Dissertations / Theses on the topic 'Cycle du carbone – Effets de la pollution atmosphérique'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 16 dissertations / theses for your research on the topic 'Cycle du carbone – Effets de la pollution atmosphérique.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Zhang, Yuan. "Impacts of anthropogenic aerosols on the terrestrial carbon cycle." Electronic Thesis or Diss., Sorbonne université, 2020. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2020SORUS123.pdf.
Full textAnthropogenic atmospheric aerosols have been recognized to have significantly affected the climate system through their interactions with radiation and cloud during the last decades. Besides these well-known butpoorly-understood physical processes in the atmosphere, recent studies reported strong influences of aerosols on the carbon cycle, especially its terrestrial component. The changes in carbon cycle will further alter the climate through the climate-carbon feedback. It remains uncertain how much anthropogenic aerosols perturb the land carbon cycle. This thesis aims to quantify and attribute the impacts of anthropogenic aerosols on the terrestrial cycle using a modeling approach. In Chapter 2, a set of offline simulations using the ORCHIDEE land surface model driven by climate fields from different CMIP5 generation climate models were performed to investigate the impacts of anthropogenic aerosols on the land C cycle through their impacts on climate. The results indicate an increased cumulative land C sink of 11.6-41.8 PgC during 1850-2005 due to anthropogenic aerosols. The increase in net biome production (NBP) is mainly found in the tropics and northern mid latitudes. Aerosol-induced cooling is the main factor driving this NBP changes. At high latitudes, aerosol-induced cooling caused a stronger decrease in gross primary production (GPP) than in total ecosystem respiration (TER), leading to lower NBP. At mid latitudes, cooling‐induced decrease in TER is stronger than for GPP, resulting in a net NBP increase. At low latitudes, NBP was also enhanced due to the cooling‐induced GPP increase, but regional precipitation decline in response to anthropogenic aerosol emissions may negate the effect of temperature. As climate models currently disagree on how aerosol emissions affect tropical precipitation, the precipitation change in response to aerosols becomes the main source of uncertainty in aerosol-caused C flux changes. The results suggest that better understanding and simulation of how anthropogenic aerosols affect precipitation in climate models is required for a more accurate attribution of aerosol effects on the terrestrial carbon cycle
Bohler, Sacha. "Les effets de l'ozone sur les processus foliaires du peuplier : une approche protéomique." Thesis, Nancy 1, 2010. http://www.theses.fr/2010NAN10140/document.
Full textAfter the industrial revolution of the 1700s and 1800s, and the subsequent industrialization, many pollutants have accumulated in the atmosphere, mainly due to the use of coal and fossil fuels. Besides the primary pollutants such as nitrogen oxides and sulfur oxides, secondary oxides such as ozone started to accumulate. Nowadays, ozone is the third gas involved in global climate change, but is also a major health risk for humans, and induces considerable damage to vegetation. Starting in the 50s, ozone research was based on targeted studies. Nowadays, with the advent of global techniques such as transcriptomics and proteomics, new results can be produced in an unbiased way. In the thesis presented here, a proteomic study of the effects of ozone on poplar leaf processes was carried out. With the help of this technique, complemented with biochemical and physiological approaches and with morphological observations, it was possible to confirm previous results, but also to elaborate new hypotheses concerning the effects of ozone on poplar leaf metabolism. In parallel, studying the stress also allowed to clarify some of the changes that occur in metabolism during leaf development, under stress conditions and under control conditions. In this document, the procedures, results and conclusions obtained during this study are presented in detail
Gautier, Mathieu. "Effets de l'hypoxie chronique et du monoxyde de carbone sur la fonction cardiaque et l'activité des canaux potassiques des cellules musculaires lisses d'artères coronaires chez le rat." Tours, 2005. http://www.theses.fr/2005TOUR4040.
Full textRouhier, Hervé. "Réponse du châtaignier (Castanea sativa Mill. ) à l'augmentation du CO² atmosphérique : croissance et activité rhizosphérique." Lyon 1, 1994. http://www.theses.fr/1994LYO10140.
Full textDeweirdt, Juliette. "Effets de la pollution atmosphérique particulaire sur la circulation pulmonaire : rôles du stress oxydant et de la signalisation calcique." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0333.
Full textHuman exposure to airborne particulate matter (PM) is a health risk concern. Particulate air pollution is composed of different PM: coarse particles (PM10 diameter < 10 μm), fine particles (PM2.5 diameter < 2.5 μm) and ultrafine particles (UFP) (PM0.1 diameter < 100 nm). The excess of mortality observed in several epidemiological studies is mainly associated with respiratory and cardiovascular diseases. After inhalation, the finest particles (PM2.5 and UFP) penetrate deeply into the airways, accumulate in pulmonary alveoli, cross the epithelial barrier to reach the pulmonary circulation and exert deleterious effects on the cardiovascular system. Inhaled particles are therefore observed in the pulmonary circulation, in direct contact with endothelial cells lining the inner surface of blood artery. Pulmonary Hypertension (PH) is the main disease of the pulmonary circulation characterized by remodeling of the pulmonary wall, changes in pulmonary vascular hyperactivity and inflammation. Oxidative stress and alteration in calcium signaling are also critical events involved in the physiopathology of PH. However, the effect of PM on these pulmonary vascular cellular targets is poorly described. In this context, the objectives of the present study are to assess the cellular and molecular effects of particle exposures in human pulmonary artery endothelial cells (HPAEC). Our results highlighted various cellular homeostasis alterations of HPAEC in response to PM2.5 and black carbon nanoparticles (FW2 NPs). We observed a significant increase of oxidative stress including cytoplasmic and mitochondrial superoxide anion production in concentration dependent-manner. Moreover, we observed calcium signaling alterations, mitochondrial damages, as well as a deregulation of vasoactive factors secretion such as nitric oxide (NO). Finally, we studied these cellular targets under physiological and pathological conditions mimicking PH. We have first developed a new in vitro model that mimics the vascular dynamics observed in the PH. Then, we investigated the effects of FW2 NPs in both experimental conditions. Our results showed, in pathological conditions, a significant increase in reactive oxygen species (ROS) production and a significant increase in the pro-inflammatory response characterized by interleukin secretion such as IL-6 as compared to cells in physiological condition. In addition, the calcium signaling seemed also be impaired in pathological conditions
Dendene, Marie-Aude. "Exposition au monoxyde de carbone et aux hydrocarbures aromatiques monocycliques : étude comparative des divers modes de déplacement urbain et recherche de biomarqueurs de l'air expiré." Paris 5, 1995. http://www.theses.fr/1995PA05P016.
Full textJeanjean, Maxime. "Pollution atmosphérique et déclenchement de poussées de sclérose en plaques, investigation au niveau individuel." Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1B003.
Full textMultiple sclerosis (MS) is a neuro-inflammatory disease of the central nervous system (CNS). Causes are multifactorial enrolling both genetic predisposition and influence of environmental factors. In 85% of cases, patients experience relapse corresponding to the occurrence of neurologic signs, followed by a phase of partial or total remission. Several studies put forth the hypothesis that relapses rate varies across season, mainly occurring during spring and summer. This temporal fluctuation raised the question of season-dependent parameters influence such as sunlight exposure and vitamin D, melatonin level or ambient air pollution. Considering this variation of air pollution, we explored the short-term impact of fine particles (PM10), benzene (C6H6), nitrogen dioxide (NO2), carbon monoxide (CO) and ground-level ozone (O3), on the risk of relapse triggering, separately for "cold" (i.e., October-March) and "hot" (April-September) season. This work has drawn from data of patients provided by the alSacEP network. We included 424 patients affected with remitting MS onset who experienced 1,783 relapses over the 2000-2009 period. Daily level of air pollution was modeled through ADMS-Urban software at the census block scale of the Strasbourg metropolitan area (AASQA ATMO Grand Est). Furthermore, an individual survey was conducted among all the patients (PT) in order to collect individual socioeconomic (SES) and lifestyle features. Finally, the census block SES position was estimated using a composite deprivation index - created from the INSEE census data. A short-term (3 days preceding the relapse) seasonal adverse effect was observed in PT, in particular during exposure to O3 in "hot" season and PM10 and NO2 in "cold" season. Results also suggest that the SES context might exacerbate these associations, in particular among patients who were living in deprived neighborhood with exposure to PM10, NO2, C6H6 and CO ("cold) and those who were living in most well-of and deprived places with exposure to O3 ("hot"). Finally, we observed among Ps that low education level, average family income, smoking and lack of physical activity are more associated with the risk of relapse triggering when patients were exposed to air pollution. This work shows the need to investigate environmental exposure such as air pollution along the SEP course using a holistic approach integrating individual and contextual factors
Rathgeber, Cyrille. "Impact des changements climatiques et de l'augmentation du taux de CO2 atmosphérique sur la productivité des écosystèmes forestiers : exemple du pin d'Alep (Pinus halepensis Mill.) en Provence calcaire (France)." Aix-Marseille 3, 2002. http://www.theses.fr/2002AIX30033.
Full textData from 21 Aleppo pine stands have allowed to calculate a synthetic growth index which expresses inter-annual productivity variations. For each stand, three types of models (climatic, bioclimatic and biogeochemistry) have been confronted to the observations and validated. The biogeochemistry model is not sensitive to climatic changes but simulates a strong productivity increase linked to the increase of CO2 rate. The climatic model of growth simulates, in response of climatic change, a strong increase of productivity linked to the increase of spring temperatures. The bioclimatic model simulates a significant decrease of productivity linked to the increase of summer drought period. The response of a stand depends on the site conditions. The exposure, in fact, determines the thermal balance when the slope, the soil water capacity and the permeability of the substratum constraint the water balance
Abbas, Imane. "Etude de l'activation métabolique par la fraction organique d'un aérosol atmosphérique particulaire et de ses conséquences génotoxiques dans un modèle de co-culture de cellules pulmonaires humaines." Littoral, 2010. http://www.theses.fr/2010DUNK0282.
Full textWhether it is from anthropogenic or natural origin, air pollution is described as one of the major risk factors affecting the human health. Fine Particulate Matter (PM2. 5) is the main responsable to this atmospheric pollution. The objective of our research project consisted to determine the toxicity of the PM2. 5 collected in Dunkerque in terms of metabolic activation, genotoxicity, and cell cycle alterations, in two cell models : a human embryonic lung epithelial cell line (L132) and human Alveolar Macrophages (AM) isolated from broncho-alveolar lavages within healthy outpatients. Therefore, we developed a co-culture model using these two cell types in order to better integrate the cell heterogeneity of the alveoli. The atmospheric particles proved to be able to induce the gene expression of various phase I and phase II metabolism enzymes (CYP1A1, CYP2E1, CYP2F1, EHm, NQO1, GSTµ1 et GSTµ3) in human MA in both mon and co-culture and in L132 cells, only in monoculture. Our results showed also the genotoxicity of the aerosol through the formation of the DNA bulky adducts in human MA in mono and co-culture as well as in L132 cells in co-culture. In contrast, no DNA bulky adduct was reported in L132 cells in monoculture. In addition, a Loss of Heterozygosity (LOH) and/or a MicroSatellite Instability (MSI) of some microsatellites located on the short-arm of the chromosome 3 were observed in 30 to 40% of L132 cells in monoculture 72 hours after their exposure to PM2. 5. As a consequence, significant alterations of the gene expression and/or protein concentration of some of the key protein controllers involved in the TP53-RB gene signaling pathway were reported in the two cell models, in mono-cultures or in co-cultures. This work consequently contributed to the improvment of the knowledge about the adverse lung effects of environmental exposure. However, the better understanding of the underlying mechanisms of action involved in the toxicity of the atmospheric pollutants on the respiratory system still remains opened and should be completed
Podor, Myriam. "Effets de la sécheresse et de l'ozone sur le statut hydrique et la gestion du carbone chez le pin d'Alep (Pinus halepensis Mill. )." Vandoeuvre-les-Nancy, INPL, 1997. http://www.theses.fr/1997INPL040N.
Full textMeyer, Grégory. "Pollution de type urbaine au monoxyde de carbone et sensibilité du myocarde au syndrome d’ischémie-reperfusion : rôle cardioprotecteur de l’exercice." Thesis, Avignon, 2010. http://www.theses.fr/2010AVIG0702/document.
Full textEpidemiological studies suggested that carbon monoxide (CO) urban air pollution is mainly related to cardiovascular mortality. In addition, recent experimental studies have highlighted that CO exposure was responsible for the development of cardiomyocytes’ pathological remodeling, which can render the heart more vulnerable to acute stresses. Therefore, the aim of this experimental work was to i) evaluate the impact of prolonged exposure to simulated CO urban pollution on the sensitivity of the myocardium to IR ; and ii) evaluate potential cardioprotective effects of regular bouts of endurance training in this model. 187 Wistar rats were separated into 3 groups : control rats, CO rats exposed during 4 weeks to CO (30-100 ppm), and CO exercised rats. Myocardial sensibility to IR was evaluated with a regional ischemia performed on a Langendorff model of isolated heart. Moreover, the cardiomyocytes’ function and calcium handling were evaluated at basal conditions, following a protocol of cellular anoxia and reoxygenation. The results of this study confirm that chronic exposure to CO is responsible for cardiac phenotypic changes, which are characterized in this work by an imbalance in the cardiomyocytes’ oxidative status, an impairment of calcium handling and iNOS expression. These phenotypic changes were associated in this work with higher heart vulnerability to IR. Another major result of this study is that regular bouts of endurance training conducted prior to CO exposure prevented the pathological cardiac remodeling, consequently leading to higher heart vulnerability due to IR
Faubert, Patrick. "The effect of long-term water level drawdown on the vegetation composition and CO2 fluxes of a boreal peatland in central Finland." Master's thesis, Québec : Université Laval, 2004. http://www.theses.ulaval.ca/2004/21536/21536.pdf.
Full textBadran, Ghidaa. "Pollution atmosphérique particulaire : caractérisation physico-chimique et comparaison des effets toxiques des fractions extractible et non-extractible des PM₂.₅ In-vitro evaluation of organic extractable matter from ambient PM₂.₅ using human bronchial epithelial BEAS-2B cells : Cytotoxicity, oxidative stress, pro-inflammatory response, genotoxicity, and cell cycle deregulation. Toxicity of fine and quasi-ultrafine particles : focus on the effects of organic extractable and non-extractable matter fractions. Toxicological appraisal of the chemical fractions of ambient fine (PM₂.₅-₀.₃) and quasi-ultrafine (PM₀.₃) particles in human bronchial epithelial BEAS-2B cells." Thesis, Littoral, 2019. http://www.theses.fr/2019DUNK0547.
Full textAir pollution and particulate matter (PM₂.₅) were classified as carcinigens (group 1) by the International Agency for Research on Cancer in 2013. This particulate fraction represents a complex mixture with a highly variable composition influencing the toxicity. However, few studies have determined the respective involvement of the different chemical fractions of PM in their toxic effects. In this work, fine particles (PM₂.₅₋₀.₃) and quasi-ultrafine particles (PM₀.₃) were sampled in an urban site located in Beirut (Lebanon). After performing the physicochemical characterization of these two types of particles, their toxic effects (global cytotoxicity, metabolic activation, genotoxicity, inflammation, oxidative stress, autophagy and apoptosis) were investigated on a human bronchial epithelial cell line (BEAS-2B). The analysis of the organic content revealed differences between the concentrations of polycyclic aromatic hydrocarbons (PAHs), as welle as oxygenated (O-PAH) and nitrated (N-PAH) congeners, respectively 43, 17 and 4 times higher in PM₀.₃ than in PM₂.₅₋₀.₃.The toxicological study was based on the comparison of the toxicity of the fine particles considered in their entirety (PM₂.₅₋₀.₃), the extracted organic fraction (OEM₂.₅₋₀.₃) and the fraction not extracted by the dichloromethane (NEM₂.₅₋₀.₃). In addition, the specific effects of the organic fraction extrated from the quasi-ultrafine particles (OEM₀.₃) were compared with those of the organic fraction extracted from the fine particles (OEM₂.₅₋₀.₃). Our results showed that all the studied fractions were able to induce at least one of the studied mechanisms. PM₂.₅₋₀.₃ was able to induce toxic effects greater than those induced by OEM₂.₅₋₀.₃ and NEM₂.₅₋₀.₃. The organic fraction extracted from the quasi-ultrafine particles (OEM₀.₃), richer in organic compounds and in particular in PAHs and other congeners, appeared to be responsible for deleterious effects globally greater than that extracted from the fine particles (OEM₂.₅₋₀.₃). The results of this work have brought new elements on the relative toxicity of the different fractions of the fine particles and underline the crucial role played by ultrafine particles, still too little studied
Duval, Bastien. "Ecodynamics of trace metals and metalloids in Pyrenean lakes in relation to climate change and anthropogenic pressure." Thesis, Pau, 2020. http://www.theses.fr/2020PAUU3046.
Full textThe management and conservation of Pyrenean high mountain lakes within the current context of climate change and increasing anthropogenic pressure require detailed knowledge of their biogeochemical functioning. In this doctoral thesis, five sampling campaigns were carried out (2017-2019) in more than 20 alpine lakes. The analysis of water samples allowed us to study the occurrence, the depth profiles, the geographical distribution and the seasonal trends of a large array of physico-chemical and biogeochemical parameters. Specifically, the cycle of carbon dioxide (CO2) and the fate of Potentially Harmful Trace Elements (PHTEs) were investigated. The mercury (Hg) was specially studied through the development of an analytical procedure for the measurement of trace concentrations in natural waters and through biogeochemical investigations on the distribution and the fate of Hg species in the water column, as well as in sediment archives.The new and robust procedure developed in this work to measure the total alkalinity (TA) and the dissolved inorganic carbon (DIC) allowed us to determine the other two parameters of the CO2 system, the pH and the fugacity of CO2 (fCO2). The bedrock characteristics of the watershed appear to be the most important parameters influencing the acid status of the studied lakes. Moreover, obtained fCO2 values indicate that lakes are sources of CO2 for the atmosphere.The measurement of various physico-chemical parameters allowed us to discriminate and classify the studied lakes according to their water geochemistry, highlighting the importance of the trophic status of the lakes, the geological background and the atmospheric inputs. The occurrence, sources and behaviour of the PHTEs were investigated with evidence of a contrast between geological and atmospheric inputs. Intensive monitoring revealed some PHTEs to be highly sensitive to environmental changes such as temperature and redox conditions.Monitoring natural concentrations of total Hg in aquatic systems remains a difficult challenge and there is a need for the development of low cost and easy handling analytical methods. The method for analysis of trace Hg concentrations developed and optimized in this work was successfully operational and exhibits a suitable limit of detection and an excellent reproducibility. Hg speciation results in the water column demonstrated the pristine state and the dynamic of the Pyrenean lakes. The homogeneity in the non-gaseous total Hg concentrations in the studied lakes confirmed the absence of local sources and the potential use of these ecosystems as sentinels of regional to global Hg contamination. While inorganic mercury (iHg) did not show seasonal variations, monomethylmercury(MMHg) was significantly higher in autumn 2018 and dissolved gaseous mercury (DGM) varied strongly within and among lakes. In-situ experiments confirmed the conditions that promote Hg methylation (stratified anoxic waters), demethylation and photoreduction (intense UV light).The historical Hg record in sediment archives highlighted temporal trends in Hg accumulation rates (HgARs) with a progressive increase since the 16th Century and the industrialization, mirroring the Hg production in Almadén mines (Southern Spain). Besides, Hg stable isotopes allow the identification of distinct anthropogenic sources as well as past climate variability.Overall, environmental changes in lake ecosystems, induced by either climatic conditions (temperature, light intensity) or anthropogenic pressure (atmospheric inputs, eutrophication, atmospheric CO2) are likely to produce significant impacts among CO2, specific PHTEs and Hg biogeochemical cycles in mountainous ecosystems
Gac, Jean-Philippe. "Etude multi-échelles des échanges air-mer de CO2 et de l'acidification océanique en Manche Occidentale." Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS223.
Full textThe anthropogenic impact of the raise of atmospheric CO2 has been observed on the global oceanic scale, resulting in the Ocean Acidification (OA). Largely present in the coastal ecosystems, a decrease of their population could have significant socio-economic consequences. Coastal ecosystems represent only 7% of the global ocean but host a third of the total primary production of the oceans, playing a key role in the global carbon cycle. They are highly diversified and influenced by continental inputs, which complexifies the study of the CO2 cycle. This PhD thesis investigated at different spatial and temporal scales the variability of the carbon cycle in megatidal environments of the North Western European Shelves. From 2015 to 2019, we installed an autonomous sensor of pCO2 (Sunburst SAMI-CO2) on a cardinal buoy located off Roscoff, in the south of the English Channel. Coupled with additional proximal and offshore observations of the carbon cycle and biogeochemical parameters, we were able to describe precisely this ecosystem and assess the tidal, diurnal and interannual variability. Secondly, we followed the variability of these parameters at the decadal scale, based on regular sampling from 2008 to 2018 in two coastal environments very close geographically (Brest and Roscoff, NWES), but with different freshwater influence. Finally, since methane is increasingly considered as a key player in the understanding of the coastal ecosystem functioning and Climatically-Actives Gas cycles, we quantified the driving processes of CO2 and CH4 air-sea exchanges in two mega-tidal estuaries influencing our study region
Marin, Ospina Yohan Manuel. "Etude de l'influence de la dilution du combustible et de l'oxydant dans le processus de décrochage de flammes-jet non-prémélangées et l'émission de polluants." Thesis, Rouen, INSA, 2016. http://www.theses.fr/2016ISAM0025/document.
Full textUnderstanding the main mechanisms piloting non-premixed jet flame stability is an important point in characterizing the operation modes of industrials burners in which dilution is involved. This work puts special emphasis on the experimental study of the influence of air-side and methane-side dilution in the lifting process of attached non-premixed jet flames. The study is based on numerous experiments combining the following conditions : i) carbon dioxide (CO2), nitrogen (N2), argon (Ar) or water vapor (H20v,) used as diluents d ; ii) two diluted configurations : air-side or methane-side dilution ; iii) two air and fuel velocities covering the entire flame hysteresis domain, from the laminar to the turbulent regime. This allows the influence of the intrinsic diluent nature effects to be discriminated from those of the aerodynamics of the reactants (fuel and oxidant), in attached flame stability. In particular, the behavioral differences of the flame response to air-side or to fuel-side dilution are analyzed. These two configurations differ by two mixing effects which are independent of the combustion reaction, and which are significant when the fuel is diluted, but negligible when air is diluted : i) an effect due to the changes in the stoichiometric mixture fraction ; ii) a mechanical impact induced by the addition of matter (diluents) producing an increase in the bulk velocity of the reactants. The study is composed of three parts. First, the global flame response to dilution is analyzed on the basis of the lifting limits defined as the critical molar fractions of the diluents in the fuel or in the oxidant measured at liftoff. The fuel Peclet number, Pef, appears as the dimensionless number which puts these limits in a homothetic order. This homothetic behavior allows the introduction of two affinity parameters, Kd,ox for air-side dilution and Kd,f for fuel-side dilution. They are defined by the ratio of the flame lifting limits calculated with a diluent d and with CO2, at Pef=const. Kd,ox and Kd, allow two generic polynomial laws to be established describing the flame lifting limits for all the diluents and in the whole range of aerodynamic conditions of this study. Indeed, Kd,ox and Kd,f encompass all the diluent effects affecting flame stability (pure dilution, thermal, transport, chemical), to which mechanical impacts are added. These coefficients make it possible to obtain the self-similarity laws of the lifting limits for any chemically-weak diluent, by using the results obtained in this work. Then, a local and detailed study of the flame lifting process induced by dilution is presented. This is based on the flame-leading-edge approach describing flame stability as a result of the balance between the incoming gas velocity of the reactants and the flame propagation velocity at the flame base. In order to show the link between this approach and flame stability, an extensive analysis of the flame-base characteristics (location, CH* emission intensity and velocity field) is carried out. The results attest to the pertinence of the propagative flame-leading-edge, as the mechanism describing the attached flame stability under dilution. Finally, a study concerning the influence of both the diluent nature and the diluted configuration (air or fuel) on pollutant emissions (soot, NOx and CO) is presented