Academic literature on the topic 'Cyanobacteria, cyanotoxins, harmful algal blooms, subalpine lakes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cyanobacteria, cyanotoxins, harmful algal blooms, subalpine lakes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Cyanobacteria, cyanotoxins, harmful algal blooms, subalpine lakes"

1

Pick, Frances R. "Blooming algae: a Canadian perspective on the rise of toxic cyanobacteria." Canadian Journal of Fisheries and Aquatic Sciences 73, no. 7 (July 2016): 1149–58. http://dx.doi.org/10.1139/cjfas-2015-0470.

Full text
Abstract:
Algal bloom reports are on the rise across Canada. While eutrophication is the main driver, other stressors of aquatic ecosystems, specifically climate change and food web alterations from the spread of invasive species and overfishing, are compounding factors acting in concert or independently. Current models can predict the average algal and cyanobacterial biomass concentrations across temperate lakes as a function of nutrients, but models to specifically predict harmful algal composition and toxicity are lacking. At the within-lake scale, where management occurs, strong year to year variations in cyanobacterial blooms remain challenging to explain, let alone predict. The most common cyanotoxins, the hepatotoxic microcystins, are chemically diverse with some variants more toxic than others and with greater propensity for persistence and bioaccumulation. These differences have been largely overlooked, as current guidelines have been based on microcystin-LR, considered the most common variant. Microcystin-LA is also encountered in Canadian waters and appears to exhibit greater persistence and bioaccumulation. With cyanobacterial blooms most likely to increase across the country, including the north, guidelines and policies for cyanotoxins in drinking and recreational waters as well as fish will need to be developed for the protection of ecosystem and human health. Ultimately, control of eutrophication is the most important option for managing toxic cyanobacterial blooms; nitrogen and phosphorus need to be considered as environmental contaminants, as both play a role in controlling the dominance of toxigenic cyanobacteria.
APA, Harvard, Vancouver, ISO, and other styles
2

Hollister, Jeffrey W., and Betty J. Kreakie. "Associations between chlorophyll a and various microcystin-LR health advisory concentrations." F1000Research 5 (February 9, 2016): 151. http://dx.doi.org/10.12688/f1000research.7955.1.

Full text
Abstract:
Cyanobacteria harmful algal blooms (cHABs) are associated with a wide range of adverse health effects that stem mostly from the presence of cyanotoxins. To help protect against these impacts, several health advisory levels have been set for some toxins. In particular, one of the more common toxins, microcystin-LR, has several advisory levels set for drinking water and recreational use. However, compared to other water quality measures, field measurements of microcystin-LR are not commonly available due to cost and advanced understanding required to interpret results. Addressing these issues will take time and resources. Thus, there is utility in finding indicators of microcystin-LR that are already widely available, can be estimated quickly and in situ, and used as a first defense against high concentrations of microcystin-LR. Chlorophyll a is commonly measured, can be estimated in situ, and has been shown to be positively associated with microcystin-LR. In this paper, we use this association to provide estimates of chlorophyll a concentrations that are indicative of a higher probability of exceeding select health advisory concentrations for microcystin-LR. Using the 2007 National Lakes Assessment and a conditional probability approach, we identify chlorophyll a concentrations that are more likely than not to be associated with an exceedance of a microcystin-LR health advisory level. We look at the recent US EPA health advisories for drinking water as well as the World Health Organization levels for drinking water and recreational use and identify a range of chlorophyll a thresholds. A 50% chance of exceeding one of the microcystin-LR advisory concentrations of 0.3, 1, 1.6, and 2 g/L is associated with chlorophyll a concentration thresholds of 23.4, 67.0, 83.5, and 105.8, respectively. When managing for these various microcystin-LR levels, exceeding these reported chlorophyll a concentrations should be a trigger for further testing and possible management action.
APA, Harvard, Vancouver, ISO, and other styles
3

Hollister, Jeffrey W., and Betty J. Kreakie. "Associations between chlorophyll a and various microcystin health advisory concentrations." F1000Research 5 (June 13, 2016): 151. http://dx.doi.org/10.12688/f1000research.7955.2.

Full text
Abstract:
Cyanobacteria harmful algal blooms (cHABs) are associated with a wide range of adverse health effects that stem mostly from the presence of cyanotoxins. To help protect against these impacts, several health advisory levels have been set for some toxins. In particular, one of the more common toxins, microcystin, has several advisory levels set for drinking water and recreational use. However, compared to other water quality measures, field measurements of microcystin are not commonly available due to cost and advanced understanding required to interpret results. Addressing these issues will take time and resources. Thus, there is utility in finding indicators of microcystin that are already widely available, can be estimated quickly and in situ, and used as a first defense against high levels of microcystin. Chlorophyll a is commonly measured, can be estimated in situ, and has been shown to be positively associated with microcystin. In this paper, we use this association to provide estimates of chlorophyll a concentrations that are indicative of a higher probability of exceeding select health advisory concentrations for microcystin. Using the 2007 National Lakes Assessment and a conditional probability approach, we identify chlorophyll a concentrations that are more likely than not to be associated with an exceedance of a microcystin health advisory level. We look at the recent US EPA health advisories for drinking water as well as the World Health Organization levels for drinking water and recreational use and identify a range of chlorophyll a thresholds. A 50% chance of exceeding one of the specific advisory microcystin concentrations of 0.3, 1, 1.6, and 2 μg/L is associated with chlorophyll a concentration thresholds of 23, 68, 84, and 104 μg/L, respectively. When managing for these various microcystin levels, exceeding these reported chlorophyll a concentrations should be a trigger for further testing and possible management action.
APA, Harvard, Vancouver, ISO, and other styles
4

Waters, Matthew Neal, Mark Brenner, Jason Hilleary Curtis, Claudia Suseth Romero-Oliva, Margaret Dix, and Manuel Cano. "Harmful algal blooms and cyanotoxins in Lake Amatitlán, Guatemala, coincided with ancient Maya occupation in the watershed." Proceedings of the National Academy of Sciences 118, no. 48 (November 22, 2021). http://dx.doi.org/10.1073/pnas.2109919118.

Full text
Abstract:
Significance Harmful algal blooms (HABs) are dense populations of algae and/or cyanobacteria that can harm aquatic ecosystems by reducing water column oxygen and producing toxins. Whereas HABs are well documented in modern lakes, there has been little research on HABs associated with ancient societies. We inferred the magnitude of past HABs using a sediment core from Lake Amatitlán, Guatemala, which hosted large, prehistoric Maya populations in its watershed and currently experiences toxic HABs. About 1,000 y ago, ancient Maya in the area experienced periods of intense HABs and cyanotoxin concentrations in the lake, which rivaled the degraded conditions in the water body today. Human-associated HABs have affected both modern and ancient societies and deserve attention when exploring past human–environment interactions.
APA, Harvard, Vancouver, ISO, and other styles
5

Hanlon, Regina, Stephen J. Jacquemin, Johnna A. Birbeck, Judy A. Westrick, Charbel Harb, Hope Gruszewski, Andrew P. Ault, et al. "Drone-based water sampling and characterization of three freshwater harmful algal blooms in the United States." Frontiers in Remote Sensing 3 (August 24, 2022). http://dx.doi.org/10.3389/frsen.2022.949052.

Full text
Abstract:
Freshwater harmful algal blooms (HABs), caused mostly by toxic cyanobacteria, produce a range of cyanotoxins that threaten the health of humans and domestic animals. Climate conditions and anthropogenic influences such as agricultural run-off can alter the onset and intensity of HABs. Little is known about the distribution and spread of freshwater HABs. Current sampling protocols in some lakes involve teams of researchers that collect samples by hand from a boat and/or from the shoreline. Water samples can be collected from the surface, from discrete-depth collections, and/or from depth-integrated intervals. These collections are often restricted to certain months of the year, and generally are only performed at a limited number of collection sites. In lakes with active HABs, surface samples are generally sufficient for HAB water quality assessments. We used a unique DrOne Water Sampling SystEm (DOWSE) to collect water samples from the surface of three different HABs in Ohio (Grand Lake St Marys, GLSM and Lake Erie) and Virginia (Lake Anna), United States in 2019. The DOWSE consisted of a 3D-printed sampling device tethered to a drone (uncrewed aerial system, or UAS), and was used to collect surface water samples at different distances (10–100 m) from the shore or from an anchored boat. One hundred and eighty water samples (40 at GLSM, 20 at Lake Erie, and 120 at Lake Anna) were collected and analyzed from 18 drone flights. Our methods included testing for cyanotoxins, phycocyanin, and nutrients from surface water samples. Mean concentrations of microcystins (MCs) in drone water samples were 15.00, 1.92, and 0.02 ppb for GLSM, Lake Erie, and Lake Anna, respectively. Lake Anna had low levels of anatoxin in nearly all (111/120) of the drone water samples. Mean concentrations of phycocyanin in drone water samples were 687, 38, and 62 ppb for GLSM, Lake Erie, and Lake Anna, respectively. High levels of total phosphorus were observed in the drone water samples from GLSM (mean of 0.34 mg/L) and Lake Erie (mean of 0.12 mg/L). Lake Anna had the highest variability of total phosphorus with concentrations that ranged from 0.01 mg/L to 0.21 mg/L, with a mean of 0.06 mg/L. Nitrate levels varied greatly across sites, inverse with bloom biomass, ranging from below detection to 3.64 mg/L, with highest mean values in Lake Erie followed by GLSM and Lake Anna, respectively. Drones offer a rapid, targeted collection of water samples from virtually anywhere on a lake with an active HAB without the need for a boat which can disturb the surrounding water. Drones are, however, limited in their ability to operate during inclement weather such as rain and heavy winds. Collectively, our results highlight numerous opportunities for drone-based water sampling technologies to track, predict, and respond to HABs in the future.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Cyanobacteria, cyanotoxins, harmful algal blooms, subalpine lakes"

1

CAPELLI, CAMILLA. "Toxin-producing cyanobacteria in the large lakes south of the Alps: detection of new producers and molecular identification methods." Doctoral thesis, 2017. http://hdl.handle.net/2158/1081392.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Cyanobacteria, cyanotoxins, harmful algal blooms, subalpine lakes"

1

Pokrzywinski, Kaytee, Kaitlin Volk, Taylor Rycroft, Susie Wood, Tim Davis, and Jim Lazorchak. Aligning research and monitoring priorities for benthic cyanobacteria and cyanotoxins : a workshop summary. Engineer Research and Development Center (U.S.), August 2021. http://dx.doi.org/10.21079/11681/41680.

Full text
Abstract:
In 2018, the US Army Engineer Research and Development Center partnered with the US Army Corps of Engineers–Buffalo District, the US Environmental Protection Agency, Bowling Green State University, and the Cawthron Institute to host a workshop focused on benthic and sediment-associated cyanobacteria and cyanotoxins, particularly in the context of harmful algal blooms (HAB). Technical sessions on the ecology of benthic cyanobacteria in lakes and rivers; monitoring of cyanobacteria and cyanotoxins; detection of benthic and sediment-bound cyanotoxins; and the fate, transport, and health risks of cyanobacteria and their associated toxins were presented. Research summaries included the buoyancy and dispersal of benthic freshwater cyanobacteria mats, the fate and quantification of cyanotoxins in lake sediments, and spatial and temporal variation of toxins in streams. In addition, summaries of remote sensing methods, omic techniques, and field sampling techniques were presented. Critical research gaps identified from this workshop include (1) ecology of benthic cyanobacteria, (2) identity, fate, transport, and risk of cyanotoxins produced by benthic cyanobacteria, (3) standardized sampling and analysis protocols, and (4) increased technical cooperation between government, academia, industry, nonprofit organizations, and other stakeholders. Conclusions from this workshop can inform monitoring and management efforts for benthic cyanobacteria and their associated toxins.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography