInform Abstract: Bifunctional (Cyclopentadienone)Iron-Tricarbonyl Complexes: Synthesis, Computational Studies and Application in Reductive Amination." ChemInform 45, no. 22 (May 15, 2014): no. http://dx.doi.org/10.1002/chin.201422047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Brown, Thomas J., Madeleine Cumbes, Louis J. Diorazio, Guy J. Clarkson, and Martin Wills. "Use of (Cyclopentadienone)iron Tricarbonyl Complexes for C–N Bond Formation Reactions between Amines and Alcohols." Journal of Organic Chemistry 82, no. 19 (September 28, 2017): 10489–503. http://dx.doi.org/10.1021/acs.joc.7b01990.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

von der Höh, Adrian, and Albrecht Berkessel. "Insight into the Mechanism of Dihydrogen-Heterolysis at Cyclopentadienone Iron Complexes and Subsequent CX Hydrogenation." ChemCatChem 3, no. 5 (February 21, 2011): 861–67. http://dx.doi.org/10.1002/cctc.201000428.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Gajewski, Piotr, Angela Gonzalez-de-Castro, Marc Renom-Carrasco, Umberto Piarulli, Cesare Gennari, Johannes G. de Vries, Laurent Lefort, and Luca Pignataro. "Expanding the Catalytic Scope of (Cyclopentadienone)iron Complexes to the Hydrogenation of Activated Esters to Alcohols." ChemCatChem 8, no. 22 (September 28, 2016): 3431–35. http://dx.doi.org/10.1002/cctc.201600972.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Park, Jaiwook, Sunhwa Kang, Dongmok Whang, and Kimoon Kim. "Reactions between iron(0) alkynylcarbene complexes and cyclopentadiene: formation of iron(0) .eta.1-vinylcarbene complexes and their facile thermal transformation into the corresponding (.eta.3:.eta.1-allylacyl)iron(II) complexes." Organometallics 11, no. 4 (April 1992): 1738–41. http://dx.doi.org/10.1021/om00040a051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Gajewski, Piotr, Marc Renom-Carrasco, Sofia Vailati Facchini, Luca Pignataro, Laurent Lefort, Johannes G. de Vries, Raffaella Ferraccioli, Umberto Piarulli, and Cesare Gennari. "Synthesis of (R)-BINOL-Derived (Cyclopentadienone)iron Complexes and Their Application in the Catalytic Asymmetric Hydrogenation of Ketones." European Journal of Organic Chemistry 2015, no. 25 (July 23, 2015): 5526–36. http://dx.doi.org/10.1002/ejoc.201500796.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Cingolani, Andrea, Valerio Zanotti, Stefano Zacchini, Massimiliano Massi, Peter V. Simpson, Nima Maheshkumar Desai, Ilaria Casari, Marco Falasca, Luca Rigamonti, and Rita Mazzoni. "Synthesis, reactivity and preliminary biological activity of iron(0) complexes with cyclopentadienone and amino-appendedN-heterocyclic carbene ligands." Applied Organometallic Chemistry 33, no. 4 (March 3, 2019): e4779. http://dx.doi.org/10.1002/aoc.4779.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Li, Bin, Baiquan Wang, Shansheng Xu, and Xiuzhong Zhou. "Synthesis and structures of dinuclear iron, molybdenum and tungsten complexes derived from (PhCHCHPh)-coupled bis(cyclopentadiene)." Journal of Organometallic Chemistry 690, no. 23 (November 2005): 5309–17. http://dx.doi.org/10.1016/j.jorganchem.2005.05.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Nagiev, Y. M. "FUNGICIDAL PROPERTIES OF N-(p-CARBOXYPHENYL)IMIDE-2,3-DICHLOROBICYCLO-[2.2.1]HEPT-5-EN-2,3-DICARBOXYLIC ACID." Azerbaijan Chemical Journal, no. 1 (April 9, 2021): 72–77. http://dx.doi.org/10.32737/0005-2531-2021-1-72-77.

Full text
Abstract:
As a result of the interaction of substituted aminobenzoic acids and dichloromaleic anhydride in glacial acetic acid, various N-substituted imides of dichloromaleic acid have been obtained. Based on the diene synthesis of cyclopentadiene and N-substituted imides of dichloromaleic acid, N-(orthometa- and para-carboxyphenyl)imides of 2,3-dichlorocyclo-[2.2.1]hept-5-ene-2,3-dicarboxylic acid have been syn¬thesized. The obtained imides have been tested as a potential effective complex biologically active drug. The results of multiple tests have demonstrated that these compounds possess, simultangonsly, high fungicidal and bactericidal activity against cotton verticillus wilt. So, for a concentration of 0.1%, the obtained compounds almost completely destroy the fungus verticillum dahliae, as well as thionic iron-oxidizing and sulfate-reducing aerobic bacteria VKM V-458 and VKM V-1388
APA, Harvard, Vancouver, ISO, and other styles
38

Bai, Xishan, Mattia Cettolin, Giulia Mazzoccanti, Marco Pierini, Umberto Piarulli, Valentina Colombo, Alberto Dal Corso, Luca Pignataro, and Cesare Gennari. "Chiral (cyclopentadienone)iron complexes with a stereogenic plane as pre-catalysts for the asymmetric hydrogenation of polar double bonds." Tetrahedron 75, no. 10 (March 2019): 1415–24. http://dx.doi.org/10.1016/j.tet.2019.01.057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Ge, Hongyu, Xiangyang Chen, and Xinzheng Yang. "Hydrogenation of Carbon Dioxide to Methanol Catalyzed by Iron, Cobalt, and Manganese Cyclopentadienone Complexes: Mechanistic Insights and Computational Design." Chemistry - A European Journal 23, no. 37 (May 15, 2017): 8770. http://dx.doi.org/10.1002/chem.201701992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Ge, Hongyu, Xiangyang Chen, and Xinzheng Yang. "Hydrogenation of Carbon Dioxide to Methanol Catalyzed by Iron, Cobalt, and Manganese Cyclopentadienone Complexes: Mechanistic Insights and Computational Design." Chemistry - A European Journal 23, no. 37 (May 16, 2017): 8850–56. http://dx.doi.org/10.1002/chem.201701200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Schumann, Herbert, and Alexander Lentz. "Synthese von 1-Butyl-2,3,4,5-tetraphenyl-2,4-cyclopentadien und seiner Natrium-, Thallium(I)-und Eisen(II)-Komplexe / Synthesis of 1-Butyl-2,3,4,5-tetraphenyl-2,4-cyclopentadiene and its Sodium, Thallium (I) and Iron(II) Complexes." Zeitschrift für Naturforschung B 52, no. 1 (January 1, 1997): 40–44. http://dx.doi.org/10.1515/znb-1997-0108.

Full text
Abstract:
1-Butyl-2,3,4,5-tetraphenyl-2,4-cyclopentadiene (3) is prepared starting from 2,3,4,5-tetra-phenylcyclopentadien-1-one which forms 1-butyl-1-hydroxy-2,3,4,5-tetraphenylcyclopentadiene (1) by reaction with BuLi followed by acid hydrolysis. 1 and HBr give 1-bromo-1-butyl-2,3,4,5-tetraphenylcyclopentadiene (2), which in its turn reacts with BuLi and H2O /H+ to yield 3. Treatment of 3 with NaNH2, TlOEt or FeCl2 yields Na[C5Ph4Bu] (4), Tl[C5Ph4Bu] (5) and the corresponding ferrocene Fe[C5Ph4Bu]2 (6), respectively. The 1H and 13C NMR spectra of the new compounds are reported and discussed
APA, Harvard, Vancouver, ISO, and other styles
42

Gajewski, Piotr, Angela Gonzalez-de-Castro, Marc Renom-Carrasco, Umberto Piarulli, Cesare Gennari, Johannes G. de Vries, Laurent Lefort, and Luca Pignataro. "Inside Cover: Expanding the Catalytic Scope of (Cyclopentadienone)iron Complexes to the Hydrogenation of Activated Esters to Alcohols (ChemCatChem 22/2016)." ChemCatChem 8, no. 22 (November 22, 2016): 3419. http://dx.doi.org/10.1002/cctc.201601402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Zou, Chaofeng, Mark S. Wrighton, and Josephine Paw Blaha. "Photochemistry of .eta.4-cyclopentadiene iron tricarbonyl complexes: transfer of the 5-endo substituent to the iron center following dissociative loss of carbon monoxide." Organometallics 6, no. 7 (July 1987): 1452–58. http://dx.doi.org/10.1021/om00150a015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Knölker, Hans-Joachim, Jochen Heber, and Charles H. Mahler. "Transition Metal-Diene Complexes in Organic Synthesis, Part 14.1Regioselective Iron-Mediated [2+2+1] Cycloadditions of Alkynes and Carbon Monoxide: Synthesis of Substituted Cyclopentadienones." Synlett 1992, no. 12 (1992): 1002–4. http://dx.doi.org/10.1055/s-1992-21563.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Knölker, Hans-Joachim, Elke Baum, Helmut Goesmann, and Rüdiger Klauss. "Demetalation of Tricarbonyl(cyclopentadienone)iron Complexes Initiated by a Ligand Exchange Reaction with NaOH—X-Ray Analysis of a Complex with Nearly Square-Planar Coordinated Sodium." Angewandte Chemie International Edition 38, no. 13-14 (July 12, 1999): 2064–66. http://dx.doi.org/10.1002/(sici)1521-3773(19990712)38:13/14<2064::aid-anie2064>3.0.co;2-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Ge, Hongyu, Xiangyang Chen, and Xinzheng Yang. "Cover Picture: Hydrogenation of Carbon Dioxide to Methanol Catalyzed by Iron, Cobalt, and Manganese Cyclopentadienone Complexes: Mechanistic Insights and Computational Design (Chem. Eur. J. 37/2017)." Chemistry - A European Journal 23, no. 37 (May 15, 2017): 8768. http://dx.doi.org/10.1002/chem.201701991.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Richard, Christian J., Derek Macmillan, and Graeme Hogarth. "Microwave-assisted synthesis of cyclopentadienone iron tricarbonyl complexes: molecular structures of [{η4-C4R2C(O)C4H8}Fe(CO)3] (R = Ph, 2,4-F2C6H3, 4-MeOC6H4) and attempts to prepare Fe(II) hydroxycyclopentadienyl–hydride complexes." Transition Metal Chemistry 43, no. 5 (March 24, 2018): 421–30. http://dx.doi.org/10.1007/s11243-018-0229-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

KNOELKER, H. J., J. HEBER, and C. H. MAHLER. "ChemInform Abstract: Transition Metal-Diene Complexes in Organic Synthesis. Part 14. Regioselective Iron-Mediated (2 + 2 + 1)Cycloadditions of Alkynes and Carbon Monoxide: Synthesis of Substituted Cyclopentadienones." ChemInform 24, no. 42 (August 20, 2010): no. http://dx.doi.org/10.1002/chin.199342114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Schumann, Herbert, and Alexander Lentz. "1,4-Bis(4-acylphen-1 -yl) 1,3-cy clopentadiene und 1,2,3,4-Tetra(4-alkylphen-1-yl)-1,3-cyclopentadiene und deren Natrium-, Thallium(I)- und Eisen(II)-Komplexe / 1,4-Bis(4-acylphen-1-yl)-1,3-cyclopentadienes and 1,2,3,4-Tetra(4-alkylphen-1-yl)- 1,3-cyclopentadienes and their Sodium, Thallium (I) and Iron(II) Complexes." Zeitschrift für Naturforschung B 52, no. 1 (January 1, 1997): 45–52. http://dx.doi.org/10.1515/znb-1997-0109.

Full text
Abstract:
1,4-Diphenyl-1,3-cyclopentadiene reacts with acyl chlorides RC(O)Cl (R = CH3 (a), C5H11 (c )) to form the corresponding 1,4-bis(4-acylphen-1-yl)-1,3-cyclopentadienes C5 H4 (C6H4 C(O)R)2 (1a, 1c), which upon treatment with NaNH2 or with TlOC2H5 afford the corresponding sodium complexes Na[C5H3 (C6H4C(O)R)2] (2a, 2c) or thallium(I) derivatives Tl[C5H3 (C6H4C(O)R)2] (3a, 3c). The reaction of 1,1′,3,3′-tetraphenylferrocene with CH3C(O)Cl results in the formation of Fe[C5H2 {C(O)CH3} {(C6H4C(O)CH3)2}]- [C5H3 {(C6H4C(O)CH 3)2}] (5), whereas 2c and FeCl2 give Fe[C5H3(C6H4C(O)C5H11)2]2 (4c). The all-para-acylated tetraphenylcyclopentadienes C5H2 (C6H4C(O)R)4 (R = CH3 (a), C3H7 (b)) react with K[N2H4OH] to produce the ligands C5H2(C6H4CH2R)4 (6a, 6b), which undergo reactions with NaNH2 and TlOC2H5 to yield the sodium and thallium(I) salts, Na[C5H2(C6H4CH2R)4] (7a, 7b) and Tl[C5H2(C6H4CH2R)4] (8a, 8b), respectively. 7a and 7b react with FeCl2 to produce the corresponding ferrocenes Fe[C5H(C6H4CH2R)4 ]2 (9a, 9b). The 1H and 13C NMR spectra of the new compounds are reported and discussed
APA, Harvard, Vancouver, ISO, and other styles
50

Schumann, Herbert, Andreas Kucht, Homa Kucht, Alexander Lentz, Lothar Esser, and Roman Weimann. "1-[4- { 1,1′,1″,1‴-(1,3-Cyclopentadien-1,2,3,4-tetrayl)tetrakis} ]-(4,1-phenylen)-alkanone und deren Natrium-, Thallium(I)- und Fe(II)-Komplexe / 1-[4- { 1,1′,1″,1‴-(1,3-Cyclopentadiene-1,2,3,4-tetrayl)tetrakis} ](4,1 -phenylene)-alkanones and their Sodium, Thallium(I) and Iron(II) Complexes." Zeitschrift für Naturforschung B 48, no. 3 (March 1, 1993): 297–312. http://dx.doi.org/10.1515/znb-1993-0309.

Full text
Abstract:
Tetraphenylcyclopentadiene (1) reacts with acylchlorides RC(O)Cl (R = CH3, C3H7, C5H11,C7H15) to form the corresponding [(cyclopentadiene tetrayl)tetrakis] (4,1-phenylene)alkanones C5H2(C6H4C(O)R-4)4 (2a, 2b, 2c and 2d). 2a reacts with NaNH2 generating the corresponding sodium salt Na[C5H(C6H4C(O)R-4)4] (3a). 2a, 2b, 2c, and 2d react with T1OC2H5 yielding the thallium(I) derivatives Tl[C5H(C6H4C(O)R-4)4] (4a, 4b, 4c, 4d). Octaphenylferrocene (5) reacts with acylchlorides RC(O)Cl (R = CH3, C3H7, C5H11, C7H15) to form octaacylated ferrocenes Fe[C5H(C6H4C(O)R-4)4]2 (6a, 6b, 6c and 6d). 6a can also be prepared by reacting FeI2 with 3a. 6a reacts with NaOBr yielding Fe[C5H(C6H4C(O)OH-4)4]2 (7), which after reaction with C5H11OH and C7H15OH gives the corresponding octaesters Fe[C5H(C6H4C(O)OR-4)4]2 (8c and 8d). 6a and 6b are reduced by N2H4(H2O) to give Fe[C5H(C6H4CH2R-4)4]2 (11a and 11b). The X-ray crystal structures of tetraphenylcyclopentadiene (2 a), as well as of the partially and totally substituted ferrocene derivatives Fe[C5H(C6H4C(O)CH3-4)4][C5H(C6H4C(O)CH3-4)3(C6H5)] (9), Fe[C5H(C6H4C(O)C3H7-4)(C6H5)3]2 (10) and Fe[C5H(C6H4C4H9-4)4]2 (11b) have been determined. The 1H and 13C NMR spectra of the new compounds are reported and discussed.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography