Journal articles on the topic 'CXCR2 receptor'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'CXCR2 receptor.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zhang, Jing, Shouguo Huang, Lini Quan, Qiu Meng, Haiyan Wang, Jie Wang, and Jin Chen. "Determination of Potential Therapeutic Targets and Prognostic Markers of Ovarian Cancer by Bioinformatics Analysis." BioMed Research International 2021 (March 19, 2021): 1–13. http://dx.doi.org/10.1155/2021/8883800.
Full textKorbecki, Jan, Klaudyna Kojder, Patrycja Kapczuk, Patrycja Kupnicka, Barbara Gawrońska-Szklarz, Izabela Gutowska, Dariusz Chlubek, and Irena Baranowska-Bosiacka. "The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors—A Review of Literature." International Journal of Molecular Sciences 22, no. 2 (January 15, 2021): 843. http://dx.doi.org/10.3390/ijms22020843.
Full textKonrad, F. M., and J. Reutershan. "CXCR2 in Acute Lung Injury." Mediators of Inflammation 2012 (2012): 1–8. http://dx.doi.org/10.1155/2012/740987.
Full textDaniele, Simona, Simona Saporiti, Stefano Capaldi, Deborah Pietrobono, Lara Russo, Uliano Guerrini, Tommaso Laurenzi, et al. "Functional Heterodimerization between the G Protein-Coupled Receptor GPR17 and the Chemokine Receptors 2 and 4: New Evidence." International Journal of Molecular Sciences 24, no. 1 (December 23, 2022): 261. http://dx.doi.org/10.3390/ijms24010261.
Full textUhl, Barbara, Katharina T. Prochazka, Katrin Pansy, Kerstin Wenzl, Johanna Strobl, Claudia Baumgartner, Marta M. Szmyra, et al. "Distinct Chemokine Receptor Expression Profiles in De Novo DLBCL, Transformed Follicular Lymphoma, Richter’s Trans-Formed DLBCL and Germinal Center B-Cells." International Journal of Molecular Sciences 23, no. 14 (July 17, 2022): 7874. http://dx.doi.org/10.3390/ijms23147874.
Full textCoperchini, Francesca, Laura Croce, Michele Marinò, Luca Chiovato, and Mario Rotondi. "Role of chemokine receptors in thyroid cancer and immunotherapy." Endocrine-Related Cancer 26, no. 8 (August 2019): R465—R478. http://dx.doi.org/10.1530/erc-19-0163.
Full textRichardson, Micheler, Timothy Adekoya, Nikia Smith, and Parag Kothari. "Opposite effects of CXCR1 and CXCR2 overexpression in prostate tumorigenesis." Journal of Immunology 208, no. 1_Supplement (May 1, 2022): 178.12. http://dx.doi.org/10.4049/jimmunol.208.supp.178.12.
Full textYildirim, Sedat, Frank Bautz, Andreas M. Boehmler, Lothar Kanz, and Robert Möhle. "Regulation of CXCR1, CXCR2 and CXCR4 in Human Neutrophils: Potential Role in the Release from the Bone Marrow, Clearance of Senescent Cells, and Cell Function at Sites of Inflammation." Blood 106, no. 11 (November 16, 2005): 3068. http://dx.doi.org/10.1182/blood.v106.11.3068.3068.
Full textSchmausser, Bernd, Christine Josenhans, Simon Endrich, Sebastian Suerbaum, Cassian Sitaru, Mindaugas Andrulis, Stephanie Brändlein, Peter Rieckmann, Hans Konrad Müller-Hermelink, and Matthias Eck. "Downregulation of CXCR1 and CXCR2 Expression on Human Neutrophils by Helicobacter pylori: a New Pathomechanism in H. pylori Infection?" Infection and Immunity 72, no. 12 (December 2004): 6773–79. http://dx.doi.org/10.1128/iai.72.12.6773-6779.2004.
Full textKhandaker, Masud H., Gordon Mitchell, Luoling Xu, Joseph D. Andrews, Rajkumari Singh, Harry Leung, Joaquı́n Madrenas, Stephen S. G. Ferguson, Ross D. Feldman, and David J. Kelvin. "Metalloproteinases Are Involved in Lipopolysaccharide– and Tumor Necrosis Factor-–Mediated Regulation of CXCR1 and CXCR2 Chemokine Receptor Expression." Blood 93, no. 7 (April 1, 1999): 2173–85. http://dx.doi.org/10.1182/blood.v93.7.2173.
Full textKhandaker, Masud H., Gordon Mitchell, Luoling Xu, Joseph D. Andrews, Rajkumari Singh, Harry Leung, Joaquı́n Madrenas, Stephen S. G. Ferguson, Ross D. Feldman, and David J. Kelvin. "Metalloproteinases Are Involved in Lipopolysaccharide– and Tumor Necrosis Factor-–Mediated Regulation of CXCR1 and CXCR2 Chemokine Receptor Expression." Blood 93, no. 7 (April 1, 1999): 2173–85. http://dx.doi.org/10.1182/blood.v93.7.2173.407a06_2173_2185.
Full textDavies, Faith E., Mona H. Al Rayes, J. Anthony Child, Gareth J. Morgan, and Andrew C. Rawstron. "The Bone Marrow Microenvironment Influences the Differential Chemokine Receptor Expression of Normal and Neoplastic Plasma Cells." Blood 104, no. 11 (November 16, 2004): 2353. http://dx.doi.org/10.1182/blood.v104.11.2353.2353.
Full textLachota, Mieszko, Daniel Alfredo Palacios, Dennis Clement, Eivind Heggernes Ask, Hanna Julie Hoel, Merete Thune Wiiger, Marianna Vincenti, Magdalena Winiarska, Radoslaw Zagozdzon, and Karl-Johan Malmberg. "Innate-like Chemokine Receptor Profile and Migratory Behaviour By Terminally Differentiated and Educated NK Cells." Blood 136, Supplement 1 (November 5, 2020): 24–25. http://dx.doi.org/10.1182/blood-2020-140944.
Full textLima, Margarida, Magdalena Leander, Marlene Santos, Ana Helena Santos, Catarina Lau, Maria Luís Queirós, Marta Gonçalves, et al. "Chemokine Receptor Expression on Normal Blood CD56+NK-Cells Elucidates Cell Partners That Comigrate during the Innate and Adaptive Immune Responses and Identifies a Transitional NK-Cell Population." Journal of Immunology Research 2015 (2015): 1–18. http://dx.doi.org/10.1155/2015/839684.
Full textInngjerdingen, Marit, Bassam Damaj, and Azzam A. Maghazachi. "Expression and regulation of chemokine receptors in human natural killer cells." Blood 97, no. 2 (January 15, 2001): 367–75. http://dx.doi.org/10.1182/blood.v97.2.367.
Full textFan, Guo-Huang, Lynne A. Lapierre, James R. Goldenring, Jiqing Sai, and Ann Richmond. "Rab11-Family Interacting Protein 2 and Myosin Vb Are Required for CXCR2 Recycling and Receptor-mediated Chemotaxis." Molecular Biology of the Cell 15, no. 5 (May 2004): 2456–69. http://dx.doi.org/10.1091/mbc.e03-09-0706.
Full textBerg, Christian, Michael J. Wedemeyer, Motiejus Melynis, Roman R. Schlimgen, Lasse H. Hansen, Jon Våbenø, Francis C. Peterson, Brian F. Volkman, Mette M. Rosenkilde, and Hans R. Lüttichau. "The non-ELR CXC chemokine encoded by human cytomegalovirus UL146 genotype 5 contains a C-terminal β-hairpin and induces neutrophil migration as a selective CXCR2 agonist." PLOS Pathogens 18, no. 3 (March 10, 2022): e1010355. http://dx.doi.org/10.1371/journal.ppat.1010355.
Full textHoruk, R., A. W. Martin, Z. Wang, L. Schweitzer, A. Gerassimides, H. Guo, Z. Lu, et al. "Expression of chemokine receptors by subsets of neurons in the central nervous system." Journal of Immunology 158, no. 6 (March 15, 1997): 2882–90. http://dx.doi.org/10.4049/jimmunol.158.6.2882.
Full textTarnowski, Maciej, Rui Liu, Joanna Tarnowska, Janina Ratajczak, Robert Mitchell, Mariusz Z. Ratajczak, and Magdalena Kucia. "Novel Evidence That the Small Chemokine Macrophage Migration Inhibitory Factor (MIF) Is Highly Secreted by Human Rhabdomyosarcomas, Activates Both SDF-1–binding Receptors, CXCR4 and CXCR7, and Unexpectedly Inhibits Recruitment of Stromal Cells to the Growing Tumor." Blood 116, no. 21 (November 19, 2010): 3849. http://dx.doi.org/10.1182/blood.v116.21.3849.3849.
Full textParenty, Geraldine, Shirley Appelbe, and Graeme Milligan. "CXCR2 chemokine receptor antagonism enhances DOP opioid receptor function via allosteric regulation of the CXCR2–DOP receptor heterodimer." Biochemical Journal 412, no. 2 (May 14, 2008): 245–56. http://dx.doi.org/10.1042/bj20071689.
Full textKhandaker, Masud H., Luoling Xu, Rahbar Rahimpour, Gordon Mitchell, Mark E. DeVries, J. Geoffrey Pickering, Sharwan K. Singhal, Ross D. Feldman, and David J. Kelvin. "CXCR1 and CXCR2 Are Rapidly Down-Modulated by Bacterial Endotoxin Through a Unique Agonist-Independent, Tyrosine Kinase-Dependent Mechanism." Journal of Immunology 161, no. 4 (August 15, 1998): 1930–38. http://dx.doi.org/10.4049/jimmunol.161.4.1930.
Full textWenzl, Kerstin, Katharina Troppan, Alexander JA Deutsch, Werner Linkesch, Peter Neumeister, and Christine Beham-Schmid. "Distinct Chemokine Receptor Profile In Chronic Lymphocytic Leukaemia and Richter Transformed Diffuse Large B Cell Lymphomas Compared To Germinal Center B Cells and De Novo Diffuse Large B Cell Lymphomas." Blood 122, no. 21 (November 15, 2013): 4852. http://dx.doi.org/10.1182/blood.v122.21.4852.4852.
Full textWeisel, Katja C., Frank Bautz, Gabriele Seitz, Sedat Yildirim, Lothar Kanz, and Robert Möhle. "Modulation of CXC Chemokine Receptor Expression and Function in Human Neutrophils during Aging In Vitro Suggests a Role in Their Clearance from Circulation." Mediators of Inflammation 2009 (2009): 1–8. http://dx.doi.org/10.1155/2009/790174.
Full textNgo, Hai, Evdoxia Hatjiharissi, Xavier Leleu, Judith Runnels, Anne-Sophie Moreau, Xiaoying Jia, Garrett O’Sullivan, et al. "The CXCR4/SDF-1 Axis Regulates Migration and Adhesion in Waldenstrom Macroglobulinemia." Blood 108, no. 11 (November 1, 2006): 2418. http://dx.doi.org/10.1182/blood.v108.11.2418.2418.
Full textEash, Kyle J., Adam M. Greenbaum, Priya Gopalan, George A. Diaz, and Daniel C. Link. "CXCR2 Signals Act in Concert with CXCR4 to Regulate Neutrophil Release From the Bone Marrow." Blood 114, no. 22 (November 20, 2009): 235. http://dx.doi.org/10.1182/blood.v114.22.235.235.
Full textAntas, Paulo, Steven Holland, and Timothy Sterling. "Abnormal spontaneous interleukin 8 receptor expression: a brief report of two cases." Revista da Sociedade Brasileira de Medicina Tropical 45, no. 1 (February 2012): 134–37. http://dx.doi.org/10.1590/s0037-86822012000100029.
Full textCummings, C. James, Thomas R. Martin, Charles W. Frevert, Joanne M. Quan, Venus A. Wong, Steven M. Mongovin, Tonja R. Hagen, Kenneth P. Steinberg, and Richard B. Goodman. "Expression and Function of the Chemokine Receptors CXCR1 and CXCR2 in Sepsis." Journal of Immunology 162, no. 4 (February 15, 1999): 2341–46. http://dx.doi.org/10.4049/jimmunol.162.4.2341.
Full textClemetson, Kenneth J., Jeannine M. Clemetson, Amanda E. I. Proudfoot, Christine A. Power, Marco Baggiolini, and Timothy N. C. Wells. "Functional expression of CCR1, CCR3, CCR4, and CXCR4 chemokine receptors on human platelets." Blood 96, no. 13 (December 15, 2000): 4046–54. http://dx.doi.org/10.1182/blood.v96.13.4046.
Full textClemetson, Kenneth J., Jeannine M. Clemetson, Amanda E. I. Proudfoot, Christine A. Power, Marco Baggiolini, and Timothy N. C. Wells. "Functional expression of CCR1, CCR3, CCR4, and CXCR4 chemokine receptors on human platelets." Blood 96, no. 13 (December 15, 2000): 4046–54. http://dx.doi.org/10.1182/blood.v96.13.4046.h8004046_4046_4054.
Full textYe, Shaojing, Fei Ma, Dlovan F. D. Mahmood, Katherine L. Meyer-Siegler, Raymond E. Menard, David E. Hunt, Lin Leng, Richard Bucala, and Pedro L. Vera. "Intravesical CD74 and CXCR4, macrophage migration inhibitory factor (MIF) receptors, mediate bladder pain." PLOS ONE 16, no. 8 (August 23, 2021): e0255975. http://dx.doi.org/10.1371/journal.pone.0255975.
Full textSemple, Bridgette D., Thomas Kossmann, and Maria Cristina Morganti-Kossmann. "Role of Chemokines in CNS Health and Pathology: A Focus on the CCL2/CCR2 and CXCL8/CXCR2 Networks." Journal of Cerebral Blood Flow & Metabolism 30, no. 3 (November 11, 2009): 459–73. http://dx.doi.org/10.1038/jcbfm.2009.240.
Full textTecimer, Tülay, Jeffrey Dlott, Anan Chuntharapai, Alvin W. Martin, and Stephen C. Peiper. "Expression of the Chemokine Receptor CXCR2 in Normal and Neoplastic Neuroendocrine Cells." Archives of Pathology & Laboratory Medicine 124, no. 4 (April 1, 2000): 520–25. http://dx.doi.org/10.5858/2000-124-0520-eotcrc.
Full textTakahashi, Masafumi, Takatoshi Ishiko, Hidenobu Kamohara, Hideaki Hidaka, Osamu Ikeda, Michio Ogawa, and Hideo Baba. "Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1, 6-heptadiene-3,5-dione) Blocks the Chemotaxis of Neutrophils by Inhibiting Signal Transduction through IL-8 Receptors." Mediators of Inflammation 2007 (2007): 1–11. http://dx.doi.org/10.1155/2007/10767.
Full textSobolik, Tammy, Ying-jun Su, Sam Wells, Gregory D. Ayers, Rebecca S. Cook, and Ann Richmond. "CXCR4 drives the metastatic phenotype in breast cancer through induction of CXCR2 and activation of MEK and PI3K pathways." Molecular Biology of the Cell 25, no. 5 (March 2014): 566–82. http://dx.doi.org/10.1091/mbc.e13-07-0360.
Full textSharma, Bhawna, Seema Singh, Michelle L. Varney, and Rakesh K. Singh. "Targeting CXCR1/CXCR2 receptor antagonism in malignant melanoma." Expert Opinion on Therapeutic Targets 14, no. 4 (March 15, 2010): 435–42. http://dx.doi.org/10.1517/14728221003652471.
Full textFan, Guo-Huang, Lynne A. Lapierre, James R. Goldenring, and Ann Richmond. "Differential regulation of CXCR2 trafficking by Rab GTPases." Blood 101, no. 6 (March 15, 2003): 2115–24. http://dx.doi.org/10.1182/blood-2002-07-1965.
Full textJoseph, Prem Raj B., Kirti V. Sawant, and Krishna Rajarathnam. "Heparin-bound chemokine CXCL8 monomer and dimer are impaired for CXCR1 and CXCR2 activation: implications for gradients and neutrophil trafficking." Open Biology 7, no. 11 (November 2017): 170168. http://dx.doi.org/10.1098/rsob.170168.
Full textDesbaillets, Isabelle, Annie-Claire Diserens, Nicolas de Tribolet, Marie-France Hamou, and Erwin G. Van Meir. "Upregulation of Interleukin 8 by Oxygen-deprived Cells in Glioblastoma Suggests a Role in Leukocyte Activation, Chemotaxis, and Angiogenesis." Journal of Experimental Medicine 186, no. 8 (October 20, 1997): 1201–12. http://dx.doi.org/10.1084/jem.186.8.1201.
Full textMizutani, Tatsushi. "A Reciprocal Cross-Reactivity between Monoclonal Antibodies to SARS-CoV-2 Spike Glycoprotein S1 and Human CXCR2—An Implication of a Viral Mimic of Human CXCR2." COVID 2, no. 5 (May 2, 2022): 569–77. http://dx.doi.org/10.3390/covid2050042.
Full textCardona, Astrid E., Margaret E. Sasse, Liping Liu, Sandra M. Cardona, Makiko Mizutani, Carine Savarin, Taofang Hu, and Richard M. Ransohoff. "Scavenging roles of chemokine receptors: chemokine receptor deficiency is associated with increased levels of ligand in circulation and tissues." Blood 112, no. 2 (July 15, 2008): 256–63. http://dx.doi.org/10.1182/blood-2007-10-118497.
Full textSkuhersky, Michael A., Fei Tao, Rui Qing, Eva Smorodina, David Jin, and Shuguang Zhang. "Comparing Native Crystal Structures and AlphaFold2 Predicted Water-Soluble G Protein-Coupled Receptor QTY Variants." Life 11, no. 12 (November 24, 2021): 1285. http://dx.doi.org/10.3390/life11121285.
Full textKonishi, Takanori, Rebecca M. Schuster, Holly S. Goetzman, Charles C. Caldwell, and Alex B. Lentsch. "Cell-specific regulatory effects of CXCR2 on cholestatic liver injury." American Journal of Physiology-Gastrointestinal and Liver Physiology 317, no. 6 (December 1, 2019): G773—G783. http://dx.doi.org/10.1152/ajpgi.00080.2019.
Full textRanganathan, Punithavathi, Calpurnia Jayakumar, Santhakumar Manicassamy, and Ganesan Ramesh. "CXCR2 knockout mice are protected against DSS-colitis-induced acute kidney injury and inflammation." American Journal of Physiology-Renal Physiology 305, no. 10 (November 15, 2013): F1422—F1427. http://dx.doi.org/10.1152/ajprenal.00319.2013.
Full textCho, Hee Seong, Young In Choi, Seon Uk Park, Yi Seul Han, Jean Kwon, and Sung Jun Jung. "Prevention of Chemotherapy-Induced Peripheral Neuropathy by Inhibiting C-X-C Motif Chemokine Receptor 2." International Journal of Molecular Sciences 24, no. 3 (January 17, 2023): 1855. http://dx.doi.org/10.3390/ijms24031855.
Full textMurashka, D. I., A. D. Tahanovich, M. M. Kauhanka, O. V. Gotko, and V. I. Prokhorova. "On the issue of diagnostic value of determining the level of receptors and their ligands in blood in non-small cell lung cancer." Russian Clinical Laboratory Diagnostics 67, no. 5 (May 21, 2022): 277–85. http://dx.doi.org/10.51620/0869-2084-2022-67-5-277-285.
Full textNilsson, Gunnar, Judy A. Mikovits, Dean D. Metcalfe, and Dennis D. Taub. "Mast Cell Migratory Response to Interleukin-8 Is Mediated Through Interaction With Chemokine Receptor CXCR2/Interleukin-8RB." Blood 93, no. 9 (May 1, 1999): 2791–97. http://dx.doi.org/10.1182/blood.v93.9.2791.
Full textNilsson, Gunnar, Judy A. Mikovits, Dean D. Metcalfe, and Dennis D. Taub. "Mast Cell Migratory Response to Interleukin-8 Is Mediated Through Interaction With Chemokine Receptor CXCR2/Interleukin-8RB." Blood 93, no. 9 (May 1, 1999): 2791–97. http://dx.doi.org/10.1182/blood.v93.9.2791.409k27_2791_2797.
Full textHolloman, Bryan L., Mitzi Nagarkatti, and Prakash Nagarkatti. "Pulmonary macrophage activation and recruitment in lipopolysaccharide-induced acute lung injury mediates neutrophil infiltration: Role of AhR ligation in intervention." Journal of Immunology 208, no. 1_Supplement (May 1, 2022): 105.36. http://dx.doi.org/10.4049/jimmunol.208.supp.105.36.
Full textSalim, Juan P., Rosana F. Marta, and Felisa C. Molinas. "Megakaryocyte-Active Chemokines: Dysregulation in the SDF-1a/CXCR4 Axis in Patients with Essential Thrombocythemia." Blood 106, no. 11 (November 16, 2005): 4969. http://dx.doi.org/10.1182/blood.v106.11.4969.4969.
Full textKorbecki, Jan, Patrycja Kupnicka, Mikołaj Chlubek, Jarosław Gorący, Izabela Gutowska, and Irena Baranowska-Bosiacka. "CXCR2 Receptor: Regulation of Expression, Signal Transduction, and Involvement in Cancer." International Journal of Molecular Sciences 23, no. 4 (February 16, 2022): 2168. http://dx.doi.org/10.3390/ijms23042168.
Full text