Contents
Academic literature on the topic 'Cycle du carbone – Effets du rayonnement solaire'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cycle du carbone – Effets du rayonnement solaire.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Cycle du carbone – Effets du rayonnement solaire"
Plazzotta, Maxime. "Impacts de la gestion du rayonnement solaire sur le système Terre et rôle des boucles de rétroaction liées au cycle du carbone." Phd thesis, Toulouse, INPT, 2018. http://oatao.univ-toulouse.fr/24034/1/Plazzotta_1.pdf.
Full textZhang, Yuan. "Impacts of anthropogenic aerosols on the terrestrial carbon cycle." Electronic Thesis or Diss., Sorbonne université, 2020. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2020SORUS123.pdf.
Full textAnthropogenic atmospheric aerosols have been recognized to have significantly affected the climate system through their interactions with radiation and cloud during the last decades. Besides these well-known butpoorly-understood physical processes in the atmosphere, recent studies reported strong influences of aerosols on the carbon cycle, especially its terrestrial component. The changes in carbon cycle will further alter the climate through the climate-carbon feedback. It remains uncertain how much anthropogenic aerosols perturb the land carbon cycle. This thesis aims to quantify and attribute the impacts of anthropogenic aerosols on the terrestrial cycle using a modeling approach. In Chapter 2, a set of offline simulations using the ORCHIDEE land surface model driven by climate fields from different CMIP5 generation climate models were performed to investigate the impacts of anthropogenic aerosols on the land C cycle through their impacts on climate. The results indicate an increased cumulative land C sink of 11.6-41.8 PgC during 1850-2005 due to anthropogenic aerosols. The increase in net biome production (NBP) is mainly found in the tropics and northern mid latitudes. Aerosol-induced cooling is the main factor driving this NBP changes. At high latitudes, aerosol-induced cooling caused a stronger decrease in gross primary production (GPP) than in total ecosystem respiration (TER), leading to lower NBP. At mid latitudes, cooling‐induced decrease in TER is stronger than for GPP, resulting in a net NBP increase. At low latitudes, NBP was also enhanced due to the cooling‐induced GPP increase, but regional precipitation decline in response to anthropogenic aerosol emissions may negate the effect of temperature. As climate models currently disagree on how aerosol emissions affect tropical precipitation, the precipitation change in response to aerosols becomes the main source of uncertainty in aerosol-caused C flux changes. The results suggest that better understanding and simulation of how anthropogenic aerosols affect precipitation in climate models is required for a more accurate attribution of aerosol effects on the terrestrial carbon cycle
Bonelli, Stefano. "Impact des variations de l'insolation et du CO2 atmosphérique sur l'évolution passée et future des calottes de glace." Versailles-St Quentin en Yvelines, 2009. http://www.theses.fr/2009VERS0054.
Full textBetter understanding the Earth’s climate system is a major issue for the scientific community. The climate system is characterized by a high degree of complexity, due to the numerous interactions between its various components (i. E. Atmosphere, oceans, biosphere, lithosphere and cryosphere), operating at different timescales. Furthermore, the anthropogenic pressure has also to be considered in a comprehensive description of the climate system, since it is capable of modifying its state, as well as the amplitude and frequency of the natural variability. The study of past climatic variations represents a primary means to understand the ongoing climate change: on the one hand, it allows direct comparison with previous warm episodes, and, on the other, it is useful to validate climate models for paleo-climatic conditions fully different from the present day ones, yet well-constrained by data-sets. Indeed, the Earth’s climate has always been characterized by changes; the transitions between “cold” states (glacial periods) and “warm” ones (interglacials), and vice versa, have been a major feature of the system for the last three million years. These changes are better known as glacial-interglacial cycles, and their existence is recorded in many climatic archives (i. E. Sea sediments, ice cores, continental records). The main goal of this thesis is to better understand the transition from interglacial periods to glacial ones for different timescales (geological timescale, Milankovitch timescale and future projections), by using a fully coupled climate-ice sheet model. Our work represents a step forward in the study of “low frequency” climate variability. We have tested the model performances for three different case studies, corresponding to different periods of the Earth’s history. The first part of this thesis is focused on the study of the Cenozoic glaciation of Antarctica, which enables us to pinpoint the complex links between atmospheric CO2 concentration, tectonics (i. E. The opening of the Drake Passage), global climate and the inception of the Antarctic ice sheet 34 Ma ago. The second part deals with climate-ice sheets interactions at the Milankovitch timescale, and provides a “transient” simulation of the last glacial-interglacial cycle. Finally, the third part is dedicated to the future ice sheet evolution, focusing on the next glacial inception, and on how this transition might be affected by anthropogenic activity. Our approach covers the range of applicability of the coupled model, thus highlighting its strengths, but also its major limitations, and offers new insights for the ongoing studies on the links between climate and ice sheets
Para, Julien. "Etude de la Matière Organique Dissoute Chromophorique et du rayonnement solaire (UV-visible) dans les eaux de surfaces côtières méditerranéennes et articques." Thesis, Aix-Marseille 2, 2011. http://www.theses.fr/2011AIX22041/document.
Full textTo understand, characterize, and predict the evolution of oceanic biogeochemical cycles in relation to the global climate change, it is necessary to better understand the dynamics of organic matter (OM). In this context, the overall objective of this thesis was to get more insights chromophoric dissolved fraction of OM (CDOM) dynamics in surface Mediterranean and Arctic coastal waters and to determine the impact on attenuation of ultraviolet (UVR) and visible (PAR) underwater radiation. For this, the study of optical properties of absorbance and fluorescence of CDOM, coupled with atmospheric and underwater radiometric measurements, were made during a seasonal cycle in the Bay of Marseille (SOFCOM station), and in the Beaufort Sea during summer 2009. The Bay of Marseilles is characterized by low amounts of CDOM (aCDOM(350) = 0.10 ± 0.02 m-1), particularly in end summer stratification period due to the intensity of the solar irradiance, enriched in UVR-B, which degrades and bleaches CDOM (SCDOM = 0.023 ± 0.003 nm-1). In this highly urbanized coastal area, the dynamics of CDOM are driven by biotic processes (in situ biological production and within the Rhône River plume) and abiotic (photo-bleaching and mixing). Our results showed that CDOM is mostly of autochthonous origin, even during Rhône plume intrusion events (photo-degradation of terrestrial CDOM during the transit). During bloom periods, the CDOM consists mainly of a recent type protein (peak T), which preferentially absorbs in the short UVR. These pulses of recent CDOM are superimposed on a persistent background of CDOM mainly composed of aged material, humic-type (peaks M and C), which absorbs UVR and PAR. Over the Canadian shelf of the Beaufort Sea, CDOM is highly abundant (aCDOMmax (350) = 6.36 m-1) and strongly influenced by allochthonous inputs from the Mackenzie (peaks A-C and M) decreasing conservatively with salinity. In marine waters (salinity> 25), CDOM had lower concentrations (aCDOM(350) = 0.21 ± 0.13 m-1) and originated from a recent in situ biological production favored by upwelling and brine injections (peaks B-T and M). Surprisingly, the main source of the marine humic-like component (peak M) was not autochthonous. This material originates from allochthonous inputs from the Mackenzie River, which traverses numerous lakes where intense biological activity occurs. We suggest that this activity is mainly due to the macrophytes development, which may in part explain the origin of the peak M. This source of organic allochthonous CDOM coupled to other processes such as photobleaching and absorption on the particles of terrestrial CDOM, could explain the high values of SCDOM (≈ 0.020 nm-1) recorded in the Mackenzie during summertime
Stella, Giulio Rocco. "Light stress and photoprotection in green algae, mosses and diatoms." Electronic Thesis or Diss., Paris 6, 2016. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2016PA066430.pdf.
Full textThe molecular bases of responses to light excess in photosynthetic organisms having different evolutionary histories and belonging to different lineages are still not completely characterized. Therefore I explored the functions of photoprotective antennae in green algae, mosses and diatoms, together with the role of the two xanthophyll cycles present in diatoms.I studied the Light Harvesting Complex Stress-Related (LHCSR) proteins in different organisms. In the green alga Chlamydomonas reinhardtii, LHCSR3 is a protein important for photoprotection. I used site-specific mutagenesis in vivo and in vitro and identified three residues of LHCSR3 that are responsible for its activation.With the moss Physcomitrella patens I studied the in vitro spectroscopic and quenching characteristics of different pigment-binding mutants of the protein LHCSR1, focusing in particular on chlorophylls A2 and A5.LHCSRs in diatoms are named LHCXs, and in Phaeodactylum tricornutum I found that multiple abiotic stress signals converge to regulate the LHCX content of cells, providing a way to fine-tune light harvesting and photoprotection.The other main driver of photoprotection in diatoms is the xanthophyll cycle. Here I found that the accumulation of viola- and zeaxanthin in P. tricornutum have a negative effect in the development of NPQ, showing that zeaxanthin does not participate in the enhancing of NPQ in diatoms.Thanks to these studies done on different organisms, we gained a deeper knowledge on the shared characteristics and on the peculiar features about photoprotection in green algae, mosses and diatoms
Stella, Giulio Rocco. "Light stress and photoprotection in green algae, mosses and diatoms." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066430/document.
Full textThe molecular bases of responses to light excess in photosynthetic organisms having different evolutionary histories and belonging to different lineages are still not completely characterized. Therefore I explored the functions of photoprotective antennae in green algae, mosses and diatoms, together with the role of the two xanthophyll cycles present in diatoms.I studied the Light Harvesting Complex Stress-Related (LHCSR) proteins in different organisms. In the green alga Chlamydomonas reinhardtii, LHCSR3 is a protein important for photoprotection. I used site-specific mutagenesis in vivo and in vitro and identified three residues of LHCSR3 that are responsible for its activation.With the moss Physcomitrella patens I studied the in vitro spectroscopic and quenching characteristics of different pigment-binding mutants of the protein LHCSR1, focusing in particular on chlorophylls A2 and A5.LHCSRs in diatoms are named LHCXs, and in Phaeodactylum tricornutum I found that multiple abiotic stress signals converge to regulate the LHCX content of cells, providing a way to fine-tune light harvesting and photoprotection.The other main driver of photoprotection in diatoms is the xanthophyll cycle. Here I found that the accumulation of viola- and zeaxanthin in P. tricornutum have a negative effect in the development of NPQ, showing that zeaxanthin does not participate in the enhancing of NPQ in diatoms.Thanks to these studies done on different organisms, we gained a deeper knowledge on the shared characteristics and on the peculiar features about photoprotection in green algae, mosses and diatoms
Stella, Giulio Rocco. "Light Stress and Photoprotection in Green algae, Mosses and Diatoms." Doctoral thesis, Paris 6, 2016. http://hdl.handle.net/11562/949538.
Full textMoreau, Sébastien D. V. "Effets combinés du réchauffement climatique et du rayonnement UVB sur la composition et le métabolisme de la communauté microbienne marine dans l'ouest de la Péninsule Antarctique : impact potentiel sur le cycle du carbone." Thesis, Montpellier 2, 2011. http://www.theses.fr/2011MON20028.
Full textRegional warming in the western Antarctic Peninsula (WAP), along with the expected decrease in sea-ice cover and the seasonal ozone layer breakdown could modify the composition and the structure of the microbial community. In addition, these environmental changes could modify the potential of the WAP as a CO2 sink. In this context, this thesis aimed at evaluating the combined effects of regional climatic changes on the primary production and the composition and structure of the microbial community in the WAP. In a second time, this thesis aimed at evaluating the role of the microbial community structure, composition, primary production and respiration on air-sea CO2 gas exchanges.First, the variations in sea-ice cover, stratospheric ozone layer thickness and sea surface temperature over the last 30 years (1972-2007) were described. Related to the warming of WAP waters, the retreat of sea-ice was happening earlier each decade in the WAP. The observed changes in these environmental parameters offer a new temporal window for primary production. Indeed, the annual primary production increased from 1997 to 2007, in relation with the sea-ice cover anomaly for the previous winter. In addition, daily primary production was negatively and positively correlated to, respectively, sea-ice cover and sea-water temperature from September to November and from February to March, suggesting that regional warming favoured more primary production during spring and fall. On the contrary, the early retreat of sea-ice in spring, in coincidence with the spring ozone layer breakdown, led to an increase in photoinhibition (with an average of 11.6 ± 2.8 % of the daily primary production being photoinhibited). Therefore, regional climatic changes in the WAP had both a positive and a negative impact on primary production.The microbial community variability was also described in the Melchior Archipelago (in the WAP) from fall to spring 2006. Because of the extreme environmental conditions, the microbial community abundance and biomass were low in fall and winter and the community was dominated by small cells (< 2 µm), hence by a microbial food-web. Indeed, phytoplanktonic biomass was low during fall and winter (with respective chlorophyll a concentration, Chl-a, of 0.3 and 0.13 µg l-1). Phytoplankton biomass increased in spring (with a maximum Chl-a of 1.13 µg l-1) but, despite favourable growth conditions, phytoplankton was still dominated by small cells (2-20 µm), hence by a microbial or multivorous food-web. In addition, the early retreat of sea-ice in the spring 2006 exposed the WAP waters to strong ultraviolet B radiations (UVBR, 280-320 nm) that had a negative impact on the microbial community in surface waters.Finally, the relationship between air-sea CO2 and O2 exchanges in the WAP with the phytoplankton community biomass and composition and with the microbial community primary production and respiration was described. A positive relationship existed between Chl-a and the proportion of diatoms in the phytoplankton community. In addition, a negative relationship existed between Chl-a and ΔpCO2. The net community production (NCP) was mainly controlled by primary production and was negatively and positively related to ΔpCO2 and the %O2 saturation, respectively, suggesting that primary production was the main driver of air-sea CO2 and O2 gas exchanges in the WAP. In addition, the average ΔpCO2 for the summers and falls 2002 to 2004 was -20.04 ± 44.3 µatm, leading to a potential CO2 sink during this period in the WAP. The southern WAP was a potential CO2 sink (-43.60 ± 39.06 µatm) during fall while the northern part of the Peninsula was mainly a potential CO2 source during summer and fall (-4.96 ± 37.6 and 21.71 ± 22.39 µatm, respectively). The higher Chl-a concentrations measured in the southern WAP may explain this spatial distribution
Pincebourde, Sylvain. "Biophysique environnementale des insectes endophytes." Phd thesis, Université François Rabelais - Tours, 2005. http://tel.archives-ouvertes.fr/tel-00108243.
Full textDes mesures de spectrométrie optique ont démontré que la larve modifie profondément les propriétés optiques de la surface de la feuille au cours de son nourrissage. La structure mine absorbe bien plus de radiations dans le proche infrarouge que les tissus foliaires intacts. De plus, une quantité importante de radiations est transmise à l'intérieur de la mine par le tégument supérieur dans les zones prélevées par la larve. Ces radiations induisent une élévation importante de son activité respiratoire (rejet de CO2). En utilisant un analyseur de gaz par infrarouge, nous avons pu montrer par ailleurs que les stomates localisés dans le tégument inférieur de la mine réagissent à la présence de la larve en se fermant. Un modèle de diffusion de CO2 a révélé que les stomates réagissent directement aux variations d'émission de CO2 par la larve. Le budget thermique de la mine a ensuite été modélisé. Le modèle permet de prédire la température à l'intérieur de la mine à partir des modifications des propriétés optiques et de la physiologie des stomates, et à partir des variables climatiques. Ce modèle biophysique a été validé en comparant ses prédictions avec des mesures expérimentales de température de mines réalisées en environnement contrôlé. Le modèle à une précision de 0,8 °C dans l'intervalle de 12 °C à 42 °C. Le modèle prédit un important excès de température dans la mine, atteignant 10 °C au dessus de la température de l'air et 5 °C au dessus de la température des tissus foliaires intacts. Les deux types de modifications – propriétés optiques et comportement stomatiques – ont un impact équivalent sur l'excès de température. Cette approche démontre clairement que la larve contrôle son environnement physique en modifiant son environnement. Nos résultats sont finalement discutés dans une perspective d'écologie évolutive. Plus particulièrement, le rôle du microclimat des insectes endophages dans l'évolution de leurs sensibilités thermiques et de celles de leurs parasitoïdes est détaillé.