Journal articles on the topic 'CXCL2'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'CXCL2.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Korbecki, Jan, Klaudyna Kojder, Patrycja Kapczuk, Patrycja Kupnicka, Barbara Gawrońska-Szklarz, Izabela Gutowska, Dariusz Chlubek, and Irena Baranowska-Bosiacka. "The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors—A Review of Literature." International Journal of Molecular Sciences 22, no. 2 (January 15, 2021): 843. http://dx.doi.org/10.3390/ijms22020843.
Full textTian, He, Liyu Wang, Yu Liu, Yalong Wang, Yujia Zheng, Tao Fan, Bo Zheng, et al. "Bioinformatics Analyses Reveals a Comprehensive Landscape of CXC Chemokine Family Functions in Non-Small Cell Lung Cancer." BioMed Research International 2021 (January 25, 2021): 1–34. http://dx.doi.org/10.1155/2021/6686158.
Full textKorbecki, Jan, Mateusz Bosiacki, Dariusz Chlubek, and Irena Baranowska-Bosiacka. "Bioinformatic Analysis of the CXCR2 Ligands in Cancer Processes." International Journal of Molecular Sciences 24, no. 17 (August 27, 2023): 13287. http://dx.doi.org/10.3390/ijms241713287.
Full textYAMAMOTO, YURIE, KENJI KURODA, TOMOHIRO SERA, ATSUSHI SUGIMOTO, SHUHEI KUSHIYAMA, SADAAKI NISHIMURA, SHINGO TOGANO, et al. "The Clinicopathological Significance of the CXCR2 Ligands, CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, and CXCL8 in Gastric Cancer." Anticancer Research 39, no. 12 (December 2019): 6645–52. http://dx.doi.org/10.21873/anticanres.13879.
Full textMei, Junjie, M. Anna Kowalska, Ning Dai, Yuhong Liu, Kristin Hudock, Samthamby Jeyaseelan, Janet Lee, Susan Guttentag, Mortimer Poncz, and G. Scott Worthen. "Platelet CXCL7 and CXCL4 inhibit chemokine scavenging and improve innate immunity to bacterial infection (P1317)." Journal of Immunology 190, no. 1_Supplement (May 1, 2013): 63.14. http://dx.doi.org/10.4049/jimmunol.190.supp.63.14.
Full textHong, Jung-Hee, and Young-Cheol Lee. "Anti-Inflammatory Effects of Cicadidae Periostracum Extract and Oleic Acid through Inhibiting Inflammatory Chemokines Using PCR Arrays in LPS-Induced Lung inflammation In Vitro." Life 12, no. 6 (June 8, 2022): 857. http://dx.doi.org/10.3390/life12060857.
Full textHu, Jing, Qian Ji, Fei Chen, Xiaoqin Gong, Chuansheng Chen, Kaijun Zhang, Ye Hua, et al. "CXCR2 Is Essential for Radiation-Induced Intestinal Injury by Initiating Neutrophil Infiltration." Journal of Immunology Research 2022 (July 16, 2022): 1–9. http://dx.doi.org/10.1155/2022/7966089.
Full textSitu, Yongli, Xiaoyong Lu, Yongshi Cui, Qinying Xu, Li Deng, Hao Lin, Zheng Shao, and Jv Chen. "Systematic Analysis of CXC Chemokine–Vascular Endothelial Growth Factor A Network in Colonic Adenocarcinoma from the Perspective of Angiogenesis." BioMed Research International 2022 (October 4, 2022): 1–19. http://dx.doi.org/10.1155/2022/5137301.
Full textMu, Li, Shun Hu, Guoping Li, Ping Wu, Caihong Ren, Taiyu Lin, and Sheng Zhang. "Characterization of the Prognostic Values of CXCL Family in Epstein–Barr Virus Associated Gastric Cancer." Oxidative Medicine and Cellular Longevity 2022 (June 1, 2022): 1–24. http://dx.doi.org/10.1155/2022/2218140.
Full textSun, Xiaoqi, Qunxi Chen, Lihong Zhang, Jiewei Chen, and Xinke Zhang. "Exploration of prognostic biomarkers and therapeutic targets in the microenvironment of bladder cancer based on CXC chemokines." Mathematical Biosciences and Engineering 18, no. 5 (2021): 6262–87. http://dx.doi.org/10.3934/mbe.2021313.
Full textRoh, Yoon Seok, Bi Zhang, Rohit Loomba, and Ekihiro Seki. "TLR2 and TLR9 contribute to alcohol-mediated liver injury through induction of CXCL1 and neutrophil infiltration." American Journal of Physiology-Gastrointestinal and Liver Physiology 309, no. 1 (July 1, 2015): G30—G41. http://dx.doi.org/10.1152/ajpgi.00031.2015.
Full textMalik, Ihtzaz Ahmed, and Giuliano Ramadori. "Interleukin-6-Production Is Responsible for Induction of Hepatic Synthesis of Several Chemokines as Acute-Phase Mediators in Two Animal Models: Possible Significance for Interpretation of Laboratory Changes in Severely Ill Patients." Biology 11, no. 3 (March 18, 2022): 470. http://dx.doi.org/10.3390/biology11030470.
Full textFan, Ning, Shuo Yuan, Yong Hai, Peng Du, Jian Li, Xiaochuan Kong, Wenyi Zhu, Yuzeng Liu, and Lei Zang. "Identifying the potential role of IL-1β in the molecular mechanisms of disc degeneration using gene expression profiling and bioinformatics analysis." Journal of Orthopaedic Surgery 30, no. 1 (January 2022): 230949902110682. http://dx.doi.org/10.1177/23094990211068203.
Full textCavanagh, P. Craig, Caroline Dunk, Macarena Pampillo, Jacob M. Szereszewski, Jay E. Taylor, Caroline Kahiri, Victor Han, Stephen Lye, Moshmi Bhattacharya, and Andy V. Babwah. "Gonadotropin-releasing hormone-regulated chemokine expression in human placentation." American Journal of Physiology-Cell Physiology 297, no. 1 (July 2009): C17—C27. http://dx.doi.org/10.1152/ajpcell.00013.2009.
Full textTiwari, Nivedita, Amarnath S. Marudamuthu, Yoshikazu Tsukasaki, Mitsuo Ikebe, Jian Fu, and Sreerama Shetty. "p53- and PAI-1-mediated induction of C-X-C chemokines and CXCR2: importance in pulmonary inflammation due to cigarette smoke exposure." American Journal of Physiology-Lung Cellular and Molecular Physiology 310, no. 6 (March 15, 2016): L496—L506. http://dx.doi.org/10.1152/ajplung.00290.2015.
Full textLi, Yan, Mingqiang Liang, Yuxiang Lin, Jinxing Lv, Minyan Chen, Peng Zhou, Fangmeng Fu, and Chuan Wang. "Transcriptional Expressions of CXCL9/10/12/13 as Prognosis Factors in Breast Cancer." Journal of Oncology 2020 (September 9, 2020): 1–15. http://dx.doi.org/10.1155/2020/4270957.
Full textPiqueras, Bernard, John Connolly, Heidi Freitas, Anna Karolina Palucka, and Jacques Banchereau. "Upon viral exposure, myeloid and plasmacytoid dendritic cells produce 3 waves of distinct chemokines to recruit immune effectors." Blood 107, no. 7 (April 1, 2006): 2613–18. http://dx.doi.org/10.1182/blood-2005-07-2965.
Full textMarti, Luciana C., Diana Torres Palomino, Camila Bononi Almeida, Denise Cunha Pasqualim, Adriano Cury, Paolo Rogério de Oliveira Salvalaggio, Antonio Luiz Macedo, Patricia Severino, and Luiz Vicente Rizzo. "HUMAN LYMPH NODE DERIVED FIBROBLASTIC RETICULAR CELLS AND THEIR CHEMOKINE EXPRESSION PROFILE AFTER AN INFLAMMATORY STIMULUS." Journal of Immunology 196, no. 1_Supplement (May 1, 2016): 51.11. http://dx.doi.org/10.4049/jimmunol.196.supp.51.11.
Full textLiu, Kaisheng, Minshan Lai, Shaoxiang Wang, Kai Zheng, Shouxia Xie, and Xiao Wang. "Construction of a CXC Chemokine-Based Prediction Model for the Prognosis of Colon Cancer." BioMed Research International 2020 (March 31, 2020): 1–12. http://dx.doi.org/10.1155/2020/6107865.
Full textArsentieva, N. A., N. E. Lyubimova, O. K. Batsunov, A. V. Semenov, and A. A. Totolian. "Analysis of blood plasma cytokine profile in healthy residents of the Republic of Guinea." Medical Immunology (Russia) 22, no. 4 (August 7, 2020): 765–78. http://dx.doi.org/10.15789/1563-0625-aob-2073.
Full textBurke, Susan J., Danhong Lu, Tim E. Sparer, Thomas Masi, Matthew R. Goff, Michael D. Karlstad, and J. Jason Collier. "NF-κB and STAT1 control CXCL1 and CXCL2 gene transcription." American Journal of Physiology-Endocrinology and Metabolism 306, no. 2 (January 15, 2014): E131—E149. http://dx.doi.org/10.1152/ajpendo.00347.2013.
Full textFurue, Masutaka, Kazuhisa Furue, Gaku Tsuji, and Takeshi Nakahara. "Interleukin-17A and Keratinocytes in Psoriasis." International Journal of Molecular Sciences 21, no. 4 (February 13, 2020): 1275. http://dx.doi.org/10.3390/ijms21041275.
Full textCai, Baiyi, Carlene L. Zindl, Daniel J. Silberger, David A. Figge, Jeffery R. Singer, Simon F. Merz, Matthias Gunzer, and Casey T. Weaver. "Temporal changes in cellular sources of CXC chemokines control neutrophil recruitment during Citrobacter rodentium infection." Journal of Immunology 204, no. 1_Supplement (May 1, 2020): 158.22. http://dx.doi.org/10.4049/jimmunol.204.supp.158.22.
Full textLaudanski, Piotr, Adam Lemancewicz, Pawel Kuc, Karol Charkiewicz, Barbara Ramotowska, Malgorzata Kretowska, Elwira Jasinska, et al. "Chemokines Profiling of Patients with Preterm Birth." Mediators of Inflammation 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/185758.
Full textCarlson, Thaddeus, Mark Kroenke, Praveen Rao, Thomas E. Lane, and Benjamin Segal. "The Th17–ELR+ CXC chemokine pathway is essential for the development of central nervous system autoimmune disease." Journal of Experimental Medicine 205, no. 4 (March 17, 2008): 811–23. http://dx.doi.org/10.1084/jem.20072404.
Full textBardi, Gina, Numan Al-Rayan, Jamaal Richie, Kavitha Yaddanapudi, and Joshua Hood. "Detection of Inflammation-Related Melanoma Small Extracellular Vesicle (sEV) mRNA Content Using Primary Melanocyte sEVs as a Reference." International Journal of Molecular Sciences 20, no. 5 (March 12, 2019): 1235. http://dx.doi.org/10.3390/ijms20051235.
Full textDu, Chunmei, Yiguang Zhao, Kun Wang, Xuemei Nan, Ruipeng Chen, and Benhai Xiong. "Effects of Milk-Derived Extracellular Vesicles on the Colonic Transcriptome and Proteome in Murine Model." Nutrients 14, no. 15 (July 26, 2022): 3057. http://dx.doi.org/10.3390/nu14153057.
Full textHuang, Alex, and Jay Myers. "Live two-photon imaging reveals distinct contribution of neutrophilic and stromal Toll-like receptor 4 in hyper-acute bone marrow response to systemic lipopolysaccharide insult (INC5P.324)." Journal of Immunology 192, no. 1_Supplement (May 1, 2014): 120.4. http://dx.doi.org/10.4049/jimmunol.192.supp.120.4.
Full textDeftu, Antonia-Teona, Alexandru-Florian Deftu, and Violeta Ristoiu. "Long-term incubation with CXCL2, but not with CXCL1, alters the kinetics of TRPV1 receptors in cultured dorsal root ganglia neurons." Archives of Biological Sciences 69, no. 1 (2017): 53–59. http://dx.doi.org/10.2298/abs160513074d.
Full textSemple, Bridgette D., Thomas Kossmann, and Maria Cristina Morganti-Kossmann. "Role of Chemokines in CNS Health and Pathology: A Focus on the CCL2/CCR2 and CXCL8/CXCR2 Networks." Journal of Cerebral Blood Flow & Metabolism 30, no. 3 (November 11, 2009): 459–73. http://dx.doi.org/10.1038/jcbfm.2009.240.
Full textNavas, Adriana, Deninson Alejandro Vargas, Marina Freudzon, Diane McMahon-Pratt, Nancy Gore Saravia, and María Adelaida Gómez. "Chronicity of Dermal Leishmaniasis Caused by Leishmania panamensis Is Associated with Parasite-Mediated Induction of Chemokine Gene Expression." Infection and Immunity 82, no. 7 (April 21, 2014): 2872–80. http://dx.doi.org/10.1128/iai.01133-13.
Full textTakikawa, Tetsuya, Shin Hamada, Ryotaro Matsumoto, Yu Tanaka, Fumiya Kataoka, Akira Sasaki, and Atsushi Masamune. "Senescent Human Pancreatic Stellate Cells Secrete CXCR2 Agonist CXCLs to Promote Proliferation and Migration of Human Pancreatic Cancer AsPC-1 and MIAPaCa-2 Cell Lines." International Journal of Molecular Sciences 23, no. 16 (August 17, 2022): 9275. http://dx.doi.org/10.3390/ijms23169275.
Full textWang, Danlan, Yuanfang Luo, Yonglian Guo, Guohao Li, and Fan Li. "A-kinase interacting protein 1, a potential biomarker associated with advanced tumor features and CXCL1/2 in prostate cancer." International Journal of Biological Markers 35, no. 2 (April 27, 2020): 74–81. http://dx.doi.org/10.1177/1724600820914944.
Full textRainard, P. "Consequences of Interference of Milk with Chemoattractants for Enzyme-Linked Immunosorbent Assay Quantifications." Clinical and Vaccine Immunology 17, no. 5 (March 17, 2010): 848–52. http://dx.doi.org/10.1128/cvi.00447-09.
Full textLi, Heliang, Linbin Yang, and Erwei Song. "Abstract 628: Liver macrophages promote breast cancer liver metastasis through migrating neutrophils and initiating NETosis." Cancer Research 83, no. 7_Supplement (April 4, 2023): 628. http://dx.doi.org/10.1158/1538-7445.am2023-628.
Full textOliveira, Thiago Henrique Caldeira, Vincent Vanheule, Sofie Vandendriessche, Fariba Poosti, Mauro Martins Teixeira, Paul Proost, Mieke Gouwy, and Pedro Elias Marques. "The GAG-Binding Peptide MIG30 Protects against Liver Ischemia-Reperfusion in Mice." International Journal of Molecular Sciences 23, no. 17 (August 26, 2022): 9715. http://dx.doi.org/10.3390/ijms23179715.
Full textUrbantat, Ruth M., Peter Vajkoczy, and Susan Brandenburg. "Advances in Chemokine Signaling Pathways as Therapeutic Targets in Glioblastoma." Cancers 13, no. 12 (June 15, 2021): 2983. http://dx.doi.org/10.3390/cancers13122983.
Full textMiura, Koshiro, and Yasuko Rikihisa. "Liver Transcriptome Profiles Associated with Strain-Specific Ehrlichia chaffeensis-Induced Hepatitis in SCID Mice." Infection and Immunity 77, no. 1 (November 10, 2008): 245–54. http://dx.doi.org/10.1128/iai.00979-08.
Full textLepsenyi, Mattias, Nader Algethami, Amr A. Al-Haidari, Anwar Algaber, Ingvar Syk, Milladur Rahman, and Henrik Thorlacius. "CXCL2-CXCR2 axis mediates αV integrin-dependent peritoneal metastasis of colon cancer cells." Clinical & Experimental Metastasis 38, no. 4 (June 11, 2021): 401–10. http://dx.doi.org/10.1007/s10585-021-10103-0.
Full textMayslich, Constance, Philippe Alain Grange, Mathieu Castela, Anne Geneviève Marcelin, Vincent Calvez, and Nicolas Dupin. "Characterization of a Cutibacterium acnes Camp Factor 1-Related Peptide as a New TLR-2 Modulator in In Vitro and Ex Vivo Models of Inflammation." International Journal of Molecular Sciences 23, no. 9 (May 3, 2022): 5065. http://dx.doi.org/10.3390/ijms23095065.
Full textZychowska, Magdalena, Ewelina Rojewska, Dominika Pilat, and Joanna Mika. "The Role of Some Chemokines from the CXC Subfamily in a Mouse Model of Diabetic Neuropathy." Journal of Diabetes Research 2015 (2015): 1–13. http://dx.doi.org/10.1155/2015/750182.
Full textRitzman, Anna M., Jennifer M. Hughes-Hanks, Victoria A. Blaho, Laura E. Wax, William J. Mitchell, and Charles R. Brown. "The Chemokine Receptor CXCR2 Ligand KC (CXCL1) Mediates Neutrophil Recruitment and Is Critical for Development of Experimental Lyme Arthritis and Carditis." Infection and Immunity 78, no. 11 (September 7, 2010): 4593–600. http://dx.doi.org/10.1128/iai.00798-10.
Full textUrbantat, Ruth, Anne Blank, Irina Kremenetskaia, Peter Vajkoczy, Güliz Acker, and Susan Brandenburg. "The CXCL2/IL8/CXCR2 Pathway Is Relevant for Brain Tumor Malignancy and Endothelial Cell Function." International Journal of Molecular Sciences 22, no. 5 (March 5, 2021): 2634. http://dx.doi.org/10.3390/ijms22052634.
Full textBian, Jing, Jianyang Fu, Xin Wang, Jihye Lee, Gagandeep Brar, Freddy E. Escorcia, Maggie Cam, and Changqing Xie. "Characterization of Immunogenicity of Malignant Cells with Stemness in Intrahepatic Cholangiocarcinoma by Single-Cell RNA Sequencing." Stem Cells International 2022 (April 29, 2022): 1–14. http://dx.doi.org/10.1155/2022/3558200.
Full textLink, Daniel. "Mechanisms of Neutrophil Release from the Bone Marrow." Blood 122, no. 21 (November 15, 2013): SCI—43—SCI—43. http://dx.doi.org/10.1182/blood.v122.21.sci-43.sci-43.
Full textKish, Danielle, and Robert Fairchild. "Expression of CCL20 in hapten challenged skin induces recruitment of hapten-primed CD8 T cells producing IL-17 into the skin (CAM1P.229)." Journal of Immunology 192, no. 1_Supplement (May 1, 2014): 47.5. http://dx.doi.org/10.4049/jimmunol.192.supp.47.5.
Full textStock, Angus T., Jeffrey M. Smith, and Francis R. Carbone. "Type I IFN suppresses Cxcr2 driven neutrophil recruitment into the sensory ganglia during viral infection." Journal of Experimental Medicine 211, no. 5 (April 21, 2014): 751–59. http://dx.doi.org/10.1084/jem.20132183.
Full textBoro, Monoranjan, and Kithiganahalli Narayanaswamy Balaji. "CXCL1 and CXCL2 Regulate NLRP3 Inflammasome Activation via G-Protein–Coupled Receptor CXCR2." Journal of Immunology 199, no. 5 (July 24, 2017): 1660–71. http://dx.doi.org/10.4049/jimmunol.1700129.
Full textSmith, David F., Elena Galkina, Klaus Ley, and Yuqing Huo. "GRO family chemokines are specialized for monocyte arrest from flow." American Journal of Physiology-Heart and Circulatory Physiology 289, no. 5 (November 2005): H1976—H1984. http://dx.doi.org/10.1152/ajpheart.00153.2005.
Full textFischer, Jeffrey, Jeffrey West, Nnenaya Agochukwu, Colby Suire, and Hollie Hale-Donze. "Induction of Host Chemotactic Response by Encephalitozoon spp." Infection and Immunity 75, no. 4 (December 18, 2006): 1619–25. http://dx.doi.org/10.1128/iai.01535-06.
Full text