To see the other types of publications on this topic, follow the link: Curves, Elliptic. Cryptography.

Dissertations / Theses on the topic 'Curves, Elliptic. Cryptography'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Curves, Elliptic. Cryptography.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Idrees, Zunera. "Elliptic Curves Cryptography." Thesis, Linnéuniversitetet, Institutionen för datavetenskap, fysik och matematik, DFM, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-17544.

Full text
Abstract:
In the thesis we study the elliptic curves and its use in cryptography. Elliptic curvesencompasses a vast area of mathematics. Elliptic curves have basics in group theory andnumber theory. The points on elliptic curve forms a group under the operation of addition.We study the structure of this group. We describe Hasse’s theorem to estimate the numberof points on the curve. We also discuss that the elliptic curve group may or may not becyclic over finite fields. Elliptic curves have applications in cryptography, we describe theapplication of elliptic curves for discrete logarithm problem and ElGamal cryptosystem.
APA, Harvard, Vancouver, ISO, and other styles
2

Enos, Graham. "Binary Edwards curves in elliptic curve cryptography." Thesis, The University of North Carolina at Charlotte, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=3563153.

Full text
Abstract:

Edwards curves are a new normal form for elliptic curves that exhibit some cryptographically desirable properties and advantages over the typical Weierstrass form. Because the group law on an Edwards curve (normal, twisted, or binary) is complete and unified, implementations can be safer from side channel or exceptional procedure attacks. The different types of Edwards provide a better platform for cryptographic primitives, since they have more security built into them from the mathematic foundation up.

Of the three types of Edwards curves—original, twisted, and binary—there hasn't been as much work done on binary curves. We provide the necessary motivation and background, and then delve into the theory of binary Edwards curves. Next, we examine practical considerations that separate binary Edwards curves from other recently proposed normal forms. After that, we provide some of the theory for binary curves that has been worked on for other types already: pairing computations. We next explore some applications of elliptic curve and pairing-based cryptography wherein the added security of binary Edwards curves may come in handy. Finally, we finish with a discussion of e2c2, a modern C++11 library we've developed for Edwards Elliptic Curve Cryptography.

APA, Harvard, Vancouver, ISO, and other styles
3

Mus, Koksal. "An Alternative Normal Form For Elliptic Curve Cryptography: Edwards Curves." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12611065/index.pdf.

Full text
Abstract:
A new normal form x2 + y2 = c2(1 + x2y2) of elliptic curves was introduced by M. Harold Edwards in 2007 over the field k having characteristic different than 2. This new form has very special and important properties such that addition operation is strongly unified and complete for properly chosen parameter c . In other words, doubling can be done by using the addition formula and any two points on the curve can be added by the addition formula without exception. D. Bernstein and T. Lange added one more parameter d to the normal form to cover a large class of elliptic curves, x2 + y2 = c2(1 + dx2y2) over the same field. In this thesis, an expository overview of the literature on Edwards curves is given. First, the types of Edwards curves over the nonbinary field k are introduced, addition and doubling over the curves are derived and efficient algorithms for addition and doubling are stated with their costs. Finally, known elliptic curves and Edwards curves are compared according to their cryptographic applications. The way to choose the Edwards curve which is most appropriate for cryptographic applications is also explained.
APA, Harvard, Vancouver, ISO, and other styles
4

Ozturk, Erdinc. "Low Power Elliptic Curve Cryptography." Link to electronic thesis, 2004. http://www.wpi.edu/Pubs/ETD/Available/etd-050405-143155/.

Full text
Abstract:
Thesis (M.S.) -- Worcester Polytechnic Institute.
Keywords: low power; montgomery multiplication; elliptic curve crytography; modulus scaling; unified architecture; inversion; redundant signed digit. Includes bibliographical references (p.55-59).
APA, Harvard, Vancouver, ISO, and other styles
5

Pemberton, Michael Paul Banks William David. "Elliptic curves and their applications in cryptography." Diss., Columbia, Mo. : University of Missouri--Columbia, 2009. http://hdl.handle.net/10355/5364.

Full text
Abstract:
The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file. Title from PDF of title page (University of Missouri--Columbia, viewed on December 30, 2009). Thesis advisor: Dr. William Banks. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
6

Bathgate, Jonathan. "Elliptic Curves and their Applications to Cryptography." Thesis, Boston College, 2007. http://hdl.handle.net/2345/389.

Full text
Abstract:
Thesis advisor: Benjamin Howard
In the last twenty years, Elliptic Curve Cryptography has become a standard for the transmission of secure data. The purpose of my thesis is to develop the necessary theory for the implementation of elliptic curve cryptosystems, using elementary number theory, abstract algebra, and geometry. This theory is based on developing formulas for adding rational points on an elliptic curve. The set of rational points on an elliptic curve form a group over the addition law as it is defined. Using the group law, my study continues into computing the torsion subgroup of an elliptic curve and considering elliptic curves over finite fields. With a brief introduction to cryptography and the theory developed in the early chapters, my thesis culminates in the explanation and implementation of three elliptic curve cryptosystems in the Java programming language
Thesis (BA) — Boston College, 2007
Submitted to: Boston College. College of Arts and Sciences
Discipline: Mathematics
Discipline: College Honors Program
APA, Harvard, Vancouver, ISO, and other styles
7

Bartzia, Evmorfia-Iro. "A formalization of elliptic curves for cryptography." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX002/document.

Full text
Abstract:
Le sujet de ma thèse s’inscrit dans le domaine des preuves formelleset de la vérification des algorithmescryptographiques. L’implémentation des algorithmes cryptographiquesest souvent une tâche assez compliquée, parce qu’ils sont optimiséspour être efficaces et sûrs en même temps. Par conséquent, il n’estpas toujours évident qu’un programme cryptographique en tant quefonction, corresponde exactement à l’algorithme mathématique,c’est-à-dire que le programme soit correct. Les erreurs dans lesprogrammes cryptographiques peuvent mettre en danger la sécurité desystèmes cryptographiques entiers et donc, des preuves de correctionsont souvent nécessaires. Les systèmes formels et les assistants depreuves comme Coq et Isabelle-HOL sont utilisés pour développer despreuves de correction des programmes. Les courbes elliptiques sontlargement utilisées en cryptographie surtout en tant que groupecryptographique très efficace. Pour le développement des preuvesformelles des algorithmes utilisant les courbes elliptiques, unethéorie formelle de celles-ci est nécessaire. Dans ce contexte, nousavons développé une théorie formelle des courbes elliptiques enutilisant l’assistant de preuves Coq. Cette théorie est par la suiteutilisée pour prouver la correction des algorithmes de multiplicationscalaire sur le groupe des points d’une courbe elliptique.Plus précisément, mes travaux de thèse peuvent être divisées en deuxparties principales. La première concerne le développement de lathéorie des courbes elliptiques en utilisant l'assistant des preuvesCoq. Notre développement de plus de 15000 lignes de code Coqcomprend la formalisation des courbes elliptiques données par uneéquation de Weierstrass, la théorie des corps des fonctionsrationnelles sur une courbe, la théorie des groupes libres et desdiviseurs des fonctions rationnelles sur une courbe. Notre résultatprincipal est la formalisation du théorème de Picard; une conséquencedirecte de ce théorème est l’associativité de l’opération du groupedes points d’une courbe elliptique qui est un résultat non trivial àprouver. La seconde partie de ma thèse concerne la vérification del'algorithme GLV pour effectuer la multiplication scalaire sur descourbes elliptiques. Pour ce développement, nous avons vérifier troisalgorithmes indépendants: la multiexponentiation dans un groupe, ladécomposition du scalaire et le calcul des endomorphismes sur unecourbe elliptique. Nous avons également développé une formalisationdu plan projectif et des courbes en coordonnées projectives et nousavons prouvé que les deux représentations (affine et projective) sontisomorphes.Notre travail est à la fois une première approche à la formalisationde la géométrie algébrique élémentaire qui est intégré dans lesbibliothèques de Ssreflect mais qui sert aussi à la certification devéritables programmes cryptographiques
This thesis is in the domain of formalization of mathematics and ofverification of cryptographic algorithms. The implementation ofcryptographic algorithms is often a complicated task becausecryptographic programs are optimized in order to satisfy bothefficiency and security criteria. As a result it is not alwaysobvious that a cryptographique program actually corresponds to themathematical algorithm, i.e. that the program is correct. Errors incryprtographic programs may be disastrous for the security of anentire cryptosystem, hence certification of their correctness isrequired. Formal systems and proof assistants such as Coq andIsabelle-HOL are often used to provide guarantees and proofs thatcryptographic programs are correct. Elliptic curves are widely usedin cryptography, mainly as efficient groups for asymmetriccryptography. To develop formal proofs of correctness forelliptic-curve schemes, formal theory of elliptic curves is needed.Our motivation in this thesis is to formalize elliptic curve theoryusing the Coq proof assistant, which enables formal analysis ofelliptic-curve schemes and algorithms. For this purpose, we used theSsreflect extension and the mathematical libraries developed by theMathematical Components team during the formalization of the FourColor Theorem. Our central result is a formal proof of Picard’stheorem for elliptic curves: there exists an isomorphism between thePicard group of divisor classes and the group of points of an ellipticcurve. An important immediate consequence of this proposition is theassociativity of the elliptic curve group operation. Furthermore, wepresent a formal proof of correctness for the GLV algorithm for scalarmultiplication on elliptic curve groups. The GLV algorithm exploitsproperties of the elliptic curve group in order to acceleratecomputation. It is composed of three independent algorithms:multiexponentiation on a generic group, decomposition of the scalarand computing endomorphisms on algebraic curves. This developmentincludes theory about endomorphisms on elliptic curves and is morethan 5000 lines of code. An application of our formalization is alsopresented
APA, Harvard, Vancouver, ISO, and other styles
8

Kirlar, Baris Bulent. "Elliptic Curve Pairing-based Cryptography." Phd thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612613/index.pdf.

Full text
Abstract:
In this thesis, we explore the pairing-based cryptography on elliptic curves from the theoretical and implementation point of view. In this respect, we first study so-called pairing-friendly elliptic curves used in pairing-based cryptography. We classify these curves according to their construction methods and study them in details. Inspired of the work of Koblitz and Menezes, we study the elliptic curves in the form $y^{2}=x^{3}-c$ over the prime field $F_{q}$ and compute explicitly the number of points $#E(mathbb{F}_{q})$. In particular, we show that the elliptic curve $y^{2}=x^{3}-1$ over $mathbb{F}_{q}$ for the primes $q$ of the form $27A^{2}+1$ has an embedding degree $k=1$ and belongs to Scott-Barreto families in our classification. Finally, we give examples of those primes $q$ for which the security level of the pairing-based cryptographic protocols on the curve $y^{2}=x^{3}-1$ over $mathbb{F}_{q}$ is equivalent to 128-, 192-, or 256-bit AES keys. From the implementation point of view, it is well-known that one of the most important part of the pairing computation is final exponentiation. In this respect, we show explicitly how the final exponentiation is related to the linear recurrence relations. In particular, this correspondence gives that finding an algoritm to compute final exponentiation is equivalent to finding an algorithm to compute the $m$-th term of the associated linear recurrence relation. Furthermore, we list all those work studied in the literature so far and point out how the associated linear recurrence computed efficiently.
APA, Harvard, Vancouver, ISO, and other styles
9

Ozturk, Erdinc. "Low Power Elliptic Curve Cryptography." Digital WPI, 2005. https://digitalcommons.wpi.edu/etd-theses/691.

Full text
Abstract:
This M.S. thesis introduces new modulus scaling techniques for transforming a class of primes into special forms which enable efficient arithmetic. The scaling technique may be used to improve multiplication and inversion in finite fields. We present an efficient inversion algorithm that utilizes the structure of a scaled modulus. Our inversion algorithm exhibits superior performance to the Euclidean algorithm and lends itself to efficient hardware implementation due to its simplicity. Using the scaled modulus technique and our specialized inversion algorithm we develop an elliptic curve processor architecture. The resulting architecture successfully utilizes redundant representation of elements in GF(p) and provides a low-power, high speed, and small footprint specialized elliptic curve implementation. We also introduce a unified Montgomery multiplier architecture working on the extension fields GF(p), GF(2) and GF(3). With the increasing research activity for identity based encryption schemes, there has been an increasing need for arithmetic operations in field GF(3). Since we based our research on low-power and small footprint applications, we designed a unified architecture rather than having a seperate hardware for GF{3}. To the best of our knowledge, this is the first time a unified architecture was built working on three different extension fields.
APA, Harvard, Vancouver, ISO, and other styles
10

Sundriyal, Suresh. "Counting points on elliptic curves over Zp /." Online version of thesis, 2008. http://hdl.handle.net/1850/7929.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Guajardo, Jorge. "Efficient Algorithms for Elliptic Curve Cryptosystems." Digital WPI, 2000. https://digitalcommons.wpi.edu/etd-theses/185.

Full text
Abstract:
Elliptic curves are the basis for a relative new class of public-key schemes. It is predicted that elliptic curves will replace many existing schemes in the near future. It is thus of great interest to develop algorithms which allow efficient implementations of elliptic curve crypto systems. This thesis deals with such algorithms. Efficient algorithms for elliptic curves can be classified into low-level algorithms, which deal with arithmetic in the underlying finite field and high-level algorithms, which operate with the group operation. This thesis describes three new algorithms for efficient implementations of elliptic curve cryptosystems. The first algorithm describes the application of the Karatsuba-Ofman Algorithm to multiplication in composite fields GF((2n)m). The second algorithm deals with efficient inversion in composite Galois fields of the form GF((2n)m). The third algorithm is an entirely new approach which accelerates the multiplication of points which is the core operation in elliptic curve public-key systems. The algorithm explores computational advantages by computing repeated point doublings directly through closed formulae rather than from individual point doublings. Finally we apply all three algorithms to an implementation of an elliptic curve system over GF((216)11). We provide ablolute performance measures for the field operations and for an entire point multiplication. We also show the improvements gained by the new point multiplication algorithm in conjunction with the k-ary and improved k-ary methods for exponentiation.
APA, Harvard, Vancouver, ISO, and other styles
12

Ng, Chiu-wa, and 吳潮華. "Elliptic curve cryptography: a study and FPGAimplementation." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2004. http://hub.hku.hk/bib/B29706336.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Baktir, Selcuk. "Frequency domain finite field arithmetic for elliptic curve cryptography." Worcester, Mass. : Worcester Polytechnic Institute, 2008. http://www.wpi.edu/Pubs/ETD/Available/etd-050508-142044/.

Full text
Abstract:
Thesis (Ph.D.)--Worcester Polytechnic Institute.
Keywords: discrete fourier transform; ECC; elliptic curve cryptography; inversion; finite fields; multiplication; DFT; number theoretic transform; NTT. Includes bibliographical references (leaves 78-85).
APA, Harvard, Vancouver, ISO, and other styles
14

Wollinger, Thomas. "Computer architectures for cryptosystems based on hyperelliptic curves." Link to electronic version, 2001. http://www.wpi.edu/Pubs/ETD/Available/etd-0504101-114017.

Full text
Abstract:
Thesis (M.S.)--Worcester Polytechnic Institute.
Keywords: binary field arithmetic, gcd, hardware architectures, polynomial arithmetic, cryptosystem, hyperelliptic curves. Includes bibliographical references (leaves 82-87).
APA, Harvard, Vancouver, ISO, and other styles
15

Rosner, Martin Christopher. "Elliptic Curve Cryptosystems on Reconfigurable Hardware." Digital WPI, 1999. https://digitalcommons.wpi.edu/etd-theses/883.

Full text
Abstract:
"Security issues will play an important role in the majority of communication and computer networks of the future. As the Internet becomes more and more accessible to the public, security measures will have to be strengthened. Elliptic curve cryptosystems allow for shorter operand lengths than other public-key schemes based on the discrete logarithm in finite fields and the integer factorisation problem and are thus attractive for many applications. This thesis describes an implementation of a crypto engine based on elliptic curves. The underlying algebraic structure are composite Galois fields GF((2n)m) in a standard base representation. As a major new feature, the system is developed for a reconfigurable platform based on Field Programmable Gate Arrays (FPGAs). FPGAs combine the flexibility of software solutions with the security of traditional hardware implementations. In particular, it is possible to easily change all algorithm parameters such as curve coefficients, field order, or field representation. The thesis deals with the design and implementation of elliptic curve point multiplication architectures. The architectures are described in VHDL and mapped to Xilinx FPGA devices. Architectures over Galois fields of different order and representation were implemented and compared. Area and timing measurements are provided for all architectures. It is shown that a full point multiplication on elliptic curves or real-world size can be implemented on commercially available FPGAs."
APA, Harvard, Vancouver, ISO, and other styles
16

Zuccherato, Robert. "New applications of elliptic curves and function fields in cryptography." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq21407.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Ho, Sun Wah. "A cryptosystem based on chaotic and elliptic curve cryptography /." access full-text access abstract and table of contents, 2005. http://libweb.cityu.edu.hk/cgi-bin/ezdb/thesis.pl?mphil-it-b19886238a.pdf.

Full text
Abstract:
Thesis (M.Phil.)--City University of Hong Kong, 2005.
"Submitted to Department of Computer Engineering and Information Technology in partial fulfillment of the requirements for the degree of Master of Philosophy" Includes bibliographical references (leaves 109-111)
APA, Harvard, Vancouver, ISO, and other styles
18

VanAmeron, Tracy. "Implementing efficient 384-bit NIST elliptic curves over prime fields on an ARM946E /." Online version of thesis, 2008. http://hdl.handle.net/1850/6209.

Full text
Abstract:
Thesis (M.S.)--Rochester Institute of Technology, 2008.
Typescript. Supplemental CD-ROM includes a Word document copy of the thesis and PDF copies of some of the references used. Includes bibliographical references (leaves 41-42).
APA, Harvard, Vancouver, ISO, and other styles
19

Kaliski, Burton Stephen. "Elliptic curves and cryptography : a pseudorandom bit generator and other tools." Thesis, Massachusetts Institute of Technology, 1988. http://hdl.handle.net/1721.1/14709.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

baktir, selcuk. "Frequency Domain Finite Field Arithmetic for Elliptic Curve Cryptography." Digital WPI, 2008. https://digitalcommons.wpi.edu/etd-dissertations/272.

Full text
Abstract:
Efficient implementation of the number theoretic transform(NTT), also known as the discrete Fourier transform(DFT) over a finite field, has been studied actively for decades and found many applications in digital signal processing. In 1971 Schonhage and Strassen proposed an NTT based asymptotically fast multiplication method with the asymptotic complexity O(m log m log log m) for multiplication of $m$-bit integers or (m-1)st degree polynomials. Schonhage and Strassen's algorithm was known to be the asymptotically fastest multiplication algorithm until Furer improved upon it in 2007. However, unfortunately, both algorithms bear significant overhead due to the conversions between the time and frequency domains which makes them impractical for small operands, e.g. less than 1000 bits in length as used in many applications. With this work we investigate for the first time the practical application of the NTT, which found applications in digital signal processing, to finite field multiplication with an emphasis on elliptic curve cryptography(ECC). We present efficient parameters for practical application of NTT based finite field multiplication to ECC which requires key and operand sizes as short as 160 bits in length. With this work, for the first time, the use of NTT based finite field arithmetic is proposed for ECC and shown to be efficient. We introduce an efficient algorithm, named DFT modular multiplication, for computing Montgomery products of polynomials in the frequency domain which facilitates efficient multiplication in GF(p^m). Our algorithm performs the entire modular multiplication, including modular reduction, in the frequency domain, and thus eliminates costly back and forth conversions between the frequency and time domains. We show that, especially in computationally constrained platforms, multiplication of finite field elements may be achieved more efficiently in the frequency domain than in the time domain for operand sizes relevant to ECC. This work presents the first hardware implementation of a frequency domain multiplier suitable for ECC and the first hardware implementation of ECC in the frequency domain. We introduce a novel area/time efficient ECC processor architecture which performs all finite field arithmetic operations in the frequency domain utilizing DFT modular multiplication over a class of Optimal Extension Fields(OEF). The proposed architecture achieves extension field modular multiplication in the frequency domain with only a linear number of base field GF(p) multiplications in addition to a quadratic number of simpler operations such as addition and bitwise rotation. With its low area and high speed, the proposed architecture is well suited for ECC in small device environments such as smart cards and wireless sensor networks nodes. Finally, we propose an adaptation of the Itoh-Tsujii algorithm to the frequency domain which can achieve efficient inversion in a class of OEFs relevant to ECC. This is the first time a frequency domain finite field inversion algorithm is proposed for ECC and we believe our algorithm will be well suited for efficient constrained hardware implementations of ECC in affine coordinates.
APA, Harvard, Vancouver, ISO, and other styles
21

Lutz, Jonathan. "High Performance Elliptic Curve Cryptographic Co-processor." Thesis, University of Waterloo, 2003. http://hdl.handle.net/10012/855.

Full text
Abstract:
In FIPS 186-2, NIST recommends several finite fields to be used in the elliptic curve digital signature algorithm (ECDSA). Of the ten recommended finite fields, five are binary extension fields with degrees ranging from 163 to 571. The fundamental building block of the ECDSA, like any ECC based protocol, is elliptic curve scalar multiplication. This operation is also the most computationally intensive. In many situations it may be desirable to accelerate the elliptic curve scalar multiplication with specialized hardware. In this thesis a high performance elliptic curve processor is developed which is optimized for the NIST binary fields. The architecture is built from the bottom up starting with the field arithmetic units. The architecture uses a field multiplier capable of performing a field multiplication over the extension field with degree 163 in 0. 060 microseconds. Architectures for squaring and inversion are also presented. The co-processor uses Lopez and Dahab's projective coordinate system and is optimized specifically for Koblitz curves. A prototype of the processor has been implemented for the binary extension field with degree 163 on a Xilinx XCV2000E FPGA. The prototype runs at 66 MHz and performs an elliptic curve scalar multiplication in 0. 233 msec on a generic curve and 0. 075 msec on a Koblitz curve.
APA, Harvard, Vancouver, ISO, and other styles
22

Woodbury, Adam D. "Efficient algorithms for elliptic curve cryptosystems on embedded systems." Link to electronic version, 2001. http://www.wpi.edu/Pubs/ETD/Available/etd-1001101-195321/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Baktir, Selcuk. "Efficient algorithms for finite fields, with applications in elliptic curve cryptography." Link to electronic thesis, 2003. http://www.wpi.edu/Pubs/ETD/Available/etd-0501103-132249.

Full text
Abstract:
Thesis (M.S.)--Worcester Polytechnic Institute.
Keywords: multiplication; OTF; optimal extension fields; finite fields; optimal tower fields; cryptography; OEF; inversion; finite field arithmetic; elliptic curve cryptography. Includes bibliographical references (p. 50-52).
APA, Harvard, Vancouver, ISO, and other styles
24

Man, Kwan Pok. "Security enhancement on the cryptosystem based on chaotic and elliptic curve cryptography /." access abstract and table of contents access full-text, 2006. http://libweb.cityu.edu.hk/cgi-bin/ezdb/thesis.pl?mphil-ee-b21471526a.pdf.

Full text
Abstract:
Thesis (M.Phil.)--City University of Hong Kong, 2006.
"Submitted to Department of Electronic Engineering in partial fulfillment of the requirements for the degree of Master of Philosophy" Includes bibliographical references (leaves 93-97)
APA, Harvard, Vancouver, ISO, and other styles
25

Maire, Steven M. "Inverted Edwards Coordinates (Maire Model of an Elliptic Curve)." Case Western Reserve University School of Graduate Studies / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=case1396888557.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Alice, Reinaudo. "Empirical testing of pseudo random number generators based on elliptic curves." Thesis, Linnéuniversitetet, Institutionen för matematik (MA), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-44875.

Full text
Abstract:
An introduction on random numbers, their history and applications is given, along with explanations of different methods currently used to generate them. Such generators can be of different kinds, and in particular they can be based on physical systems or algorithmic procedures. The latter type of procedures gives rise to pseudo-random number generators. Specifically, several such generators which are based on elliptic curves are examined. Therefore, in order to ease understanding, a basic primer on elliptic curves over fields and the operations arising from their group structure is also provided. Empirical tests to verify randomness of generated sequences are then considered. Afterwards, there are some statistical considerations and observations about theoretical properties of the generators at hand, useful in order to use them optimally. Finally, several randomly generated curves are created and used to produce pseudo-random sequences which are then tested by means of the previously described generators. In the end, an analysis of the results is attempted and some final considerations are made.
APA, Harvard, Vancouver, ISO, and other styles
27

Głuszek, Gregory A. "Optimizing scalar multiplication for Koblitz curves using hybrid FPGAs /." Online version of thesis, 2009. http://hdl.handle.net/1850/10761.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Wozny, Peter. "Elliptic curve cryptography: generation and validation of domain parameters in binary Galois Fields /." Online version of thesis, 2008. http://hdl.handle.net/1850/9695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Huang, Jian. "FPGA Implementations of Elliptic Curve Cryptography and Tate Pairing over Binary Field." Thesis, University of North Texas, 2007. https://digital.library.unt.edu/ark:/67531/metadc3963/.

Full text
Abstract:
Elliptic curve cryptography (ECC) is an alternative to traditional techniques for public key cryptography. It offers smaller key size without sacrificing security level. Tate pairing is a bilinear map used in identity based cryptography schemes. In a typical elliptic curve cryptosystem, elliptic curve point multiplication is the most computationally expensive component. Similarly, Tate pairing is also quite computationally expensive. Therefore, it is more attractive to implement the ECC and Tate pairing using hardware than using software. The bases of both ECC and Tate pairing are Galois field arithmetic units. In this thesis, I propose the FPGA implementations of the elliptic curve point multiplication in GF (2283) as well as Tate pairing computation on supersingular elliptic curve in GF (2283). I have designed and synthesized the elliptic curve point multiplication and Tate pairing module using Xilinx's FPGA, as well as synthesized all the Galois arithmetic units used in the designs. Experimental results demonstrate that the FPGA implementation can speedup the elliptic curve point multiplication by 31.6 times compared to software based implementation. The results also demonstrate that the FPGA implementation can speedup the Tate pairing computation by 152 times compared to software based implementation.
APA, Harvard, Vancouver, ISO, and other styles
30

Cai, Zhi, and 蔡植. "A study on parameters generation of elliptic curve cryptosystem over finite fields." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2001. http://hub.hku.hk/bib/B31225639.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Ozturk, Erdinc. "Efficient and tamper-resilient architectures for pairing based cryptography." Worcester, Mass. : Worcester Polytechnic Institute, 2009. http://www.wpi.edu/Pubs/ETD/Available/etd-010409-225223/.

Full text
Abstract:
Dissertation (Ph.D.)--Worcester Polytechnic Institute.
Keywords: Pairing Based Cryptography; Identity Based Cryptography; Tate Pairing; Montgomery Multiplication; Robust Codes; Fault Detection; Tamper-Resilient Architecture. Includes bibliographical references (leaves 97-104).
APA, Harvard, Vancouver, ISO, and other styles
32

Salin, Hannes. "Pairing-Based Cryptography in Theory and Practice." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-184566.

Full text
Abstract:
In this thesis we review bilinear maps and their usage in modern cryptography, i.e. the theoretical framework of pairing-based cryptography including the underlying mathematical hardness assumptions. The theory is based on algebraic structures, elliptic curves and divisor theory from which explicit constructions of pairings can be defined. We take a closer look at the more commonly known Weil pairing as an example. We also elaborate on pairings in practice and give numerical examples of how pairing-friendly curves are defined and how different type of cryptographical schemes works.
APA, Harvard, Vancouver, ISO, and other styles
33

Huang, Jian Li Hao. "FPGA implementations of elliptic curve cryptography and Tate pairing over binary field." [Denton, Tex.] : University of North Texas, 2007. http://digital.library.unt.edu/permalink/meta-dc-3963.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Karakoyunlu, Deniz. "Efficient Side-Channel Aware Elliptic Curve Cryptosystems over Prime Fields." Digital WPI, 2010. https://digitalcommons.wpi.edu/etd-dissertations/338.

Full text
Abstract:
"Elliptic Curve Cryptosystems (ECCs) are utilized as an alternative to traditional public-key cryptosystems, and are more suitable for resource limited environments due to smaller parameter size. In this dissertation we carry out a thorough investigation of side-channel attack aware ECC implementations over finite fields of prime characteristic including the recently introduced Edwards formulation of elliptic curves, which have built-in resiliency against simple side-channel attacks. We implement Joye's highly regular add-always scalar multiplication algorithm both with the Weierstrass and Edwards formulation of elliptic curves. We also propose a technique to apply non-adjacent form (NAF) scalar multiplication algorithm with side-channel security using the Edwards formulation. Our results show that the Edwards formulation allows increased area-time performance with projective coordinates. However, the Weierstrass formulation with affine coordinates results in the simplest architecture, and therefore has the best area-time performance as long as an efficient modular divider is available."
APA, Harvard, Vancouver, ISO, and other styles
35

Bradley, Tatiana. "A Cryptographic Attack: Finding the Discrete Logarithm on Elliptic Curves of Trace One." Scholarship @ Claremont, 2015. http://scholarship.claremont.edu/scripps_theses/716.

Full text
Abstract:
The crux of elliptic curve cryptography, a popular mechanism for securing data, is an asymmetric problem. The elliptic curve discrete logarithm problem, as it is called, is hoped to be generally hard in one direction but not the other, and it is this asymmetry that makes it secure. This paper describes the mathematics (and some of the computer science) necessary to understand and compute an attack on the elliptic curve discrete logarithm problem that works in a special case. The algorithm, proposed by Nigel Smart, renders the elliptic curve discrete logarithm problem easy in both directions for elliptic curves of so-called "trace one." The implication is that these curves can never be used securely for cryptographic purposes. In addition, it calls for further investigation into whether or not the problem is hard in general.
APA, Harvard, Vancouver, ISO, and other styles
36

Gwalani, Kapil A. "Design and evaluation of an "FPGA based" hardware accelerator for elliptic curve cryptography point multiplication a thesis presented to the faculty of the Graduate School, Tennessee Technological University /." Click to access online, 2009. http://proquest.umi.com/pqdweb?index=0&did=2000377711&SrchMode=1&sid=6&Fmt=6&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1277483243&clientId=28564.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Sartori, Karina Kfouri. "Curvas elipticas : algumas aplicações em criptografia e em teoria dos numeros." [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306310.

Full text
Abstract:
Orientador: Paulo Roberto Brumatti
Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-06T03:04:00Z (GMT). No. of bitstreams: 1 Sartori_KarinaKfouri_M.pdf: 722364 bytes, checksum: c380a542b9451e40e6788d0e8987b556 (MD5) Previous issue date: 2006
Resumo: O objetivo central de estudo neste trabalho é introduzir o conceito de curvas elípticas. Tal assunto é clássico dentro da geometria algébrica e tem aplicações em Criptografia e Teoria dos Números. Neste trabalho descrevemos algumas delas: em Criptografia, apresentamos sistemas análogos aos de Diffie-Helman, Massey-Omura e ElGamal que são baseados no grupo abeliano finito de um curva elíptica definida sobre um corpo finito. Em Teoria dos Números descrevemos o método de Lenstra para descobrir fatores primos de um número inteiro, que, por sinal, também tem uma relação muito estreita com certo tipo de sistema criptográfico. Ainda em Teoria dos Números, apresentamos uma caracterização de números congruentes através da estrutura do grupo de uma determinada curva elíptica
Abstract: The central objective of study in this work is to introduce the concept of elliptic curves. Such subject is classic inside of algebraic geometry and has applications in Cryptography and Number Theory. In this work we describe some of them: in Cryptography, we present analogous systems to the ones of Diffie-Helman, Massey-Omura and ElGamal that are based on the finite abelian group of an elliptic curve defined over a finite field. In Number Theory, we describe the method of Lenstra to discover prime factors of a whole number, that, by the way, also has a very narrow relation with certain type of cryptosystem. Still in Number Theory, we present a characterization of congruentes numbers through the structure of the group of one determined elliptic curve
Mestrado
Algebra
Mestre em Matemática
APA, Harvard, Vancouver, ISO, and other styles
38

Silva, Rosemberg André da 1969. "Analise de seleção de parametros em criptografia baseada em curvas elipticas." [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/276086.

Full text
Abstract:
Orientador: Ricardo Dahab
Dissertação (mestrado profissional) - Universidade Estadual de Campinas, Instituto de Computação
Made available in DSpace on 2018-08-11T02:09:49Z (GMT). No. of bitstreams: 1 Silva_RosembergAndreda_M.pdf: 824860 bytes, checksum: 48ed40bc241415f1692ca283d3e1f65b (MD5) Previous issue date: 2006
Resumo: A escolha dos parâmetros sobre os quais uma dada implementação de Criptografia sobre Curvas Elípticas baseia-se tem influência direta sobre o desempenho das operações associadas bem como sobre seu grau de segurança. Este trabalho visa analisar a forma como os padrões mais usados na atulalidade lidam com este processo de seleção, mostrando as implicações que tais escolhas acarretam
Abstract: The choice of parameters associated with a given implementation of ECC (Elliptic Curve Cryptography) has direct impact on its performance and security leveI. This dissertation aims to compare the most common standards used now-a-days, taking into account their selection criteria and their implications on performance and security
Mestrado
Engenharia de Software
Mestre em Ciência da Computação
APA, Harvard, Vancouver, ISO, and other styles
39

Hugounenq, Cyril. "Volcans et calcul d'isogénies." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLV050/document.

Full text
Abstract:
Le problème du calcul d'isogénies est apparu dans l'algorithme SEA de comptage de points de courbes elliptiques définies sur des corps finis. L'apparition de nouvelles applications du calcul d'isogénies (crypto système à trappe, fonction de hachage, accélération de la multiplication scalaire, crypto système post quantique) ont motivé par ailleurs la recherche d'algorithmes plus rapides en dehors du contexte SEA. L'algorithme de Couveignes (1996), malgré ses améliorations par De Feo (2011), présente la meilleure complexité en le degré de l'isogénie mais ne peut s'appliquer dans le cas de grande caractéristique.L'objectif de cette thèse est donc de présenter une modification de l'algorithme de Couveignes (1996) utilisable en toute caractéristique avec une complexité en le degré de l'isogénie similaire à celui de Couveignes (1996).L'amélioration de l'algorithme de Couveignes (1996) se fait à travers deux axes: la construction de tours d'extensions de degré $ell$ efficaces pour rendre les opérations plus rapides, à l'image des travaux de De Feo (2011), et la détermination d'ensemble de points d'ordre $ell^k$ stables sous l'action d'isogénies.L'apport majeur de cette thèse est fait sur le second axe pour lequel nous étudions les graphes d'isogénies dans lesquels les points représentent les courbes elliptiques et les arrêtes représentent les isogénies. Nous utilisons pour notre travail les résultats précédents de Kohel (1996), Fouquet et Morain (2001), Miret emph{et al.} (2005,2006,2008), Ionica et Joux (2001). Nous présentons donc dans cette thèse, à l'aide d'une étude de l'action du Frobenius sur les points d'ordre $ell^k$, un nouveau moyen de déterminer les directions dans le graphe (volcan) d'isogénies
Isogeny computation problem appeared in the SEA algorithm to count the number of points on an elliptic curve defined over a finite field. Algorithms using ideas of Elkies (1998) solved this problem with satisfying results in this context. The appearance of new applications of the isogeny computation problem (trapdoor crypto system, hash function, scalar multiplication acceleration, post quantic crypto system) motivated the search for a faster algorithm outside the SEA context. Couveignes's algorithm (1996) offers the best complexity in the degree of the isogeny but, despite improvements by DeFeo (2011), it proves being unpractical with great characteristic.The aim of this work is to present a modified version of Couveignes's algorithm (1996) that maintains the same complexity in the degree of the isogeny but is practical with any characteristic.Two approaches contribute to the improvement of Couveignes's algorithm (1996) : firstly, the construction of towers of degree $ell$ extensions which are efficient for faster arithmetic operations, as used in the work of De Feo (2011), and secondly, the specification of sets of points of order $ell^k$ that are stable under the action of isogenies.The main contribution of this document is done following the second approach. Our work uses the graph of isogeny where the vertices are elliptic curves and the edges are isogenies. We based our work on the previous results of David Kohel (1996), Fouquet and Morain (2001), Miret emph{& al.} (2005,2006,2008), Ionica and Joux (2001). We therefore present in this document, through the study of the action of the Frobenius endomorphism on points of order $ell^k$, a new way to specify directions in the isogeny graph (volcano)
APA, Harvard, Vancouver, ISO, and other styles
40

Krisell, Martin. "Elliptic Curve Digital Signatures in RSA Hardware." Thesis, Linköpings universitet, Informationskodning, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-81084.

Full text
Abstract:
A digital signature is the electronic counterpart to the hand written signature. It can prove the source and integrity of any digital data, and is a tool that is becoming increasingly important as more and more information is handled electronically. Digital signature schemes use a pair of keys. One key is secret and allows the owner to sign some data, and the other is public and allows anyone to verify the signature. Assuming that the keys are large enough, and that a secure scheme is used, it is impossible to find the private key given only the public key. Since a signature is valid for the signed message only, this also means that it is impossible to forge a digital signature. The most well-used scheme for constructing digital signatures today is RSA, which is based on the hard mathematical problem of integer factorization. There are, however, other mathematical problems that are considered even harder, which in practice means that the keys can be made shorter, resulting in a smaller memory footprint and faster computations. One such alternative approach is using elliptic curves. The underlying mathematical problem of elliptic curve cryptography is different to that of RSA, however some structure is shared. The purpose of this thesis was to evaluate the performance of elliptic curves compared to RSA, on a system designed to efficiently perform the operations associated with RSA. The discovered results are that the elliptic curve approach offers some great advantages, even when using RSA hardware, and that these advantages increase significantly if special hardware is used. Some usage cases of digital signatures may, for a few more years, still be in favor of the RSA approach when it comes to speed. For most cases, however, an elliptic curve system is the clear winner, and will likely be dominant within a near future.
En digital signatur är den elektroniska motsvarigheten till en handskriven signatur. Den kan bevisa källa och integritet för valfri data, och är ett verktyg som blir allt viktigare i takt med att mer och mer information hanteras digitalt. Digitala signaturer använder sig av två nycklar. Den ena nyckeln är hemlig och tillåter ägaren att signera data, och den andra är offentlig och tillåter vem som helst att verifiera signaturen. Det är, under förutsättning att nycklarna är tillräck- ligt stora och att det valda systemet är säkert, omöjligt att hitta den hemliga nyckeln utifrån den offentliga. Eftersom en signatur endast är giltig för datan som signerades innebär detta också att det är omöjligt att förfalska en digital signatur. Den mest välanvända konstruktionen för att skapa digitala signaturer idag är RSA, som baseras på det svåra matematiska problemet att faktorisera heltal. Det finns dock andra matematiska problem som anses vara ännu svårare, vilket i praktiken innebär att nycklarna kan göras kortare, vilket i sin tur leder till att mindre minne behövs och att beräkningarna går snabbare. Ett sådant alternativ är att använda elliptiska kurvor. Det underliggande matematiska problemet för kryptering baserad på elliptiska kurvor skiljer sig från det som RSA bygger på, men de har en viss struktur gemensam. Syftet med detta examensarbete var att utvärdera hur elliptiska kurvor presterar jämfört med RSA, på ett system som är designat för att effektivt utföra RSA. De funna resultaten är att metoden med elliptiska kurvor ger stora fördelar, även om man nyttjar hårdvara avsedd för RSA, och att dessa fördelar ökar mångfaldigt om speciell hårdvara används. För några användarfall av digitala signaturer kan, under några år framöver, RSA fortfarande vara fördelaktigt om man bara tittar på hastigheten. För de flesta fall vinner dock elliptiska kurvor, och kommer troligen vara dominant inom kort.
APA, Harvard, Vancouver, ISO, and other styles
41

Ghammam, Loubna. "Utilisation des couplages en cryptographie asymétrique pour la micro-électronique." Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1S081/document.

Full text
Abstract:
Les couplages sont des outils mathématiques introduits par André Weil en 1948. Ils sont un sujet très en vogue depuis une dizaine d'années en cryptographie asymétrique. Ils permettent en effet de réaliser des opérations cryptographiques impossible à réaliser simplement autrement tel que la signature courte et la cryptographie basée sur l'identité. Ces dernières années, le calcul des couplages est devenu plus facile grâce à l'introduction de nouvelles méthodes de calculs mathématiques particulièrement efficaces sur les courbes elliptiques dites les courbes bien adaptées aux couplages. Aujourd'hui, nous sommes au stade de transfert de cette technologie, de la théorie vers la mise en œuvre pratique, sur des composants électroniques. Ce transfert soulève de nombreuses problématiques qui s'avèrent difficile à surmonter à cause de la différence de culture scientifique entre mathématiciens et micro-électroniciens. Dans le présent document, en premier lieu, nous avons étudié le problème de l'implémentation du couplage dans des environnements restreints. En effet, le calcul du couplage de Tate, ou aussi de l'une de ses variantes, nécessite plusieurs variables pour être implémenté, par conséquent, il nécessite une bonne partie de la mémoire du composant électronique sur lequel nous souhaitons implémenter un tel couplage.Dans ce contexte, en faisant des optimisations mathématiques, nous avons pu implémenté ces couplages dans des environnements retreints. Le deuxième problème que nous avons traité dans cette thèse est celui de la sécurité des protocoles cryptographiques basés sur les couplages. Dans ce contexte, puisque les couplages sur les courbes elliptiques sont censés d'être matériellement attaqués, nous devons le protéger contre ces attaques. Nous avons étudié les attaques sur les couplages et nous avons proposé une contre-mesure
Les couplages sont des outils mathématiques introduits par André Weil en 1948. Ils sont un sujet très en vogue depuis une dizaine d'années en cryptographie asymétrique. Ils permettent en effet de réaliser des opérations cryptographiques impossible à réaliser simplement autrement tel que la signature courte et la cryptographie basée sur l'identité. Ces dernières années, le calcul des couplages est devenu plus facile grâce à l'introduction de nouvelles méthodes de calculs mathématiques particulièrement efficaces sur les courbes elliptiques dites les courbes bien adaptées aux couplages. Aujourd'hui, nous sommes au stade de transfert de cette technologie, de la théorie vers la mise en œuvre pratique, sur des composants électroniques. Ce transfert soulève de nombreuses problématiques qui s'avèrent difficile à surmonter à cause de la différence de culture scientifique entre mathématiciens et micro-électroniciens. Dans le présent document, en premier lieu, nous avons étudié le problème de l'implémentation du couplage dans des environnements restreints. En effet, le calcul du couplage de Tate, ou aussi de l'une de ses variantes, nécessite plusieurs variables pour être implémenté, par conséquent, il nécessite une bonne partie de la mémoire du composant électronique sur lequel nous souhaitons implémenter un tel couplage.Dans ce contexte, en faisant des optimisations mathématiques, nous avons pu implémenté ces couplages dans des environnements retreints. Le deuxième problème que nous avons traité dans cette thèse est celui de la sécurité des protocoles cryptographiques basés sur les couplages. Dans ce contexte, puisque les couplages sur les courbes elliptiques sont censés d'être matériellement attaqués, nous devons le protéger contre ces attaques. Nous avons étudié les attaques sur les couplages et nous avons proposé une contre-mesure
APA, Harvard, Vancouver, ISO, and other styles
42

Orlando, Gerardo. "Efficient elliptic curve processor architectures for field programmable logic." Link to electronic thesis, 2002. http://www.wpi.edu/Pubs/ETD/Available/etd-0327102-103635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Wollinger, Thomas Josef. "Computer Architectures for Cryptosystems Based on Hyperelliptic Curves." Digital WPI, 2001. https://digitalcommons.wpi.edu/etd-theses/721.

Full text
Abstract:
Security issues play an important role in almost all modern communication and computer networks. As Internet applications continue to grow dramatically, security requirements have to be strengthened. Hyperelliptic curve cryptosystems (HECC) allow for shorter operands at the same level of security than other public-key cryptosystems, such as RSA or Diffie-Hellman. These shorter operands appear promising for many applications. Hyperelliptic curves are a generalization of elliptic curves and they can also be used for building discrete logarithm public-key schemes. A major part of this work is the development of computer architectures for the different algorithms needed for HECC. The architectures are developed for a reconfigurable platform based on Field Programmable Gate Arrays (FPGAs). FPGAs combine the flexibility of software solutions with the security of traditional hardware implementations. In particular, it is possible to easily change all algorithm parameters such as curve coefficients and underlying finite field. In this work we first summarized the theoretical background of hyperelliptic curve cryptosystems. In order to realize the operation addition and doubling on the Jacobian, we developed architectures for the composition and reduction step. These in turn are based on architectures for arithmetic in the underlying field and for arithmetic in the polynomial ring. The architectures are described in VHDL (VHSIC Hardware Description Language) and the code was functionally verified. Some of the arithmetic modules were also synthesized. We provide estimates for the clock cycle count for a group operation in the Jacobian. The system targeted was HECC of genus four over GF(2^41).
APA, Harvard, Vancouver, ISO, and other styles
44

Nakamura, Dionathan. "Segurança do bit menos significativo no RSA e em curvas elípticas." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/45/45134/tde-14032012-213011/.

Full text
Abstract:
Sistemas criptográficos como o RSA e o Diffie-Hellman sobre Curvas Elípticas (DHCE) têm fundamento em problemas computacionais considerados difíceis, por exemplo, o problema do logaritmo (PLD) e o problema da fatoração de inteiros (PFI). Diversos trabalhos têm relacionado a segurança desses sistemas com os problemas subjacentes. Também é investigada a segurança do LSB (bit menos significativo) da chave secreta no DHCE (no RSA é o LSB da mensagem) com relação à segurança de toda a chave. Nesses trabalhos são apresentados algoritmos que conseguem inverter os sistemas criptográficos citados fazendo uso de oráculos que predizem o LSB. Nesta dissertação, fazemos a implementação de dois desses algoritmos. Identificamos parâmetros críticos e mudamos a amostragem do formato original. Com essa mudança na amostragem conseguimos uma melhora significativa nos tempos de execução. Um dos algoritmos (ACGS), para valores práticos do RSA, era mais lento que a solução para o PFI, com nosso resultado passou a ser mais veloz. Ainda, mostramos como provas teóricas podem não definir de maneira precisa o tempo de execução de um algoritmo.
Cryptographic systems like RSA and Elliptic Curve Diffie-Hellman (DHCE) is based on computational problems that are considered hard, e.g. the discrete logarithm (PLD) and integer factorization (PFI) problems. Many papers investigated the relationship between the security of these systems to the computational difficulty of the underlying problems. Moreover, they relate the bit security, actually the LSB (Least Significant Bit), of the secret key in the DHCE and the LSB of the message in the RSA, to the security of the whole key. In these papers, algorithms are presented to invert these cryptographic systems making use of oracles that predict the LSB. In this dissertation we implement two of them. Critical parameters are identified and the original sampling is changed. With the modified sampling we achieve an improvement in the execution times. For practical values of the RSA, the algorithm ACGS becomes faster than the PFI. Moreover, we show how theoretical proofs may lead to inaccurate timing estimates.
APA, Harvard, Vancouver, ISO, and other styles
45

Angulo, Rigo Julian Osorio. "Criptografia de curvas elípticas." Universidade Federal de Goiás, 2017. http://repositorio.bc.ufg.br/tede/handle/tede/6976.

Full text
Abstract:
Submitted by JÚLIO HEBER SILVA (julioheber@yahoo.com.br) on 2017-03-20T17:15:17Z No. of bitstreams: 2 Dissertação - Rigo Julian Osorio Angulo - 2017.pdf: 1795543 bytes, checksum: 4342f624ff7c02485e9e888135bcbc18 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-03-21T12:06:48Z (GMT) No. of bitstreams: 2 Dissertação - Rigo Julian Osorio Angulo - 2017.pdf: 1795543 bytes, checksum: 4342f624ff7c02485e9e888135bcbc18 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2017-03-21T12:06:48Z (GMT). No. of bitstreams: 2 Dissertação - Rigo Julian Osorio Angulo - 2017.pdf: 1795543 bytes, checksum: 4342f624ff7c02485e9e888135bcbc18 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-03-15
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
According to history, the main objective of cryptography was always to provide security in communications, to keep them out of the reach of unauthorized entities. However, with the advent of the era of computing and telecommunications, applications of encryption expanded to offer security, to the ability to: verify if a message was not altered by a third party, to be able to verify if a user is who claims to be, among others. In this sense, the cryptography of elliptic curves, offers certain advantages over their analog systems, referring to the size of the keys used, which results in the storage capacity of the devices with certain memory limitations. Thus, the objective of this work is to offer the necessary mathematical tools for the understanding of how elliptic curves are used in public key cryptography.
Segundo a história, o objetivo principal da criptografia sempre foi oferecer segurança nas comunicações, para mantê-las fora do alcance de entidades não autorizadas. No entanto, com o advento da era da computação e as telecomunicações, as aplicações da criptografia se expandiram para oferecer além de segurança, a capacidade de: verificar que uma mensagem não tenha sido alterada por um terceiro, poder verificar que um usuário é quem diz ser, entre outras. Neste sentido, a criptografia de curvas elípticas, oferece certas ventagens sobre seu sistemas análogos, referentes ao tamanho das chaves usadas, redundando isso na capacidade de armazenamento dos dispositivos com certas limitações de memória. Assim, o objetivo deste trabalho é fornecer ao leitor as ferramentas matemáticas necessá- rias para a compreensão de como as curvas elípticas são usadas na criptografia de chave pública.
APA, Harvard, Vancouver, ISO, and other styles
46

Ramsey, Glenn. "Hardware/software optimizations for elliptic curve scalar multiplication on hybrid FPGAs /." Online version of thesis, 2008. http://hdl.handle.net/1850/7765.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Gouvêa, Conrado Porto Lopes 1984. "Software implementation of cryptography for wireless sensors and mobile processors = Implementação em software de criptografia para sensores sem fio e processadores móveis." [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/275612.

Full text
Abstract:
Orientador: Julio César López Hernández
Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Computação
Made available in DSpace on 2018-08-24T00:18:34Z (GMT). No. of bitstreams: 1 Gouvea_ConradoPortoLopes_D.pdf: 3342900 bytes, checksum: b3a072bdbc369f1a1fffd95e1c1f4365 (MD5) Previous issue date: 2013
Resumo: A implementação eficiente e segura de esquemas criptográficos é um aspecto importante da criptografia aplicada. Neste trabalho, foca-se na implementação em software de algoritmos relevantes da criptografia de curvas elípticas (CCE), criptografia baseada em emparelhamentos (CBE), e de cifração autenticada (CA). Duas plataformas computacionais modernas foram utilizadas: o microcontrolador MSP430, bastante utilizado em redes de sensores sem fio, e o processador ARM, amplamente empregado por dispositivos móveis como smartphones e tablets que estão se tornando cada vez mais populares. Técnicas para a melhoria de desempenho em software utilizando conjuntos de instruções, periféricos e melhorias algorítmicas são descritas. A implementação segura, cujo objetivo é prevenir certos ataques de canais secundários, também é estudada e novas técnicas são providas para reduzir seu impacto na velocidade em processadores ARM. Tais resultados contribuem para a construção eficiente e segura de sistemas criptográficos em sensores sem fio e processadores móveis
Abstract: The efficient and secure implementation of cryptographic schemes is an important aspect of practical cryptography. In this work, we focus on the software implementation of relevant algorithms in elliptic curve cryptography (ECC), pairing-based cryptography (PBC) and in authenticated encryption (AE). Two modern computational platforms were targeted: the MSP430 microcontroller often used in wireless sensor networks, and the ARM processor, widely employed in mobile devices such as smartphones and tablets which are increasingly becoming ubiquitous. Techniques for improving the software performance by taking advantage of instruction sets, peripherals and algorithmic enhancements are described. The secure implementation, which aims at thwarting common side-channel attacks, is also studied and new techniques are provided for improving its efficiency on ARM processors. These results contribute to the building of efficient and secure cryptographic systems on wireless sensors and mobile processors
Doutorado
Ciência da Computação
Doutor em Ciência da Computação
APA, Harvard, Vancouver, ISO, and other styles
48

Métairie, Jérémy. "Contribution aux opérateurs arithmétiques GF(2m) et leurs applications à la cryptographie sur courbes elliptiques." Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1S023/document.

Full text
Abstract:
La cryptographie et la problématique de la sécurité informatique deviennent des sujets de plus en plus prépondérants dans un monde hyper connecté et souvent embarqué. La cryptographie est un domaine dont l'objectif principal est de ''protéger'' l'information, de la rendre inintelligible à ceux ou à celles à qui elle n'est pas destinée. La cryptographie repose sur des algorithmes solides qui s'appuient eux-mêmes sur des problèmes mathématiques réputés difficiles (logarithme discret, factorisation des grands nombres etc). Bien qu'il soit complexe, sur papier, d'attaquer ces systèmes de protection, l'implantation matérielle ou logicielle, si elle est négligée (non protégée contre les attaques physiques), peut apporter à des entités malveillantes des renseignements complémentaires (temps d’exécution, consommation d'énergie etc) : on parle de canaux cachés ou de canaux auxiliaires. Nous avons, dans cette thèse, étudié deux aspects. Le premier est l'apport de nouvelles idées algorithmiques pour le calcul dans les corps finis binaires GF(2^m) utilisés dans le cadre de la cryptographie sur courbes elliptiques. Nous avons proposé deux nouvelles représentations des éléments du corps : la base normale permutée et le Phi-RNS. Ces deux nouveautés algorithmiques ont fait l'objet d'implémentations matérielles en FPGA dans laquelle nous montrons que ces premières, sous certaines conditions, apportent un meilleur compromis temps-surface. Le deuxième aspect est la protection d'un crypto-processeur face à une attaque par canaux cachés (dite attaque par «templates»). Nous avons implémenté, en VHDL, un crypto-processeur complet et nous y avons exécuté, en parallèle, des algorithmes de «double-and-add» et «halve-and-add» afin d'accélérer le calcul de la multiplication scalaire et de rendre, de par ce même parallélisme, notre crypto-processeur moins vulnérable face à certaines attaques par canaux auxiliaires. Nous montrons que le parallélisme seul des calculs ne suffira pas et qu'il faudra marier le parallélisme à des méthodes plus conventionnelles pour assurer, à l'implémentation, une sécurité raisonnable
Cryptography and security market is growing up at an annual rate of 17 % according to some recent studies. Cryptography is known to be the science of secret. It is based on mathematical hard problems as integers factorization, the well-known discrete logarithm problem. Although those problems are trusted, software or hardware implementations of cryptographic algorithms can suffer from inherent weaknesses. Execution time, power consumption (...) can differ depending on secret informations such as the secret key. Because of that, some malicious attacks could be used to exploit these weak points and therefore can be used to break the whole crypto-system. In this thesis, we are interested in protecting our physical device from the so called side channel attacks as well as interested in proposing new GF(2^m) multiplication algorithms used over elliptic curves cryptography. As a protection, we first thought that parallel scalar multiplication (using halve-and-add and double-and-add algorithms both executed at the same time) would be a great countermeasure against template attacks. We showed that it was not the case and that parallelism could not be used as protection by itself : it had to be combined with more conventional countermeasures. We also proposed two new GF(2^m) representations we respectively named permuted normal basis (PNB) and Phi-RNS. Those two representations, under some requirements, can offer a great time-area trade-off on FPGAs
APA, Harvard, Vancouver, ISO, and other styles
49

Falk, Jenny. "On Pollard's rho method for solving the elliptic curve discrete logarithm problem." Thesis, Linnéuniversitetet, Institutionen för matematik (MA), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-85516.

Full text
Abstract:
Cryptosystems based on elliptic curves are in wide-spread use, they are considered secure because of the difficulty to solve the elliptic curve discrete logarithm problem. Pollard's rho method is regarded as the best method for attacking the logarithm problem to date, yet it is still not efficient enough to break an elliptic curve cryptosystem. This is because its time complexity is O(√n) and for uses in cryptography the value of n will be very large. The objective of this thesis is to see if there are ways to improve Pollard's rho method. To do this, we study some modifications of the original functions used in the method. We also investigate some different functions proposed by other researchers to see if we can find a version that will improve the performance. From the experiments conducted on these modifications and functions, we can conclude that we get an improvement in the performance for some of them.
APA, Harvard, Vancouver, ISO, and other styles
50

Herbrych, Daniel. "Generování eliptických křivek pro kryptografický protokol." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2019. http://www.nusl.cz/ntk/nusl-401955.

Full text
Abstract:
This thesis deals with creation of elliptic curves generator. MIRACL library and C++ language are used. One of important issues is to determine the order of the elliptic curve group. SEA algorithm (Schoof–Elkies–Atkin) is used for point counting on the elliptic curve. Method with this algorithm is called as counting points method, SEA method etc. Next method is CM method. Both methods are available in the generator. The measurements of dependency of basic operations speed on the group size and parameters were done. ECIES hybrid scheme was implemented. It is practical verification of proper functionality of the generator. Another benchmarks measured dependency of ECIES encryption and decryption on various parameters, e.g. size of the curve, generating method, message size etc.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography