Academic literature on the topic 'Curvature properties'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Curvature properties.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Curvature properties"
Deszcz, Ryszard, Małgorzata Głogowska, Miroslava Petrovic-Torgasev, and Leopold Verstraelen. "Curvature properties of some class of minimal hypersurfaces in Euclidean spaces." Filomat 29, no. 3 (2015): 479–92. http://dx.doi.org/10.2298/fil1503479d.
Full textMaheshkumar Kankarej, Manisha. "Different Types of Curvature and Their Vanishing Conditions." Academic Journal of Applied Mathematical Sciences, no. 73 (May 2, 2021): 143–48. http://dx.doi.org/10.32861/ajams.73.143.148.
Full textBalkan, Y. S., and N. Aktan. "Almost Kenmotsu $f$-manifolds." Carpathian Mathematical Publications 7, no. 1 (July 6, 2015): 6–21. http://dx.doi.org/10.15330/cmp.7.1.6-21.
Full textDecu, Simona, Stefan Haesen, Leopold Verstraelen, and Gabriel-Eduard Vîlcu. "Curvature Invariants of Statistical Submanifolds in Kenmotsu Statistical Manifolds of Constant ϕ-Sectional Curvature." Entropy 20, no. 7 (July 14, 2018): 529. http://dx.doi.org/10.3390/e20070529.
Full textPeyghan, Esmaeil, and Esa Sharahi. "Vector Bundles and Paracontact Finsler Structures." Facta Universitatis, Series: Mathematics and Informatics 33, no. 2 (September 7, 2018): 231. http://dx.doi.org/10.22190/fumi1802231p.
Full textBlaga, Adara M., and Antonella Nannicini. "On curvature tensors of Norden and metallic pseudo-Riemannian manifolds." Complex Manifolds 6, no. 1 (January 1, 2019): 150–59. http://dx.doi.org/10.1515/coma-2019-0008.
Full textWang, Bin, Wenzhe Cai, and Qingxuan Shi. "Simplified Data-Driven Model for the Moment Curvature of T-Shaped RC Shear Walls." Advances in Civil Engineering 2019 (November 3, 2019): 1–16. http://dx.doi.org/10.1155/2019/9897827.
Full textDuan, Jun-Sheng. "Shrinkage Points of Golden Rectangle, Fibonacci Spirals, and Golden Spirals." Discrete Dynamics in Nature and Society 2019 (December 20, 2019): 1–6. http://dx.doi.org/10.1155/2019/3149602.
Full textSawicz, Katarzyna. "Curvature properties of some class of hypersurfaces in Euclidean spaces." Publications de l'Institut Math?matique (Belgrade) 98, no. 112 (2015): 165–77. http://dx.doi.org/10.2298/pim141025008s.
Full textDavidov, Johann, and Oleg Mushkarov. "Curvature Properties of Twistor Spaces." Proceedings of the Steklov Institute of Mathematics 311, no. 1 (December 2020): 78–97. http://dx.doi.org/10.1134/s008154382006005x.
Full textDissertations / Theses on the topic "Curvature properties"
Wisanpitayakorn, Pattipong. "Understanding Mechanical Properties of Bio-filaments through Curvature." Digital WPI, 2019. https://digitalcommons.wpi.edu/etd-dissertations/584.
Full textCheung, Leung-Fu. "Geometric properties of stable noncompact constant mean curvature surfaces." Bonn : [s.n.], 1991. http://catalog.hathitrust.org/api/volumes/oclc/26531351.html.
Full textTrenner, Thomas. "Asymptotic curvature properties of moduli spaces for Calabi-Yau threefolds." Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609923.
Full textRenesse, Max-K. von. "Comparison properties of diffusion semigroups on spaces with lower curvature bounds." Bonn : Mathematisches Institut der Universität Bonn, 2003. http://catalog.hathitrust.org/api/volumes/oclc/52348149.html.
Full textSARACCO, Giorgio. "Fine properties of Cheeger sets and the Prescribed Mean Curvature problem in weakly regular domains." Doctoral thesis, Università degli studi di Ferrara, 2017. http://hdl.handle.net/11392/2487855.
Full textI due principali problemi che studiamo sono il \emph{problema di Cheeger} ed il \emph{problema di curvatura media prescritta}. Il primo consiste nel trovare i sottoinsiemi $E$ di un certo insieme ambiente $\Om$ che realizzano la costante di Cheeger, ovvero tali che \[ \frac{P(E)}{|E|} = \inf \left \{ \frac{P(A)}{|A|} \right\} = h_1(\Om)\,, \] dove l'estremo inferiore \`e fra tutti i sottoinsiemi di $\Omega$ con volume positivo; il secondo problema \`e l'equazione alle derivate parziali non lineare data da \[ \div(Tu) = \div \left ( \frac{\grad u}{\sqrt{1+|\grad u|^2}} \right) = H\,, \] che consiste nel trovare delle funzioni $u$ il cui grafico abbia curvatura media $H$. A prima vista questi due problemi sembrano indipendenti, ma nel caso speciale di una curvatura media prescritta $H$ costante e positiva in $\Omega$, una condizione necessaria e sufficiente all'esistenza di soluzioni e all'unicit\`a a meno di traslazioni, \`e che $H$ sia uguale della costante di Cheeger e che $\Omega$ sia un insieme di Cheeger minimale. Da un lato, studiamo una generalizzazione del problema di Cheeger considerando dei volumi con pesi $L^\infty$ e dei perimetri pesati tramite funzioni $g(x, \nu_\Om (x))$ che dipendono sia dal punto $x\in \de \Omega$ sia dalla normale esterna ad $\Om$ nel punto $x$. Mostriamo che gli insiemi minimi connessi ammettono una disuguaglianza di traccia di Poincar\'e e le classiche immersioni di Sobolev. Dall'altro lato, nel caso del problema di Cheeger classico in $2$ dimensioni, mostriamo che, per insiemi $\Om$ semplicemente connessi che non presentano ``colli di bottiglia'', l'insieme di Cheeger massimale $E$ \`e l'unione di tutte le palle contenute in $\Omega$ di raggio $r= h_1^{-1}(\Om)$. Inoltre, vale la inner Cheeger formula $|[\Om]^r = \pi r^2$, dove $[\Om]^r$ indica l'insieme dei punti di $\Om$ che sono a una distanza maggiore o uguale ad $r$ da $\de \Om$. Questo risultato generalizza una propriet\`a finora dimostrata solo per insieme convessi e strisce. Riguardo al problema di curvatura media prescritta, mostriamo esistenza ed unicit\`a di soluzioni per l'equazione soltanto richiedendo che l insieme $\Om$ sia un aperto ``debolmente regolare'', ovvero che soddisfi una disuguaglianza di traccia di Poincar\'e e che il suo perimetro coincida con la misura di Hausdorff $(n-1)$-dimensionale del suo bordo topologico. Sotto tali ipotesi, dimostriamo che l'unicit\`a, a meno di traslazioni, \`e equivalente a diverse altre propriet\`a. In particolare, alla massimalit\`a del dominio, ovvero non esistono soluzioni per la stessa curvatura prescritta $H$ in nessun insieme $\widetilde \Omega$ che contiene strettamente $\Om$; alla criticalit\`a di $\Omega$, ovvero che $\Om$, fra tutti i suoi sottoinsiemi \`e l'unico per cui la disuguaglianza $|\int_A H| \le P(A)$ diventa un'uguaglianza; all'esistenza di una soluzione che risolve il problema di capillarit\`a in un cilindro di sezione $\Om$ con angolo di contatto verticale, ovvero con una condizione al bordo tangenziale, assunta in un senso integrale o di ``traccia debole''. Inoltre, questa condizione al bordo di ``traccia debole'', quando il perimetro di $\Om$ coincide con il contenuto interno di Minkoswki di $\Om$, assume la forma pi\`u forte $Tu(x) \to \nu_\Om (z)$ in misura, per $x\in \Omega$ che tendono a un punto $z$ nella frontiera ``super-ridotta''. Infine, quando la curvatura prescritta $H$ \`e positiva e non identicamente nulla, si osserva di nuovo il legame fra il problema di Cheeger e di curvatura media prescritta, in quanto la criticalit\`a di $\Om$ \`e equivalente a dire che la costante di Cheeger pesata tramite $H$ e con perimetro classico \`e $1$ e che $\Om$ \`e un insieme minimale di Cheeger.
McCormick, Timothy M. "Electronic and Transport Properties of Weyl Semimetals." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu153204408441858.
Full textMiller, Robert William. "Tetrabenzo[8]circulene: Synthesis and Structural Properties of Polycyclic Aromatic Hydrocarbons with Negative Curvature." ScholarWorks @ UVM, 2017. http://scholarworks.uvm.edu/graddis/792.
Full textTewodrose, David. "Some functional inequalities and spectral properties of metric measure spaces with curvature bounded below." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEE076.
Full textThe aim of this thesis is to present new results in the analysis of metric measure spaces. We first extend to a certain class of spaces with doubling and Poincaré some weighted Sobolev inequalities introduced by V. Minerbe in 2009 in the context of Riemannian manifolds with non-negative Ricci curvature. In the context of RCD(0,N) spaces, we deduce a weighted Nash inequality and a uniform control of the associated weighted heat kernel. Then we prove Weyl’s law for compact RCD(K,N) spaces thanks to a pointwise convergence theorem for the heat kernels associated with a mGH-convergent sequence of RCD(K,N) spaces. Finally we address in the RCD(K,N) context a theorem from Bérard, Besson and Gallot which provides, by means of the heat kernel, an asymptotically isometric family of embeddings for a closed Riemannian manifold into its space of square integrable functions. We notably introduce the notions of RCD metrics, pull-back metrics, weak/strong convergence of RCD metrics, and we prove a convergence theorem analog to the one of Bérard, Besson and Gallot
Tewodrose, David. "Some functional inequalities and spectral properties of metric measure spaces with curvature bounded below." Doctoral thesis, Scuola Normale Superiore, 2018. http://hdl.handle.net/11384/85734.
Full textCiomaga, Adina. "Analytical properties of viscosity solutions for integro-differential equations : image visualization and restoration by curvature motions." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2011. http://tel.archives-ouvertes.fr/tel-00624378.
Full textBooks on the topic "Curvature properties"
Brunnett, Guido. The curvature of plane elastic curves. Monterey, Calif: Naval Postgraduate School, 1993.
Find full textDhakal, Rajesh P. Curvature ductility of reinforced concrete plastic hinges: Assessment of curvature limits for different forms of plastic hinges in reinforced concrete structures. Saarbrücken: VDM, Verlag Dr. Müller, 2008.
Find full textDhakal, Rajesh P. Curvature ductility of reinforced concrete plastic hinges: Assessment of curvature limits for different forms of plastic hinges in reinforced concrete structures. Saarbrücken: VDM, Verlag Dr. Müller, 2008.
Find full text1966-, Pérez Joaquín, and Galvez José A. 1972-, eds. Geometric analysis: Partial differential equations and surfaces : UIMP-RSME Santaló Summer School geometric analysis, June 28-July 2, 2010, University of Granada, Granada, Spain. Providence, R.I: American Mathematical Society, 2012.
Find full textLi, Weiping, and Shihshu Walter Wei. Geometry and topology of submanifolds and currents: 2013 Midwest Geometry Conference, October 19, 2013, Oklahoma State University, Stillwater, Oklahoma : 2012 Midwest Geometry Conference, May 12-13, 2012, University of Oklahoma, Norman, Oklahoma. Providence, Rhode Island: American Mathematical Society, 2015.
Find full textOrtaçgil, Ercüment H. The Nonlinear Curvature. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198821656.003.0003.
Full textGeometric Properties of Natural Operators Defined by the Riemann Curvature Tensor. World Scientific Publishing Company, 2001.
Find full textDeruelle, Nathalie, and Jean-Philippe Uzan. Riemannian manifolds. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786399.003.0064.
Full textBook chapters on the topic "Curvature properties"
Ritoré, Manuel, and Carlo Sinestrari. "Invariance properties." In Mean Curvature Flow and Isoperimetric Inequalities, 16–19. Basel: Birkhäuser Basel, 2010. http://dx.doi.org/10.1007/978-3-0346-0213-6_5.
Full textBusemann, Herbert, and Willy Feller. "Curvature Properties of Convex Surfaces." In Selected Works II, 235–70. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-65624-3_18.
Full textGarcia-Rio, E., L. Hervella, and R. Vásquez-Lorenzo. "Curvature Properties of Para-Kähler Manifolds." In New Developments in Differential Geometry, 193–200. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0149-0_14.
Full textCheng, Xinyue, and Zhongmin Shen. "Randers Metrics with Special Riemann Curvature Properties." In Finsler Geometry, 77–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24888-7_6.
Full textVillani, Cédric. "Weak Ricci curvature bounds II: Geometric and analytic properties." In Grundlehren der mathematischen Wissenschaften, 847–901. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-71050-9_30.
Full textPandey, Shashikant, Rajendra Prasad, and Sandeep Kumar Verma. "Concircular Curvature Tensor’s Properties on Lorentzian Para-Sasakian Manifolds." In Springer Proceedings in Mathematics & Statistics, 45–57. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5455-1_4.
Full textBusemann, Herbert. "Busemann and Feller on Curvature Properties of Convex Surfaces." In Selected Works II, 67–88. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-65624-3_10.
Full textBarth, Erhardt, Mario Ferraro, and Christoph Zetzsche. "Global Topological Properties of Images Derived from Local Curvature Features." In Lecture Notes in Computer Science, 285–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45129-3_25.
Full textPresby, Michael J., Rabih Mansour, Manigandan Kannan, Richard K. Smith, Gregory N. Morscher, Frank Abdi, Cody Godines, and Sung Choi. "Influence of Curvature on High Velocity Impact of SIC/SIC Composites." In Mechanical Properties and Performance of Engineering Ceramics and Composites XI, 131–41. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119320104.ch12.
Full textSakasegawa, D., M. Goto, and A. Suzuki. "Effects of Thickness and Curvature on the Adhesion Properties of Cylindrical Soft Materials by a Point Contact Method." In Gels: Structures, Properties, and Functions, 135–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00865-8_19.
Full textConference papers on the topic "Curvature properties"
Carlsson, Johan M. "Curvature effects on vacancies in nanotubes." In ELECTRONIC PROPERTIES OF NOVEL NANOSTRUCTURES: XIX International Winterschool/Euroconference on Electronic Properties of Novel Materials. AIP, 2005. http://dx.doi.org/10.1063/1.2103903.
Full textGILKEY, P. "GEOMETRIC PROPERTIES OF THE CURVATURE OPERATOR." In Differential Geometry in Honor of Professor S S Chern. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812792051_0005.
Full textFan, T. J., G. Medioni, and R. Nevatia. "3-D Surface Description Using Curvature Properties." In OE LASE'87 and EO Imaging Symp (January 1987, Los Angeles), edited by Hua-Kuang Liu and Paul S. Schenker. SPIE, 1987. http://dx.doi.org/10.1117/12.939973.
Full textBakar, Suraya Abu, Muhammad Suzuri Hitam, Wan Nural Jawahir Hj Wan Yussof, and Marufa Yeasmin Mukta. "Shape Corner Detection through Enhanced Curvature Properties." In 2020 Emerging Technology in Computing, Communication and Electronics (ETCCE). IEEE, 2020. http://dx.doi.org/10.1109/etcce51779.2020.9350894.
Full textBarth, Erhardt, Christoph Zetzsche, Mario Ferraro, and Ingo Rentschler. "Fractal properties from 2D curvature on multiple scales." In SPIE's 1993 International Symposium on Optics, Imaging, and Instrumentation, edited by Baba C. Vemuri. SPIE, 1993. http://dx.doi.org/10.1117/12.146648.
Full textChandra, Kambhamettu, and Dmitry B. Goldgof. "Left ventricle wall motion tracking using curvature properties." In SPIE/IS&T 1992 Symposium on Electronic Imaging: Science and Technology, edited by Raj S. Acharya, Carol J. Cogswell, and Dmitry B. Goldgof. SPIE, 1992. http://dx.doi.org/10.1117/12.59561.
Full textMokhtarian, F. "Convergence Properties of Curvature and Torsion Scale Space Representations." In British Machine Vision Conference 1995. British Machine Vision Association, 1995. http://dx.doi.org/10.5244/c.9.36.
Full textBogaevski, Ilia A., Alexander G. Belyaev, and Tosiyasu L. Kunii. "Qualitative and asymptotic properties of curvature-driven silhouette deformations." In Optical Science, Engineering and Instrumentation '97, edited by Robert A. Melter, Angela Y. Wu, and Longin J. Latecki. SPIE, 1997. http://dx.doi.org/10.1117/12.279659.
Full textAl Tahhan, Aghyad B., and Mohammad AlKhedher. "Investigating Curvature Effect on Tensile Properties of Carbon Nanotubes." In 2022 Advances in Science and Engineering Technology International Conferences (ASET). IEEE, 2022. http://dx.doi.org/10.1109/aset53988.2022.9735084.
Full textYıldırım, Mustafa, and Nesip Aktan. "Some curvature properties of globally framed almost f-cosymplectic manifolds." In II. INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2017. Author(s), 2017. http://dx.doi.org/10.1063/1.4981658.
Full textReports on the topic "Curvature properties"
R. Mirzaie. Topological Properties of Some Cohomogeneity on Riemannian Manifolds of Nonpositive Curvature. GIQ, 2012. http://dx.doi.org/10.7546/giq-3-2002-351-359.
Full textNakova, Galia. Curvature Properties of Some Three-Dimentional Almost Contact Manifolds with B-Metric II. GIQ, 2012. http://dx.doi.org/10.7546/giq-5-2004-169-177.
Full textHart, James, Nasir Zulfiqar, and Carl Popelar. L52289 Use of Pipeline Geometry Monitoring to Assess Pipeline Condition. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), December 2008. http://dx.doi.org/10.55274/r0010254.
Full textStuedlein, Armin, Ali Dadashiserej, and Amalesh Jana. Models for the Cyclic Resistance of Silts and Evaluation of Cyclic Failure during Subduction Zone Earthquakes. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, April 2023. http://dx.doi.org/10.55461/zkvv5271.
Full textAnderson, Gerald L., and Kalman Peleg. Precision Cropping by Remotely Sensed Prorotype Plots and Calibration in the Complex Domain. United States Department of Agriculture, December 2002. http://dx.doi.org/10.32747/2002.7585193.bard.
Full text