Journal articles on the topic 'Curved meshes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Curved meshes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Rangarajan, Ramsharan, and Adrián J. Lew. "Universal meshes: A method for triangulating planar curved domains immersed in nonconforming meshes." International Journal for Numerical Methods in Engineering 98, no. 4 (March 4, 2014): 236–64. http://dx.doi.org/10.1002/nme.4624.
Full textKilian, Martin, Anthony S. Ramos Cisneros, Christian Müller, and Helmut Pottmann. "Meshes with Spherical Faces." ACM Transactions on Graphics 42, no. 6 (December 5, 2023): 1–19. http://dx.doi.org/10.1145/3618345.
Full textZhang, Jiayi Eris, Jérémie Dumas, Yun (Raymond) Fei, Alec Jacobson, Doug L. James, and Danny M. Kaufman. "Progressive Shell Qasistatics for Unstructured Meshes." ACM Transactions on Graphics 42, no. 6 (December 5, 2023): 1–17. http://dx.doi.org/10.1145/3618388.
Full textKhattri, Sanjay Kumar. "An Adaptive Quadrilateral Mesh in Curved Domains." Serdica Journal of Computing 3, no. 3 (November 3, 2009): 249–68. http://dx.doi.org/10.55630/sjc.2009.3.249-268.
Full textZhang, Juan, Lin Hua, and Fu Sheng Wang. "An Stress Correction Method Applied to Doubly Curved Composite Laminated Plate." Advanced Materials Research 148-149 (October 2010): 523–28. http://dx.doi.org/10.4028/www.scientific.net/amr.148-149.523.
Full textKozhemyachenko, A. A., and A. V. Favorskaya. "Grid Convergence Analysis of Grid-Characteristic Method on Chimera Meshes in Ultrasonic Nondestructive Testing of Railroad Rail." Журнал вычислительной математики и математической физики 63, no. 10 (October 1, 2023): 1687–705. http://dx.doi.org/10.31857/s0044466923100071.
Full textRen, Yingying, Uday Kusupati, Julian Panetta, Florin Isvoranu, Davide Pellis, Tian Chen, and Mark Pauly. "Umbrella meshes." ACM Transactions on Graphics 41, no. 4 (July 2022): 1–15. http://dx.doi.org/10.1145/3528223.3530089.
Full textHewett, Dennis W. "The Embedded Curved Boundary Method for Orthogonal Simulation Meshes." Journal of Computational Physics 138, no. 2 (December 1997): 585–616. http://dx.doi.org/10.1006/jcph.1997.5835.
Full textYang Hao and C. J. Railton. "Analyzing electromagnetic structures with curved boundaries on Cartesian FDTD meshes." IEEE Transactions on Microwave Theory and Techniques 46, no. 1 (1998): 82–88. http://dx.doi.org/10.1109/22.654926.
Full textTellier, Xavier, Cyril Douthe, Laurent Hauswirth, and Olivier Baverel. "Caravel meshes: A new geometrical strategy to rationalize curved envelopes." Structures 28 (December 2020): 1210–28. http://dx.doi.org/10.1016/j.istruc.2020.09.033.
Full textLee, Seung-Yong, Seong-Hyeon Kweon, and Seung-Hyun Yoon. "An Effective Method for Slicing Triangle Meshes Using a Freeform Curve." Mathematics 12, no. 10 (May 7, 2024): 1432. http://dx.doi.org/10.3390/math12101432.
Full textFortes, Lucas Lobo Latorre, and Sandro Trindade Mordente Gonçalves. "Wideband performance limitations of the C-FDTD in the discretization impoverishment of a curved surface." COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 39, no. 5 (June 30, 2020): 1005–15. http://dx.doi.org/10.1108/compel-01-2020-0048.
Full textАрхипов, Борис Витальевич, and Дмитрий Алексеевич Шапочкин. "Modelling of salinity penetration into the Ob bay using curved meshes." Вычислительные технологии, no. 4 (October 6, 2022): 4–14. http://dx.doi.org/10.25743/ict.2022.27.4.002.
Full textGargallo-Peiró, A., G. Houzeaux, and X. Roca. "Subdividing triangular and quadrilateral meshes in parallel to approximate curved geometries." Procedia Engineering 203 (2017): 310–22. http://dx.doi.org/10.1016/j.proeng.2017.09.814.
Full textFlemisch, Bernd, and Barbara I. Wohlmuth. "Stable Lagrange multipliers for quadrilateral meshes of curved interfaces in 3D." Computer Methods in Applied Mechanics and Engineering 196, no. 8 (January 2007): 1589–602. http://dx.doi.org/10.1016/j.cma.2006.03.022.
Full textOkawa, Marina, Takafumi Taketomi, Goshiro Yamamoto, Makoto Fujisawa, Toshiyuki Amano, Jun Miyazaki, and Hirokazu Kato. "A model-based tracking framework for textureless 3D rigid curved objects." Journal on Interactive Systems 3, no. 2 (January 23, 2013): 1. http://dx.doi.org/10.5753/jis.2012.611.
Full textYue, Jun Hong, Guirong Liu, Ruiping Niu, and Ming Li. "A Four-Noded Triangular (Tr4) Element for Solid Mechanics Problems with Curved Boundaries." International Journal of Computational Methods 17, no. 01 (September 30, 2019): 1844003. http://dx.doi.org/10.1142/s0219876218440036.
Full textRuiz-Gironés, Eloi, Josep Sarrate, and Xevi Roca. "Generation of Curved High-order Meshes with Optimal Quality and Geometric Accuracy." Procedia Engineering 163 (2016): 315–27. http://dx.doi.org/10.1016/j.proeng.2016.11.108.
Full textXie, Zhong Q., Ruben Sevilla, Oubay Hassan, and Kenneth Morgan. "The generation of arbitrary order curved meshes for 3D finite element analysis." Computational Mechanics 51, no. 3 (June 8, 2012): 361–74. http://dx.doi.org/10.1007/s00466-012-0736-4.
Full textJaiman, R. K., X. Jiao, P. H. Geubelle, and E. Loth. "Conservative load transfer along curved fluid–solid interface with non-matching meshes." Journal of Computational Physics 218, no. 1 (October 2006): 372–97. http://dx.doi.org/10.1016/j.jcp.2006.02.016.
Full textGalbraith, Marshall C., John A. Benek, Paul D. Orkwis, and Mark G. Turner. "A discontinuous Galerkin scheme for Chimera overset viscous meshes on curved geometries." Computers & Fluids 119 (September 2015): 176–96. http://dx.doi.org/10.1016/j.compfluid.2015.07.002.
Full textDassi, F., and P. Di Barba. "Enriched Virtual Element space on curved meshes with an application in magnetics." Computers & Mathematics with Applications 161 (May 2024): 43–50. http://dx.doi.org/10.1016/j.camwa.2024.02.036.
Full textVerhoeven, Floor, Amir Vaxman, Tim Hoffmann, and Olga Sorkine-Hornung. "Dev2PQ: Planar Quadrilateral Strip Remeshing of Developable Surfaces." ACM Transactions on Graphics 41, no. 3 (June 30, 2022): 1–18. http://dx.doi.org/10.1145/3510002.
Full textKhanteimouri, Payam, and Marcel Campen. "3D Bézier Guarding: Boundary-Conforming Curved Tetrahedral Meshing." ACM Transactions on Graphics 42, no. 6 (December 5, 2023): 1–19. http://dx.doi.org/10.1145/3618332.
Full textBREZZI, FRANCO, KONSTANTIN LIPNIKOV, and MIKHAIL SHASHKOV. "CONVERGENCE OF MIMETIC FINITE DIFFERENCE METHOD FOR DIFFUSION PROBLEMS ON POLYHEDRAL MESHES WITH CURVED FACES." Mathematical Models and Methods in Applied Sciences 16, no. 02 (February 2006): 275–97. http://dx.doi.org/10.1142/s0218202506001157.
Full textNahara, Syeda Sabikun, Md Sadekur Rahman, and Md Shajedul Karim. "Auto Mesh generation algorithm for the convex domain with the triangular elements." GANIT: Journal of Bangladesh Mathematical Society 43, no. 1 (August 2, 2023): 017–35. http://dx.doi.org/10.3329/ganit.v43i1.67856.
Full textCalhoun, Donna A., and Christiane Helzel. "A Finite Volume Method for Solving Parabolic Equations on Logically Cartesian Curved Surface Meshes." SIAM Journal on Scientific Computing 31, no. 6 (January 2010): 4066–99. http://dx.doi.org/10.1137/08073322x.
Full textGargallo-Peiró, A., X. Roca, J. Peraire, and J. Sarrate. "Optimization of a regularized distortion measure to generate curved high-order unstructured tetrahedral meshes." International Journal for Numerical Methods in Engineering 103, no. 5 (February 24, 2015): 342–63. http://dx.doi.org/10.1002/nme.4888.
Full textAparicio-Estrems, Guillermo, Abel Gargallo-Peiró, and Xevi Roca. "Defining metric-aware size-shape measures to validate and optimize curved high-order meshes." Computer-Aided Design 168 (March 2024): 103667. http://dx.doi.org/10.1016/j.cad.2023.103667.
Full textConchin Gubernati, Alice Conchin, Fabio Freschi, Luca Giaccone, and Riccardo Scorretti. "Analysis of Numerical Artifacts Using Tetrahedral Meshes in Low Frequency Numerical Dosimetry." Applied Sciences 12, no. 13 (June 27, 2022): 6526. http://dx.doi.org/10.3390/app12136526.
Full textWang, C. Q., J. H. Yue, and Ming Li. "A Class of Novel Tetrahedron Elements with Curved Surfaces for Three-Dimensional Solid Mechanics Problems with Curved Boundaries." International Journal of Computational Methods 17, no. 04 (November 29, 2019): 1950006. http://dx.doi.org/10.1142/s0219876219500063.
Full textGansen, A., M. El Hachemi, S. Belouettar, O. Hassan, and K. Morgan. "A 3D Unstructured Mesh FDTD Scheme for EM Modelling." Archives of Computational Methods in Engineering 28, no. 1 (January 17, 2020): 181–213. http://dx.doi.org/10.1007/s11831-019-09395-z.
Full textHsu, L. C., J. Z. Ye, and C. H. Hsu. "Simulation of Flow Past a Cylinder With Adaptive Spectral Element Method." Journal of Mechanics 33, no. 2 (September 9, 2016): 235–47. http://dx.doi.org/10.1017/jmech.2016.77.
Full textZhong, Saishang, Zhong Xie, Jinqin Liu, and Zheng Liu. "Robust Mesh Denoising via Triple Sparsity." Sensors 19, no. 5 (February 26, 2019): 1001. http://dx.doi.org/10.3390/s19051001.
Full textBranets, Larisa, and Graham F. Carey. "Extension of a Mesh Quality Metric for Elements With a Curved Boundary Edge or Surface." Journal of Computing and Information Science in Engineering 5, no. 4 (June 15, 2004): 302–8. http://dx.doi.org/10.1115/1.2052827.
Full textAttene, M., B. Falcidieno, J. Rossignac, and M. Spagnuolo. "Sharpen&Bend: recovering curved sharp edges in triangle meshes produced by feature-insensitive sampling." IEEE Transactions on Visualization and Computer Graphics 11, no. 2 (March 2005): 181–92. http://dx.doi.org/10.1109/tvcg.2005.34.
Full textLeung, Yuen-Shan, Charlie C. L. Wang, and Yunbo Zhang. "Localized construction of curved surfaces from polygon meshes: A simple and practical approach on GPU." Computer-Aided Design 43, no. 6 (June 2011): 573–85. http://dx.doi.org/10.1016/j.cad.2011.01.010.
Full textBotti, Lorenzo, and Daniele A. Di Pietro. "Assessment of Hybrid High-Order methods on curved meshes and comparison with discontinuous Galerkin methods." Journal of Computational Physics 370 (October 2018): 58–84. http://dx.doi.org/10.1016/j.jcp.2018.05.017.
Full textCiallella, Mirco, Elena Gaburro, Marco Lorini, and Mario Ricchiuto. "Shifted boundary polynomial corrections for compressible flows: high order on curved domains using linear meshes." Applied Mathematics and Computation 441 (March 2023): 127698. http://dx.doi.org/10.1016/j.amc.2022.127698.
Full textClaisse, A., B. Després, E. Labourasse, and F. Ledoux. "A new exceptional points method with application to cell-centered Lagrangian schemes and curved meshes." Journal of Computational Physics 231, no. 11 (June 2012): 4324–54. http://dx.doi.org/10.1016/j.jcp.2012.02.017.
Full textFavorskaya, A. V., N. I. Khokhlov, V. I. Golubev, and A. V. Shevchenko. "Boundary Conforming Chimera Meshes to Account for Surface Topography and Curved Interfaces in Geological Media." Lobachevskii Journal of Mathematics 45, no. 1 (January 2024): 191–212. http://dx.doi.org/10.1134/s1995080224010141.
Full textCaubet, Fabien, Joyce Ghantous, and Charles Pierre. "A Priori Error Estimates of a Poisson Equation with Ventcel Boundary Conditions on Curved Meshes." SIAM Journal on Numerical Analysis 62, no. 4 (August 8, 2024): 1929–55. http://dx.doi.org/10.1137/23m1582497.
Full textYou, Hojun, and Chongam Kim. "Direct reconstruction method for discontinuous Galerkin methods on higher-order mixed-curved meshes I. Volume integration." Journal of Computational Physics 395 (October 2019): 223–46. http://dx.doi.org/10.1016/j.jcp.2019.06.015.
Full textYou, Hojun, and Chongam Kim. "Direct reconstruction method for discontinuous Galerkin methods on higher-order mixed-curved meshes II. Surface integration." Journal of Computational Physics 416 (September 2020): 109514. http://dx.doi.org/10.1016/j.jcp.2020.109514.
Full textHaut, Terry S., Ben S. Southworth, Peter G. Maginot, and Vladimir Z. Tomov. "Diffusion Synthetic Acceleration Preconditioning for Discontinuous Galerkin Discretizations of $S_N$ Transport on High-Order Curved Meshes." SIAM Journal on Scientific Computing 42, no. 5 (January 2020): B1271—B1301. http://dx.doi.org/10.1137/19m124993x.
Full textAbgrall, R., C. Dobrzynski, and A. Froehly. "A method for computing curved meshes via the linear elasticity analogy, application to fluid dynamics problems." International Journal for Numerical Methods in Fluids 76, no. 4 (July 12, 2014): 246–66. http://dx.doi.org/10.1002/fld.3932.
Full textShetty, Ramya Deepak, Indira Narayana Swamy, and Govind R. Kadambi. "Riemann Surface Structure for a Curved Surface with Punctured Features." Nepal Journal of Mathematical Sciences 2, no. 1 (April 30, 2021): 7–16. http://dx.doi.org/10.3126/njmathsci.v2i1.36504.
Full textVadla, Sai Rajkumar, and Jeffrey Doom. "Analysis of Jet Characteristics Among Various Cold Spray Nozzles." Journal of Thermal Spray and Engineering 1, no. 1 (2018): 24–31. http://dx.doi.org/10.52687/2582-1474/115.
Full textAnand, Nikhil, Neda Ebrahimi Pour, Harald Klimach, and Sabine Roller. "Utilization of the Brinkman Penalization to Represent Geometries in a High-Order Discontinuous Galerkin Scheme on Octree Meshes." Symmetry 11, no. 9 (September 5, 2019): 1126. http://dx.doi.org/10.3390/sym11091126.
Full textzhou, Longquan, Hongjuan Wang, Xinming Lu, Wei Zhang, and Xingli Zhang. "Algorithm for Curved Surface Mesh Generation Based on Delaunay Refinement." International Journal of Pattern Recognition and Artificial Intelligence 34, no. 04 (July 29, 2019): 2050007. http://dx.doi.org/10.1142/s021800142050007x.
Full text