To see the other types of publications on this topic, follow the link: Curvature functionals.

Dissertations / Theses on the topic 'Curvature functionals'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 41 dissertations / theses for your research on the topic 'Curvature functionals.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Mondino, Andrea. "The Willmore functional and other L^p curvature functionals in Riemannian manifolds." Doctoral thesis, SISSA, 2011. http://hdl.handle.net/20.500.11767/4840.

Full text
Abstract:
Using techniques both of non linear analysis and geometric measure theory, we prove existence of minimizers and more generally of critical points for the Willmore functional and other $L^p$ curvature functionals for immersions in Riemannian manifolds. More precisely, given a $3$-dimensional Riemannian manifold $(M,g)$ and an immersion of a sphere $f:\Sp^2 \hookrightarrow (M,g)$ we study the following problems. 1) The Conformal Willmore functional in a perturbative setting: consider $(M,g)=(\Rtre,\eu+\epsilon h)$ the euclidean $3$-space endowed with a perturbed metric ($h=h_{\mu\nu}$ is a smooth field of symmetric bilinear forms); we prove, under assumptions on the trace free Ricci tensor and asymptotic flatness, existence of critical points for the Conformal Willmore functional $I(f):=\frac{1}{2}\int |A^\circ|^2 $ (where $A^\circ:=A-\frac{1}{2}H$ is the trace free second fundamental form). The functional is conformally invariant in curved spaces. We also establish a non existence result in general Riemannian manifolds. The technique is perturbative and relies on a Lyapunov-Schmidt reduction. \\ 2) The Willmore functional in a semi-perturbative setting: consider $(M,g)=(\Rtre, \eu+h)$ where $h=h_{\mu\nu}$ is a $C^{\infty}_0(\Rtre)$ field of symmetric bilinear forms with compact support and small $C^1$ norm. Under a general assumption on the scalar curvature we prove existence of a smooth immersion of $\Sp^2$ minimizing the Willmore functional $W(f):=\frac{1}{4} \int |H|^2$ (where $H$ is the mean curvature). The technique is more global and relies on the direct method in the calculus of variations. \\ 3) The functionals $E:=\frac{1}{2} \int |A|^2 $ and $W_1:=\int\left( \frac{|H|^2}{4}+1 \right)$ in compact ambient manifolds: consider $(M,g)$ a $3$-dimensional compact Riemannian manifold. We prove, under global conditions on the curvature of $(M,g)$, existence and regularity of an immersion of a sphere minimizing the functionals $E$ or $W_1$. The technique is global, uses geometric measure theory and regularity theory for higher order PDEs. \\ 4) The functionals $E_1:=\int \left( \frac{|A|^2}{2} +1 \right) $ and $W_1:=\int\left( \frac{|H|^2}{4}+1 \right)$ in noncompact ambient manifolds: consider $(M,g)$ a $3$-dimensional asymptotically euclidean non compact Riemannian $3$-manifold. We prove, under general conditions on the curvature of $(M,g)$, existence and regularity of an immersion of a sphere minimizing the functionals $E_1$ or $W_1$. The technique relies on the direct method in the calculus of variations. \\ 5) The supercritical functionals $\int |H|^p$ and $\int |A|^p$ in arbitrary dimension and codimension: consider $(N,g)$ a compact $n$-dimensional Riemannian manifold possibly with boundary. For any $2\leq mm$, defined on the $m$-dimensional submanifolds of $N$. We prove, under assumptions on $(N,g)$, existence and partial regularity of a minimizer of such functionals in the framework of varifold theory. During the arguments we prove some new monotonicity formulas and new Isoperimetric Inequalities which are interesting by themselves.
APA, Harvard, Vancouver, ISO, and other styles
2

PARRILLO, ANTONELLA. "Analytical and computational study of curvature depending functionals in image segmentation." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2008. http://hdl.handle.net/2108/689.

Full text
Abstract:
In questa tesi sono stati trattati problemi di segmentazione dell'immagine mediante strumenti di analisi variazionale. Ho studiato due funzionali contenenti integrali di funzioni dipendenti dalla curvatura degli elementi di una famiglia di curve $C$ approssimante i contorni di una data immagine, la lunghezza di esse e il numero dei loro punti finali. Per uno dei due funzionali ho calcolato il sistema delle equazioni di Eulero e, usando uno schema iterativo basato sulle differenze finite, ho effettuato esperimenti al computer su alcune immagini.
In the present thesis we study variational problems for image segmentation. We consider two specific classes of functionals which contain the integral of a function of curvature along the unknown set of curves $C$, the length of such curves and the counting measure of the set of theirs endpoints. For the second functionals we derive the system of Euler equations, we design an iterative numerical scheme based on finite differences for the solution of the Euler equations, and we discuss the outcome of some computer experiments on simulated images.
APA, Harvard, Vancouver, ISO, and other styles
3

Winklmann, Sven. "Krümmungsabschätzungen für stabile Extremalen parametrischer Funktionale / Curvature estimates for stable extremals of parametric functionals." Gerhard-Mercator-Universitaet Duisburg, 2004. http://www.ub.uni-duisburg.de/ETD-db/theses/available/duett-03192004-115454/.

Full text
Abstract:
We consider immersed hypersurfaces in euclidean $R^{n+1}$ which are stable with respect to an elliptic parametric functional with integrand $F=F(N)$ depending on normal directions only. We prove an integral curvature estimate provided that $F$ is sufficiently close to the area integrand, extending the classical curvature estimate of Schoen, Simon and Yau for stable minimal hypersurfaces in $R^{n+1}$. As a crucial point of our analysis we derive a generalized Simons inequality for the laplacian of the length of a weighted second fundamental form with respect to an abstract metric associated with $F$. Using Moser's iteration technique we finally prove a pointwise curvature estimate for $n leq 5$. As an application we obtain a new Bernstein result for complete stable hypersurfaces of dimension $n leq 5$.
APA, Harvard, Vancouver, ISO, and other styles
4

Käfer, Bastian [Verfasser], der Mosel Heiko Akademischer Betreuer] von, Alfred [Akademischer Betreuer] [Wagner, and Pawel [Akademischer Betreuer] Strzelecki. "Scale-invariant geometric curvature functionals, and characterization of Lipschitz- and $C^1$-submanifolds / Bastian Käfer ; Heiko von der Mosel, Alfred Wagner, Pawel Strzelecki." Aachen : Universitätsbibliothek der RWTH Aachen, 2021. http://d-nb.info/1239566719/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Silva, Adam Oliveira da. "Rigidez de métricas críticas para funcionais riemannianos." reponame:Repositório Institucional da UFC, 2017. http://www.repositorio.ufc.br/handle/riufc/25969.

Full text
Abstract:
SILVA, Adam Oliveira da. Rigidez de métricas críticas para funcionais riemannianos. 2017. 78 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2017.
Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-09-19T19:08:04Z No. of bitstreams: 1 2017_tese_aosilva.pdf: 481005 bytes, checksum: 2bdfc6ab68b042a5cfd4f67caf1e21e4 (MD5)
Rejected by Rocilda Sales (rocilda@ufc.br), reason: Bom dia, Estou devolvendo a Tese de ADAM OLIVEIRA DA SILVA, para que o arquivo seja substituído, pois o aluno já veio na BCM e orientei quais eram as correções a serem feitas. Atenciosamente, on 2017-09-20T14:03:26Z (GMT)
Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-09-20T16:47:21Z No. of bitstreams: 1 2017_tese_aosilva.pdf: 480774 bytes, checksum: a1267dd82f8a82a19f79902004e1afb5 (MD5)
Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-09-21T12:26:34Z (GMT) No. of bitstreams: 1 2017_tese_aosilva.pdf: 480774 bytes, checksum: a1267dd82f8a82a19f79902004e1afb5 (MD5)
Made available in DSpace on 2017-09-21T12:26:35Z (GMT). No. of bitstreams: 1 2017_tese_aosilva.pdf: 480774 bytes, checksum: a1267dd82f8a82a19f79902004e1afb5 (MD5) Previous issue date: 2017-09-15
The aim of this work is to study metrics that are critical points for some Riemannian functionals. In the first part, we investigate critical metrics for functionals which are quadratic in the curvature on closed Riemannian manifolds. It is known that space form metrics are critical points for these functionals, denoted by F t,s (g). Moreover, when s = 0, always Einstein metrics are critical to F t (g). We proved that under some conditions the converse is true. For instance, among others results, we prove that if n ≥ 5 and g is a Bach-flat critical metric to F −n/4(n−1) , with second elementary symmetric function of the Schouten tensor σ 2 (A) > 0, then g should be Einstein. Furthermore, we show that a locally conformally flat critical metric with some additional conditions are space form metrics. In the second part, we study the critical metrics to volume functional on compact Riemannian manifolds with connected smooth boundary. We call such critical points of Miao-Tam critical metrics due to the variational study making by Miao and Tam (2009). In this work, we show that the geodesics balls in space forms Rn , Sn and Hn have the maximum possible boundary volume among Miao-Tam critical metrics with connected boundary provided that the boundary be an Einstein manifold. In the same spirit, we also extend a rigidity theorem due to Boucher et al. (1984) and Shen (1997) to n-dimensional static metrics with positive constant scalar curvature, which give us another way to get a partial answer to the Cosmic no-hair conjecture already obtained by Chrusciel (2003).
Este trabalho tem como principal objetivo estudar métricas que são pontos críticos de alguns funcionais Riemannianos. Na primeira parte, investigaremos métricas críticas de funcionais que são quadráticos na curvatura sobre variedades Riemannianas fechadas. É de conhecimento que métricas tipo formas espaciais são pontos críticos para tais funcionais, denotados aqui por F t,s (g). Além disso, no caso s = 0, métricas de Einstein são sempre críticas para F t (g). Provamos que sob algumas condições, a recíproca destes fatos são verdadeiras. Por exemplo, dentre outros resultados, provamos que se n ≥ 5 e g é uma métrica Bach-flat crìtica para F−n/4(n−1) com segunda função simétrica elementar do tensor de Schouten σ 2 (A) > 0, então g tem que ser métrica de Einstein. Ademais, mostramos que uma métrica crítica localmente conformemente plana, com algumas hipóteses adicionais, tem que ser tipo forma espacial. Na segunda parte, estudamos as métricas críticas do funcional volume sobre variedades Riemannianas compactas com bordo suave conexo. Chamamos tais pontos críticos de métricas críticas de Miao-Tam, devido ao estudo variacional feito por Miao e Tam (2009). Neste trabalho provamos que as bolas geodésicas das formas espaciais Rn , S n e H n possuem o valor máximo para o volume do bordo dentre todas as métricas críticas de Miao-Tam com bordo conexo, desde que o bordo seja uma variedade de Einstein. No mesmo sentido, também estendemos um teorema de rigidez devido à Boucher et al. (1984) e Shen (1997) para métricas estáticas de dimensão n e com curvatura escalar constante positiva, o qual nos fornece outra maneira para obter uma resposta parcial para a Cosmic no-hair conjecture já obtida por Chrusciel (2003).
APA, Harvard, Vancouver, ISO, and other styles
6

Guo, Li. "Shape blending using discrete curvature-variation functional /." View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?IEEM%202005%20GUO.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dalphin, Jérémy. "Étude de fonctionnelles géométriques dépendant de la courbure par des méthodes d'optimisation de formes. Applications aux fonctionnelles de Willmore et Canham-Helfrich." Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0167/document.

Full text
Abstract:
En biologie, lorsqu'une quantité importante de phospholipides est insérée dans un milieu aqueux, ceux-Ci s'assemblent alors par paires pour former une bicouche, plus communément appelée vésicule. En 1973, Helfrich a proposé un modèle simple pour décrire la forme prise par une vésicule. Imposant la surface de la bicouche et le volume de fluide qu'elle contient, leur forme minimise une énergie élastique faisant intervenir des quantités géométriques comme la courbure, ainsi qu'une courbure spontanée mesurant l'asymétrie entre les deux couches. Les globules rouges sont des exemples de vésicules sur lesquels sont fixés un réseau de protéines jouant le rôle de squelette au sein de la membrane. Un des principaux travaux de la thèse fut d'introduire et étudier une condition de boule uniforme, notamment pour modéliser l'effet du squelette. Dans un premier temps, on cherche à minimiser l'énergie de Helfrich sans contrainte puis sous contrainte d'aire. Le cas d'une courbure spontanée nulle est connu sous le nom d'énergie de Willmore. Comme la sphère est un minimiseur global de l'énergie de Willmore, c'est un bon candidat pour être un minimiseur de l'énergie de Helfrich parmi les surfaces d'aire fixée. Notre première contribution dans cette thèse a été d'étudier son optimalité. On montre qu'en dehors d'un certain intervalle de paramètres, la sphère n'est plus un minimum global, ni même un minimum local. Par contre, elle est toujours un point critique. Ensuite, dans le cas de membranes à courbure spontanée négative, on se demande si la minimisation de l'énergie de Helfrich sous contrainte d'aire peut être effectuée en minimisant individuellement chaque terme. Cela nous conduit à minimiser la courbure moyenne totale sous contrainte d'aire et à déterminer si la sphère est la solution de ce problème. On montre que c'est le cas dans la classe des surfaces axisymétriques axiconvexes mais que ce n'est pas vrai en général.Enfin, lorsqu'une contrainte d'aire et de volume sont considérées simultanément, le minimiseur ne peut pas être une sphère qui n'est alors plus admissible. En utilisant le point de vue de l'optimisation de formes, la troisième et plus importante contribution de cette thèse est d'introduire une classe plus raisonnable de surfaces, pour laquelle l'existence d'un minimiseur suffisamment régulier est assurée pour des fonctionnelles et des contraintes générales faisant intervenir les propriétés d'ordre un et deux des surfaces. En s'inspirant de ce que fit Chenais en 1975 quand elle a considéré la propriété de cône uniforme, on considère les surfaces satisfaisant une condition de boule uniforme. On étudie d'abord des fonctionnelles purement géométriques puis nous autorisons la dépendance à travers la solution de problèmes aux limites elliptiques d'ordre deux posés sur le domaine intérieur à la surface
In biology, when a large amount of phospholipids is inserted in aqueous media, they immediatly gather in pairs to form bilayers also called vesicles. In 1973, Helfrich suggested a simple model to characterize the shapes of vesicles. Imposing the area of the bilayer and the volume of fluid it contains, their shape is minimizing a free-Bending energy involving geometric quantities like curvature, and also a spontanuous curvature measuring the asymmetry between the two layers. Red blood cells are typical examples of vesicles on which is fixed a network of proteins playing the role of a skeleton inside the membrane. One of the main work of this thesis is to introduce and study a uniform ball condition, in particular to model the effects of the skeleton. First, we minimize the Helfrich energy without constraint then with an area constraint. The case of zero spontaneous curvature is known as the Willmore energy. Since the sphere is the global minimizer of the Willmore energy, it is a good candidate to be a minimizer of the Helfrich energy among surfaces of prescribed area. Our first main contribution in this thesis was to study its optimality. We show that apart from a specific interval of parameters, the sphere is no more a global minimizer, neither a local minimizer. However, it is always a critical point. Then, in the specific case of membranes with negative spontaneous curvature, one can wonder whether the minimization of the Helfrich energy with an area constraint can be done by minimizing individually each term. This leads us to minimize total mean curvature with prescribed area and to determine if the sphere is a solution to this problem. We show that it is the case in the class of axisymmetric axiconvex surfaces but that it does not hold true in the general case. Finally, considering both area and volume constraints, the minimizer cannot be the sphere, which is no more admissible. Using the shape optimization point of view, the third main and most important contribution of this thesis is to introduce a more reasonable class of surfaces, in which the existence of an enough regular minimizer is ensured for general functionals and constraints involving the first- and second-Order geometric properties of surfaces. Inspired by what Chenais did in 1975 when she considered the uniform cone property, we consider surfaces satisfying a uniform ball condition. We first study purely geometric functionals then we allow a dependence through the solution of some second-Order elliptic boundary value problems posed on the inner domain enclosed by the shape
APA, Harvard, Vancouver, ISO, and other styles
8

ALESSANDRONI, ROBERTA. "Evolution of hypersurfaces by curvature functions." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2008. http://hdl.handle.net/2108/661.

Full text
Abstract:
Consideriamo un'ipersuperficie liscia di ℝⁿ⁺¹, con n≥2, e la sua evoluzione secondo una classe di flussi geometrici. La velocità di questi flussi ha direzione normale alla superficie e il modulo è una funzione simmetrica delle curvature principali. Inizialmente mostriamo alcune proprietà generali di questi flussi e calcoliamo l'equazione di evoluzione per una generica funzione omogenea delle curvature principali. In particolare applichiamo il flusso con velocità S=(H/(logH)), dove H è la curvatura media a meno di una costante, ad una superficie con curvatura media positiva per ottenere delle stime di convessità. Usando solamente il principio del massimo dimostriamo che, su un limite di riscalamenti delle superfici che si evolvono vicino alla singolarità, la parte negativa della curvatura scalare tende a zero. La parte successiva è dedicata allo studio di un'ipersuperficie convessa che si evolve secondo potenze della curvatura scalare: S=R^{p}, con p>1/2. Si dimostra che se la superficie iniziale soddisfa delle stime di "pinching" sulle curvature principali allora si contrae ad un punto in tempo finito e la forma delle superfici che si evolvono approssima sempre più quella di una sfera. In questo caso il grado di omogeneità, strettamente maggiore di uno, permette di concludere la dimostrazione della convergenza ad un "punto rotondo" tramite il solo principio del massimo, evitando l'uso di stime integrali. Viene anche costruito un esempio di superficie convessa che forma una singolarità di tipo "neck pinching". Infine studiamo il caso di un grafico intero su ℝⁿ con crescita al più lineare all'infinito e mostriamo che un grafico che si evolve secondo un qualsiasi flusso nella classe considerata rimane un grafico. Inoltre dimostriamo un risultato di esistenza per tempi lunghi per i flussi con velocità S=R^{p} con p≥1/2 e descriviamo delle soluzioni esplicite per grafici a simmetria di rotazione.
We consider a smooth n-dimensional hypersurface of ℝⁿ⁺¹, with n≥2, and its evolution by a class of geometric flows. The speed of these flows has normal direction with respect to the surface and its modulus S is a symmetric function of the principal curvatures. We show some general properties of these flows and compute the evolution equation for any homogeneous function of principal curvatures. Then we apply the flow with speed S=(H/(logH)), where H is the mean curvature plus a constant, to a mean convex surface to prove some convexity estimates. Using only the maximum principle we prove that the negative part of the scalar curvature tends to zero on a limit of rescalings of the evolving surfaces near a singularity. The following part is dedicated to the study of a convex initial manifold moving by powers of scalar curvature: S=R^{p}, with p>1/2. We show that if the initial surface satisfies a pinching estimate on the principal curvatures then it shrinks to a point in finite time and the shape of the evolving surfaces approaches the one of a sphere. Since the homogeneity degree of this speed is strictly greater than one, the convergence to a "round point" can be proved using just the maximum principle, avoiding the integral estimates. Then we also construct an example of a non convex surface forming a neck pinching singularity. Finally we study the case of an entire graph over ℝⁿ with at most linear growth at infinity. We show that a graph evolving by any flow in the considered class remains a graph. Moreover we prove a long time existence result for flows where the speed is S=R^{p} with p≥1/2 and describe some explicit solutions in the rotationally symmetric case.
APA, Harvard, Vancouver, ISO, and other styles
9

Evangelista, Israel de Sousa. "Compact almost Ricci soliton, critical metrics of the total scalar curvature functional and p-fundamental tone estimates." reponame:Repositório Institucional da UFC, 2017. http://www.repositorio.ufc.br/handle/riufc/23920.

Full text
Abstract:
EVANGELISTA, I. S. Compact almost Ricci soliton, critical metrics of the total scalar curvature functional and p-fundamental tone estimates. 2017. 75 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2017.
Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-07-10T12:41:32Z No. of bitstreams: 1 2017_tese_isevangelista.pdf: 618771 bytes, checksum: 7e4bb8d9fd8825ef347e309171075037 (MD5)
Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-07-10T14:06:18Z (GMT) No. of bitstreams: 1 2017_tese_isevangelista.pdf: 618771 bytes, checksum: 7e4bb8d9fd8825ef347e309171075037 (MD5)
Made available in DSpace on 2017-07-10T14:06:18Z (GMT). No. of bitstreams: 1 2017_tese_isevangelista.pdf: 618771 bytes, checksum: 7e4bb8d9fd8825ef347e309171075037 (MD5) Previous issue date: 2017-07-04
The present thesis is divided in three different parts. The aim of the first part is to prove that a compact almost Ricci soliton with null Cotton tensor is isometric to a standard sphere provided one of the following conditions associated to the Schouten tensor holds: the second symmetric function is constant and positive; two consecutive symmetric functions are non null multiple or some symmetric function is constant and the quoted tensor is positive. The aim of the second part is to study the critical metrics of the total scalar curvature funcional on compact manifolds with constant scalar curvature and unit volume, for simplicity, CPE metrics. It has been conjectured that every CPE metric must be Einstein. We prove that the Conjecture is true for CPE metrics under a suitable integral condition and we also prove that it suffices the metric to be conformal to an Einstein metric. In the third part we estimate the p-fundamental tone of submanifolds in a Cartan-Hadamard manifold. First we obtain lower bounds for the p-fundamental tone of geodesic balls and submanifolds with bounded mean curvature. Moreover, we provide the p-fundamental tone estimates of minimal submanifolds with certain conditions on the norm of the second fundamental form. Finally, we study transversely oriented codimension one C 2-foliations of open subsets Ω of Riemannian manifolds M and obtain lower bounds estimates for the infimum of the mean curvature of the leaves in terms of the p-fundamental tone of Ω.
A presente tese está dividida em três partes diferentes. O objetivo da primeira parte é provar que um quase soliton de Ricci compacto com tensor de Cotton nulo é isométrico a uma esfera canônica desde que uma das seguintes condições associadas ao tensor de Schouten seja válida: a segunda função simétrica é constante e positiva; duas funções simétricas consecutivas são múltiplas, não nulas, ou alguma função simétrica é constante e o tensor de Schouten é positivo. O objetivo da segunda parte é estudar as métricas críticas do funcional curvatura escalar total em variedades compactas com curvatura escalar constante e volume unitário, por simplicidade, métricas CPE. Foi conjecturado que toda métrica CPE deve ser Einstein. Prova-se que a conjectura é verdadeira para as métricas CPE sob uma condição integral adequada e também se prova que é suficiente que a métrica seja conforme a uma métrica Einstein. Na terceira parte, estima-se o p-tom fundamental de subvariedades em uma variedade tipo Cartan-Hadamard. Primeiramente, obtém-se estimativas por baixo para o p-tom fundamental de bolas geodésicas e em subvariedades com curvatura média limitada. Além disso, obtém-se estimativas do p-tom fundamental de subvariedades mínimas com certas condições sobre a norma da segunda forma fundamental. Por fim, estudam-se folheações de classe C 2 transversalmente orientadas de codimensão 1 de subconjuntos abertos Ω de variedades riemannianas M e obtêm-se estimativas por baixo para o ínfimo da curvatura média das folhas em termos do p-tom fundamental de Ω.
APA, Harvard, Vancouver, ISO, and other styles
10

Buckland, John A. (John Anthony) 1978. "Mean curvature flow with free boundary on smooth hypersurfaces." Monash University, School of Mathematical Sciences, 2003. http://arrow.monash.edu.au/hdl/1959.1/5809.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Walsh, Mark. "Metrics of positive scalar curvature and generalised Morse functions /." Connect to title online (Scholars' Bank) Connect to title online (ProQuest), 2009. http://hdl.handle.net/1794/10265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Walsh, Mark 1976. "Metrics of positive scalar curvature and generalised Morse functions." Thesis, University of Oregon, 2009. http://hdl.handle.net/1794/10265.

Full text
Abstract:
x, 164 p. : ill. A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number.
We study the topology of the space of metrics of positive scalar curvature on a compact manifold. The main tool we use for constructing such metrics is the surgery technique of Gromov and Lawson. We extend this technique to construct families of positive scalar curvature cobordisms and concordances which are parametrised by Morse functions and later, by generalised Morse functions. We then use these results to study concordances of positive scalar curvature metrics on simply connected manifolds of dimension at least five. In particular, we describe a subspace of the space of positive scalar curvature concordances, parametrised by generalised Morse functions. We call such concordances Gromov-Lawson concordances. One of the main results is that positive scalar curvature metrics which are Gromov-Lawson concordant are in fact isotopic. This work relies heavily on contemporary Riemannian geometry as well as on differential topology, in particular pseudo-isotopy theory. We make substantial use of the work of Eliashberg and Mishachev on wrinkled maps and of results by Hatcher and Igusa on the space of generalised Morse functions.
Committee in charge: Boris Botvinnik, Chairperson, Mathematics; James Isenberg, Member, Mathematics; Hal Sadofsky, Member, Mathematics; Christopher Phillips, Member, Mathematics; Michael Kellman, Outside Member, Chemistry
APA, Harvard, Vancouver, ISO, and other styles
13

DiÃgenes, Rafael Jorge Pontes. "MÃtricas crÃticas do funcional volume, volume mÃnimo e curvatura mÃnima em variedades de dimensÃo quatro." Universidade Federal do CearÃ, 2015. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=14179.

Full text
Abstract:
FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico
CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior
Este trabalho tem como principal objetivo estudar as mÃtricas do funcional volume, volume mÃnimo e curvatura mÃnima em variedades compactas de dimensÃo quatro. Na primeira parte o objetivo à investigar as mÃtricas crÃticas do funcional volume sob a condiÃÃo de tais mÃtricas serem Bach-flats em uma variedade compacta com bordo ∂M. Provamos que uma mÃtrica crÃtica do funcional volume Bach-flat em uma variedade simplesmente conexa de dimensÃo quatro com bordo isomÃtrico a uma esfera padrÃo à necessariamente isomÃtrico a uma bola geodÃsica em um espaÃo forma simplesmente conexo R4, H4 ou S4. AlÃm disso, mostramos que em dimensÃo trÃs o resultado continua valido substituindo a condiÃÃo Bach-flat pela condiÃÃo mais fraca de M ter o tensor de Bach harmÃnico. Na segunda parte estudamos os invariantes geomÃtricos: volume mÃnimo e curvatura mÃnima. Em 1982, Gromov introduziu o conceito de volume mÃnimo para uma variedade suave como sendo o Ãnfimo de todos os volumes sob as mÃtricas de curvatura seccional limitada, em valor absoluto, por 1. Enquanto a curvatura mÃnima, que foi introduzido por Yun, à o menor pinching da curvatura seccional dentre as mÃtricas de volume 1. Em ambos os casos damos estimativas inferiores envolvendo alguns invariantes diferenciÃveis e topolÃgicos. Dentre elas mostraremos exemplos em que as estimativas sÃo Ãtimas. AlÃm disso, obtemos uma caracterizaÃÃo para o caso da igualdade em algumas estimativas.
This aim of this is to study the critical metrics of the volume functional, minimal volume and minimal curvature on four-dimensional compact manifolds. In the first part, we investigate Bach-flat critical metrics of the volume functional on a compact manifold M with boundary ∂M. Here, we prove that a Bach-flat critical metric of the volume functional on a simply connected 4-dimensional manifold with boundary isometric to a standard sphere must be isometric to a geodesic ball in a simply connected space form R4, H4 or S4. Moreover, we show that in dimension three the result even is true replacing the Bach-flat condition by the weaker assumption that M has divergence-free Bach tensor. In the second part we investigate the geometric invariants: minimal volume and minimal curvature. In 1982, Gromov introduced the concept of minimal volume for a smooth manifold as the greatest lower bound of the total volumes of Mn with respect to complete Riemannian metrics whose sectional curvature is bounded above in absolute value by 1. While the minimal curvature, introduced by G. Yun in 1966, is the smallest pinching of the sectional curvature among metrics of volume 1. In both cases we give below estimates to minimal volume and minimal curvature on 4-dimensional compact manifolds involving some differential and topological invariants. Among these ones, we get some sharp estimates. Moreover, we deduce characterizations for the equality case in some estimates.
APA, Harvard, Vancouver, ISO, and other styles
14

Mroz, Kamil. "Bounds on eigenfunctions and spectral functions on manifolds of negative curvature." Thesis, Loughborough University, 2014. https://dspace.lboro.ac.uk/2134/15038.

Full text
Abstract:
In this dissertation we study the Laplace operator acting on functions on a smooth, compact Riemannian manifold. Our approach is based on the study of the spectrum of the aforementioned operator. The main objects of our interest are the counting function of the Laplacian and its Riesz means. We discuss the asymptotics of aforementioned functions when the argument approaches infinity.
APA, Harvard, Vancouver, ISO, and other styles
15

Garcia, Edijane Paredes. "Uso de polinômios fracionários nos modelos mistos." Botucatu, 2019. http://hdl.handle.net/11449/181646.

Full text
Abstract:
Orientador: Luzia Aparecida Trinca
Resumo: A classe dos modelos de regressão incorporando polinômios fracionários - FPs (Fractional Polynomials), proposta por Royston & Altman (1994), tem sido amplamente estudada. O uso de FPs em modelos mistos constitui uma alternativa muito atrativa para explicar a dependência das medidas intra-unidades amostrais em modelos em que há não linearidade na relação entre a variável resposta e variáveis regressoras contínua. Tal característica ocorre devido aos FPs oferecerem, para a resposta média, uma variedade de formas funcionais não lineares para as variáveis regressoras contínuas, em que se destacam a família dos polinômios convencionais e algumas curvas assimétricas e com assíntotas. A incorporação dos FPs na estrutura dos modelos mistos tem sido investigada por diversos autores. Porém, não existem publicações sobre: a exploração da problemática da modelagem na parte fixa e na parte aleatória (principalmente na presença de várias variáveis regressoras contínuas e categóricas); o estudo da influência dos FPs na estrutura dos efeitos aleatórios; a investigação de uma adequada estrutura para a matriz de covariâncias do erro; ou, um ponto de fundamental importância para colaborar com a seleção do modelo, a realização da análise de diagnóstico dos modelos ajustados. Uma contribuição, do nosso ponto de vista, de grande relevância é a investigação e oferecimento de estratégias de ajuste dos modelos polinômios fracionários com efeitos mistos englobando os pontos citados acima com o objetiv... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: The class of regression models incorporating Fractional Polynomials (FPs), proposed by Royston & Altman (1994), has been extensively studied. The use of FPs in mixed models is a very attractive alternative to explain the within-subjects’ measurements dependence in models where there is non-linearity in the relationship between the response variable and continuous covariates. This characteristic occurs because the FPs offers a variety of non-linear functional forms for the continuous covariates in the average response, in which the family of the conventional polynomials and some asymmetric curves with asymptotes stand out. The incorporation of FPs into the structure of the mixed models has been investigated by several authors. However, there are no works about the following issues: the modeling of the fixed and random effects (mainly in the presence of several continuous and categorical covariates), the study of the influence of the FPs on the structure of the random effects, the investigation of an adequate structure for the covariance of the random errors, or, a point that has central importance to the selection of the model, to perform a diagnostic analysis of the fitted models. In our point of view, a contribution of great relevance is the investigation and the proposition of strategies for fitting FPs with mixed effects encompassing the points mentioned above, with the goals of filling these gaps and to awaken the users to the great potential of mixed models, now even mor... (Complete abstract click electronic access below)
Doutor
APA, Harvard, Vancouver, ISO, and other styles
16

Paparcone, Raffaella. "SUPERSTRUCTURAL INFORMATION IN DNA SEQUENCES: FROM STRUCTURAL TOWARD FUNCTIONAL GENOMICS." Doctoral thesis, La Sapienza, 2005. http://hdl.handle.net/11573/917359.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Amato, Stefano. "Some results on anisotropic mean curvature and other phase transition models." Doctoral thesis, SISSA, 2015. http://hdl.handle.net/20.500.11767/4859.

Full text
Abstract:
The present thesis is divided into three parts. In the first part, we analyze a suitable regularization — which we call nonlinear multidomain model — of the motion of a hypersurface under smooth anisotropic mean curvature flow. The second part of the thesis deals with crystalline mean curvature of facets of a solid set of R^3 . Finally, in the third part we study a phase-transition model for Plateau’s type problems based on the theory of coverings and of BV functions.
APA, Harvard, Vancouver, ISO, and other styles
18

Tewodrose, David. "Some functional inequalities and spectral properties of metric measure spaces with curvature bounded below." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEE076.

Full text
Abstract:
L’objectif de la thèse est de présenter de nouveaux résultats d’analyse sur les espaces métriques mesurés. Nous étendons d’abord à une certaine classe d’espaces avec doublement et Poincaré des inégalités de Sobolev pondérées introduites par V. Minerbe en 2009 dans le cadre des variétés riemanniennes à courbure de Ricci positives. Dans le contexte des espaces RCD(0,N), nous en déduisons une inégalité de Nash pondérée et un contrôle uniforme du noyau de la chaleur pondéré associé. Puis nous démontrons la loi de Weyl sur les espaces RCD(K,N) compactes à l’aide d’un théorème de convergence ponctuelle des noyaux de la chaleur associés à une suite mGH-convergente d’espaces RCD(K,N). Enfin nous abordons dans le contexte RCD(K,N) un théorème de Bérard, Besson et Gallot fournissant, à l’aide du noyau de la chaleur, une famille de plongements asymptotiquement isométriques d’une variété riemannienne fermée dans l’espace de ses fonctions de carré intégrable. Nous introduisons notamment les notions de métrique RCD, de métrique pull-back, et de convergence faible/forte de métriques RCD sur un espace RCD(K,N) compacte, et nous prouvons un résultat de convergence analogue à celui de Bérard, Besson et Gallot
The aim of this thesis is to present new results in the analysis of metric measure spaces. We first extend to a certain class of spaces with doubling and Poincaré some weighted Sobolev inequalities introduced by V. Minerbe in 2009 in the context of Riemannian manifolds with non-negative Ricci curvature. In the context of RCD(0,N) spaces, we deduce a weighted Nash inequality and a uniform control of the associated weighted heat kernel. Then we prove Weyl’s law for compact RCD(K,N) spaces thanks to a pointwise convergence theorem for the heat kernels associated with a mGH-convergent sequence of RCD(K,N) spaces. Finally we address in the RCD(K,N) context a theorem from Bérard, Besson and Gallot which provides, by means of the heat kernel, an asymptotically isometric family of embeddings for a closed Riemannian manifold into its space of square integrable functions. We notably introduce the notions of RCD metrics, pull-back metrics, weak/strong convergence of RCD metrics, and we prove a convergence theorem analog to the one of Bérard, Besson and Gallot
APA, Harvard, Vancouver, ISO, and other styles
19

Tewodrose, David. "Some functional inequalities and spectral properties of metric measure spaces with curvature bounded below." Doctoral thesis, Scuola Normale Superiore, 2018. http://hdl.handle.net/11384/85734.

Full text
Abstract:
[from the introduction]: The aim of this thesis is to study metric measure spaces with a synthetic notion of Ricci curvature bounded below. We study them from the point of view of Sobolev/Nash type functional inequalities in the non-compact case, and from the point of view of spectral analysis in the compact case. The heat kernel links the two cases: in the first one, the goal is to get new estimates on the heat kernel of some associated weighted structure; in the second one, the heat kernel is the basic tool to establish our results. The topic of synthetic Ricci curvature bounds has known a constant development over the past few years. In this introduction, we shall give some historical account on this theory, before explaining in few words the content of this work. The letter K will refer to an arbitrary real number and N will refer to any finite number greater or equal than 1.
APA, Harvard, Vancouver, ISO, and other styles
20

Bäcklund, Pierre. "Studies on boundary values of eigenfunctions on spaces of constant negative curvature." Doctoral thesis, Uppsala University, Department of Mathematics, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8920.

Full text
Abstract:

This thesis consists of two papers on the spectral geometry of locally symmetric spaces of Riemannian and Lorentzian signature. Both works are concerned with the idea of relating analysis on such spaces to structures on their boundaries.

The first paper is motivated by a conjecture of Patterson on the Selberg zeta function of Kleinian groups. We consider geometrically finite hyperbolic cylinders with non-compact Riemann surfaces of finite area as cross sections. For these cylinders, we present a detailed investigation of the Bunke-Olbrich extension operator under the assumption that the cross section of the cylinder has one cusp. We establish the meromorphic continuation of the extension of Eisenstein series and incomplete theta series through the limit set. Furthermore, we derive explicit formulas for the residues of the extension operator in terms of boundary values of automorphic eigenfunctions.

The motivation for the second paper comes from conformal geometry in Lorentzian signature. We prove the existence and uniqueness of a sequence of differential intertwining operators for spherical principal series representations, which are realized on boundaries of anti de Sitter spaces. Algebraically, these operators correspond to homomorphisms of generalized Verma modules. We relate these families to the asymptotics of eigenfunctions on anti de Sitter spaces.

APA, Harvard, Vancouver, ISO, and other styles
21

Xu, Chao. "Non-conformal geometry on noncommutative two tori." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1566225527101998.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Filho, Francisco de Assiss Benjamim. "A partial answer to the CPE conjecture, diameter estimates and manifolds with constant energy." Universidade Federal do CearÃ, 2015. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=14748.

Full text
Abstract:
CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico
Esta tese està dividida em quatro partes. Na primeira delas estudaremos pontos crÃticos do funcional curvatura escalar total restrito ao espaÃo das mÃtricas de curvatura escalar constante e volume unitÃrio. Provaremos que sob certas condiÃÃes integrais convenientes os pontos crÃticos de tal funcional sÃo variedades de Einstein provando assim a conjectura dos pontos crÃticos neste caso. Na segunda parte, veremos duas estimativas para o primeiro autovalor do Laplaciano de uma variedade compacta com curvatura de Ricci limitada por baixo por uma constante. As estimativas que obtemos melhoram a estimativa correspondente provada por Li e Yau (1980). Na terceira parte, estamos interessados em estimar o diÃmetro de hipersuperfÃcies mÃnimas da esfera. A estimativa que encontramos depende apenas do primeiro autovalor do Laplaciano da hipersuperfÃcie considerada. Para superfÃcies imersas na esfera de dimensÃo trÃs, obtemos uma estimativa ligeiramente melhor do que a obtida no caso de dimensÃo alta. Na Ãltima parte, introduzimos o conceito de variedade de energia constante e provamos que a esfera e o toro sÃo as Ãnicas superfÃcies que tÃm energia constante. Em dimensÃo mais alta a situaÃÃo à bem diferente uma vez que o produto de uma esfera por qualquer variedade compacta tem energia constante. Entretanto, se impusermos uma condiÃÃo sobre a curvatura de Ricci, à possÃvel caracterizar a esfera tambÃm neste caso. Em seguida, aplicamos as informa-ÃÃes obtidas ao estudo de hipersuperfÃcies da esfera provando alguns resultados de rigidez desde que a hipersuperfÃcie tenha energia constante.
This thesis is divided into four parts. In the first one we study the critical points of the total scalar curvature functional restricted to the space of metrics with constant scalar curvature and volume one. We shall prove that under certain suitable integral conditions the critical points of such functional are Einstein manifolds proving this way the critical point equation conjecture in this case. In the second part, we will provide an estimate for the first eigenvalue of the Laplacian of a compact manifolds with Ricci curvature bounded from below by a constant. The estimate we obtain improves the corresponding estimate proved by Li and Yau (1980). In the third part, we are interested in to estimate the diameter of minimal hypersurfaces of the sphere. The estimate we get depends only on the first eigenvalue of the Laplacian of the considered hypersurface. For immersed surfaces on the three dimensional sphere, we obtain an estimate slightly better than the one obtained in the case of higher dimension. In the last part, we introduce the concept of manifolds with constant energy and prove that the sphere and the torus are the only compact surfaces that have constant energy. For higher dimension, the situation is very different sine the product of the sphere with any compact manifold has constant energy. Nevertheless, if we impose a condition over the Ricci curvature it is possible to characterize the sphere also in this case. After that, we apply the informations obtained to the study of hypersurfaces of the sphere proving some rigidity results provided that the hypersurfaces has constant energy.
APA, Harvard, Vancouver, ISO, and other styles
23

Knecht, Casey Scott. "Crash Prediction Modeling for Curved Segments of Rural Two-Lane Two-Way Highways in Utah." BYU ScholarsArchive, 2014. https://scholarsarchive.byu.edu/etd/4352.

Full text
Abstract:
This thesis contains the results of the development of crash prediction models for curved segments of rural two-lane two-way highways in the state of Utah. The modeling effort included the calibration of the predictive model found in the Highway Safety Manual (HSM) as well as the development of Utah-specific models developed using negative binomial regression. The data for these models came from randomly sampled curved segments in Utah, with crash data coming from years 2008-2012. The total number of randomly sampled curved segments was 1,495. The HSM predictive model for rural two-lane two-way highways consists of a safety performance function (SPF), crash modification factors (CMFs), and a jurisdiction-specific calibration factor. For this research, two sample periods were used: a three-year period from 2010 to 2012 and a five-year period from 2008 to 2012. The calibration factor for the HSM predictive model was determined to be 1.50 for the three-year period and 1.60 for the five-year period. These factors are to be used in conjunction with the HSM SPF and all applicable CMFs. A negative binomial model was used to develop Utah-specific crash prediction models based on both the three-year and five-year sample periods. A backward stepwise regression technique was used to isolate the variables that would significantly affect highway safety. The independent variables used for negative binomial regression included the same set of variables used in the HSM predictive model along with other variables such as speed limit and truck traffic that were considered to have a significant effect on potential crash occurrence. The significant variables at the 95 percent confidence level were found to be average annual daily traffic, segment length, total truck percentage, and curve radius. The main benefit of the Utah-specific crash prediction models is that they provide a reasonable level of accuracy for crash prediction yet only require four variables, thus requiring much less effort in data collection compared to using the HSM predictive model.
APA, Harvard, Vancouver, ISO, and other styles
24

Ripani, Luigia. "Le problème de Schrödinger et ses liens avec le transport optimal et les inégalités fonctionnelles." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1274/document.

Full text
Abstract:
Au cours des 20 dernières années, la théorie du transport optimal s’est revelée être un outil efficace pour étudier le comportement asymptotique dans le cas des équations de diffusion, pour prouver des inégalités fonctionnelles et pour étendre des propriétés géométriques dans des espaces extrêmement généraux comme des espaces métriques mesurés, etc. La condition de courbure-dimension de la théorie Bakry-Emery apparaît comme la pierre angulaire de ces applications. Il suffit de penser au cas le plus simple et le plus important de la distance quadratique de Wasserstein W2 : la contraction du flux de chaleur en W2 caractérise les bornes inférieures uniformes pour la courbure de Ricci ; l’inégalité de Talagrand du transport, comparant W2 à l’entropie relative est impliquée et implique, par l’inégalité HWI, l’inégalité log-Sobolev ; les géodésiques de McCann dans l’espace de Wasserstein (P2(Rn),W2) permettent de prouver des propriétés fonctionnelles importantes comme la convexité, et des inégalités fonctionnelles standards telles que l’isopérymétrie, des propriétés de concentration de mesure, l’inégalité de Prékopa-Leindler et ainsi de suite. Néanmoins, le manque de régularité des plans minimisation nécessite des arguments d’analyse non lisse. Le problème de Schrödinger est un problème de minimisation de l’entropie avec des contraintes marginales et un processus de référence fixes. À partir de la théorie des grandes déviations, lorsque le processus de référence est le mouvement Brownien, sa valeur minimale A converge vers W2 lorsque la température est nulle. Les interpolations entropiques, solutions du problème de Schrödinger, sont caractérisées en termes de semigroupes de Markov, ce qui implique naturellement les calculs Γ2 et la condition de courbure-dimension. Datant des années 1930 et négligé pendant des décennies, le problème de Schrodinger connaît depuis ces dernières années une popularité croissante dans différents domaines, grâce à sa relation avec le transport optimal, à la regularité de ses solutions, et à d’autres propriétés performantes dans des calculs numériques. Le but de ce travail est double. D’abord, nous étudions certaines analogies entre le problème de Schrödinger et le transport optimal fournissant de nouvelles preuves de la formulation duale de Kantorovich et de celle, dynamique, de Benamou-Brenier pour le coût entropique A. Puis, en tant qu’application de ces connexions, nous dérivons certaines propriétés et inégalités fonctionnelles sous des conditions de courbure-dimension. En particulier, nous prouvons la concavité de l’entropie exponentielle le long des interpolations entropiques sous la condition de courbure-dimension CD(0, n) et la régularité du coût entropique le long du flot de la chaleur. Nous donnons également différentes preuves de l’inégalité variationnelle évolutionnaire pour A et de la contraction du flux de la chaleur en A, en retrouvant comme cas limite, les résultats classiques en W2, sous CD(κ,∞) et CD(0, n). Enfin, nous proposons une preuve simple de la propriété de concentration gaussienne via le problème de Schrödinger comme alternative aux arguments classiques tel que l’argument de Marton basé sur le transport optimal
In the past 20 years the optimal transport theory revealed to be an efficient tool to study the asymptotic behavior for diffusion equations, to prove functional inequalities, to extend geometrical properties in extremely general spaces like metric measure spaces, etc. The curvature-dimension of the Bakry-Émery theory appears as the cornerstone of those applications. Just think to the easier and most important case of the quadratic Wasserstein distance W2: contraction of the heat flow in W2 characterizes uniform lower bounds for the Ricci curvature; the transport Talagrand inequality, comparing W2 to the relative entropy is implied and implies via the HWI inequality the log-Sobolev inequality; McCann geodesics in the Wasserstein space (P2(Rn),W2) allow to prove important functional properties like convexity, and standard functional inequalities, such as isoperimetry, measure concentration properties, the Prékopa Leindler inequality and so on. However the lack of regularity of optimal maps, requires non-smooth analysis arguments. The Schrödinger problem is an entropy minimization problem with marginal constraints and a fixed reference process. From the Large deviation theory, when the reference process is driven by the Brownian motion, its minimal value A converges to W2 when the temperature goes to zero. The entropic interpolations, solutions of the Schrödinger problem, are characterized in terms of Markov semigroups, hence computation along them naturally involves Γ2 computations and the curvature-dimension condition. Dating back to the 1930s, and neglected for decades, the Schrödinger problem recently enjoys an increasing popularity in different fields, thanks to this relation to optimal transport, smoothness of solutions and other well performing properties in numerical computations. The aim of this work is twofold. First we study some analogy between the Schrödinger problem and optimal transport providing new proofs of the dual Kantorovich and the dynamic Benamou-Brenier formulations for the entropic cost A. Secondly, as an application of these connections we derive some functional properties and inequalities under curvature-dimensions conditions. In particular, we prove the concavity of the exponential entropy along entropic interpolations under the curvature-dimension condition CD(0, n) and regularity of the entropic cost along the heat flow. We also give different proofs the Evolutionary Variational Inequality for A and contraction of the heat flow in A, recovering as a limit case the classical results in W2, under CD(κ,∞) and also in the flat dimensional case. Finally we propose an easy proof of the Gaussian concentration property via the Schrödinger problem as an alternative to classical arguments as the Marton argument which is based on optimal transport
APA, Harvard, Vancouver, ISO, and other styles
25

Sandy, Alexis Emily. "Environmental and Digital Data Analysis of the National Wetlands Inventory (NWI) Landscape Position Classification System." Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/33572.

Full text
Abstract:
The National Wetlands Inventory (NWI) is the definitive source for wetland resources in the United States. The NWI production unit in Hadley, MA has begun to upgrade their digital map database, integrating descriptors for assessment of wetland functions. Updating is conducted manually and some automation is needed to increase production and efficiency. This study assigned landscape position descriptor codes to NWI wetland polygons and correlated polygon environmental properties with public domain terrain, soils, hydrology, and vegetation data within the Coastal Plain of Virginia. Environmental properties were applied to a non-metric multidimensional scaling technique to identify similarities within individual landscape positions based on wetland plant indicators, primary and secondary hydrology indicators, and field indicators of hydric soils. Individual NWI landscape position classes were linked to field-validated environmental properties. Measures provided by this analysis indicated that wetland plant occurrence and wetland plant status obtained a stress value of 0.136 (Kruskalâ s stress measure = poor), which is a poor indicator when determining correlation among wetland environmental properties. This is due principally to the highly-variable plant distribution and wetland plant status found among the field-validated sites. Primary and secondary hydrology indicators obtained a stress rating of 0.097 (Kruskalâ s stress measure = good) for correlation. The hydrology indicators measured in this analysis had a high level of correlation with all NWI landscape position classes due the common occurrence of at least one primary hydrology indicator in all field validated wetlands. The secondary indicators had an increased accuracy in landscape position discrimination over the primary indicators because they were less ubiquitous. Hydric soil characteristics listed in the 1987 Manual and NTCHS field indicators of hydric soils proved to be a relatively poor indicator, based on Kruskalâ s stress measure of 0.117, for contrasting landscape position classes because the same values occurred across all classes. The six NWI fieldâ validated landscape position classes used in this study were then further applied in a public domain digital data analysis. Mean pixel attribute values extracted from the 180 field-validated wetlands were analyzed using cluster analysis. The percent hydric soil component displayed the greatest variance when compared to elevation and slope curvature, streamflow and waterbody, Cowardin classification, and wetland vegetation type. Limitations of the soil survey data included: variable date of acquisition, small scale compared to wetland size, and variable quality. Flow had limitations related to its linear attributes, therefore is often found insignificant when evaluating pixel values that are mean of selected pixels across of wetland landscape position polygons. NLCD data limitations included poor quality resolution (large pixel size) and variable classification of cover types. The three sources of information that would improve wetland mapping and modeling the subtle changes in elevation and slope curvature that characterize wetland landscapes are: recent high resolution leaf-off aerial photography, high-quality soil survey data, and high-resolution elevation data. Due to the data limitations and the choice of variables used in this study, development of models and rules that clearly separate the six different landscape positions was not possible, and thus automation of coding could not be attempted.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
26

CHERMISI, MILENA. "Crystalline flow of planar partitions and a geometric approach for systems of PDEs." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2006. http://hdl.handle.net/2108/202647.

Full text
Abstract:
La presente tesi tratta due argomenti distinti. Il Capitolo 1 e il Capitolo 2 riguardano problemi di evoluzione di interfacce nel piano. Nel Capitolo 1 viene considerata l’evoluzione di un materiale policristallino con tre (o più) fasi, in presenza di un’anisotropia cristallina (pari) ϕo la cui linea di livello 1, Fϕ :={ϕo ≤1} (Frank diagram), è un poligono regolare di n lati. La funzione duale ϕ : R2 →R definita da ϕ(ξ) := sup{ξ·η : ϕo(η)≤1}´e anch’essa un’anisotropia cristallina e Wϕ := {ϕ ≤ 1} è detta Wulff shape. In particolare, viene studiato il moto per curvatura cristallina di triodi elementari, ossia speciali reti piane di curve che sono frontiere regolari di insiemi rappresentanti tre fasi distinte di un materiale. Un triodo elementare è formato dall’unione di tre curve Lipschitziane, le interfacce, che si intersecano in un unico punto detto giunzione tripla. Ogni interfaccia è l’unione di un segmento di lunghezza finita e di una semiretta che riproduce due lati consecutivi della Wulff shape Wϕ. Viene analizzata l’esitenza locale e globale e la stabilità del flusso. Si dimostra l’esistenza locale di un unico flusso regolare stabile a partire da un dato iniziale regolare stabile: se n, il numero dei lati della Wulff shapeWϕ, è un multiplo di 6 allora il flusso è globale e converge a un flusso omotetico per t →+∞. L’analisi del comportamento del flusso per tempi grandi richiede lo studio della stabilità. La stabilità è l’ingrediente che assicura che nessun segmento si sviluppa dalla giunzione tripla durante il flusso. In generale, il flusso può diventare instabile in un tempo finito: se ciò accade e tutte le lunghezze dei segmenti finiti sono strettamente positive per tale tempo,è possibile costruire un flusso regolare per tempi successivi aggiungendo in corrispondenza della giunzione tripla in una delle tre interfacce un segmento infinitesimo opportuno (o addirittura un arco di curva a curvatura cristallina nulla). ´E anche possibile che durante il flusso uno dei tre segmenti scompaia in un tempo finito. In tal caso, in tale tempo il campo vettoriale di Cahn-Hoffman ha un salto di discontinuità e ai tempi successivi la giunzione tripla si muove traslando lungo la semiretta adiacente. Ognuno di questi flussi ha la proprietà che tutte le curvature cristalline rimangono limitate (persino se un segmento appare o scompare). ´E importante sottolineare che Taylor aveva già predetto la nascita di nuovi segmenti dalla giunzione tripla (senza però dimostrarlo). Viene inoltre considerato il flusso per curvatura cristalina di una partizione regolare stabile formata da due triodi elementari adiacenti. Vengono discussi alcuni esempi di situazioni di colasso che portano a cambi di topologia, come ad esempio la collisione di due giunzioni triple. Questi esempi (come anche il risultato di esistenza per tempi piccoli) mostrano uno dei vantaggi del flusso per curvatura cristallino rispetto, ad esempio, all’usuale moto per curvatura: calcoli espliciti possono essere fatti, e nel caso di non unicità, è possibile confrontare le energie delle diverse evoluzioni (difficile nel caso euclideo). Nel Capitolo 2 viene introdotta, usando la teoria delle funzioni a variazione limitata a valori in S1, la sfera diR2, una nuova classe di funzionali energia definiti su partizioni. Attraverso la variazione prima del funzionale energia, viene fornito un nuovo modello per l’evoluzione di interfacce che parzialmente estende quello introdotto nel Capitolo 1 e che consiste in un problema di frontiera libera definito sulle funzioni a variazione limitata a valori in S1. Questo modello è legato all’evoluzione di materiali policristallini dove è consentito alla Wulff shape di ruotare. Assumendo l’esitenza locale del flusso, si dimostra che durante il flusso curve chiuse convesse rimangono convesse e curve chiuse embedded rimangono embedded. Il secondo argomento della tesi è trattato nel Capitolo 3: l’obiettivo è quello di estendere il metodo delle linee di livello a sistemi di equazioni differenziali alle derivate parziali. Il metodo che viene proposto è consistente con la precedente ricerca portata avanti da Evans per l’equazione del calore e da Giga e Sato per equazioni di Hamilton-Jacobi. Il nostro approccio segue una costruzione geometrica che è legate alla nozione di barriera introdotta da De Giorgi. L’idea principale è quella di forzare un principio di confronto tra varietà di diversa codimensione e richiedere che ogni sottolivello di una soluzione dell’equazione per le linee di livello, detta level set equation, sia una barriera per i grafici di soluzioni del corrispondente sistema. Tale metodo ben si applica a una classe di sistemi di equazioni quasi-lineari del primo ordine. Viene fornita la level set equation associata ad opportuni sitemi di leggi di conservazione del primo ordine, al flusso per curvatura media di una varietà di codimensione arbitraria e a sitemi di equazioni di reazione-diffusione. Infine, viene calcolata la level set equation associata al sistema soddisfatto dalle parametrizzazioni di curve piane che si muovono per curvatura.
The present thesis deals with two different subjects. Chapter 1 and Chapter 2 concern interfaces evolution problems in the plane. In Chapter 1 I consider the evolution of a polycrystalline material with three (or more) phases, in presence of for an even crystalline anisotropy ϕo whose one-sublevel set Fϕ := {ϕo ≤ 1} (the Frank diagram) is a regular polygon of n sides. The dual function ϕ : R2 → R defined by ϕ(ξ) := sup{ξ ·η : ϕo(η) ≤ 1} is crystalline too and Wϕ := {ϕ ≤ 1} is called the Wulff shape. I am particularly interested in the motion by crystalline curvature of special planar networks called elementary triods, namely a regular three-phase boundary given by the union of three Lipschitz curves, the interfaces, intersecting at a point called triple junction. Each interface is the union of a segment of finite length and a half-line, reproducing two consecutive sides of Wϕ. I analyze local and global existence and stability of the flow. I prove that there exists, locally in time, a unique stable regular flow starting from a stable regular initial datum. I show that if n, the number of sides of Wϕ, is a multiple of 6 then the flow is global and converge to a homothetic flow as t → +∞. The analysis of the long time behavior requires the study of the stability. Stability is the ingredient that ensures that no additional segments develop at the triple junction during the flow. In general, the flow may become unstable at a finite time: if this occurs and none of the segments desappears, it is possible to construct a regular flow at subsequent times by adding an infinitesimal segment (or even an arc with zero crystalline curvature) at the triple junction. I also show that a segment may desappear. In such a case, the Cahn-Hoffman vector field Nmin has a jump discontinuity and the triple junction translates along the remaining adjacent half-line at subsequent times. Each of these flows has the property that all crystalline curvatures remain bounded (even if a segment appears or disappears). I want to stress that Taylor already predicted the appearance of new edges from a triple junction. I also consider the crystalline curvature flow starting from a stable ϕ-regular partition formed by two adjacent elementary triods. I discuss some examples of collapsing situations that lead to changes of topology, such as for instance the collision of two triple junctions. These examples (as well as the local in time existence result) show one of the advantages of crystalline flows with respect, for instance, to the usual mean curvature flow: explicit computations can be performed to some extent, and in case of nonuniqueness, a comparison between the energies of different evolutions (difficult in the euclidean case) can be made. In Chapter 2 we introduce, using the theory of S1-valued functions of bounded variations, a class of energy functionals defined on partitions and we produce, through the first variation, a new model for the evolution of interfaces which partially extends the one in Chapter 1 and which consists of a free boundary problem defined on S1-valued functions of bounded variation. This model is related to the evolution of polycrystals where the Wulff shape is allowed to rotate. Assuming the local existence of the flow, we show convexity preserving and embeddedness preserving properties. The second subject of the thesis is considered in Chapter 3 where we aim to extend the level set method to systems of PDEs. The method we propose is consistent with the previous research pursued by Evans for the heat equation and by Giga and Sato for Hamilton-Jacobi equations. Our approach follows a geometric construction related to the notion of barriers introduced by De Giorgi. The main idea is to force a comparison principle between manifolds of different codimension and require each sub-level of a solution of the level set equation to be a barrier for the graph of a solution of the corresponding system. We apply the method for a class of systems of first order quasi-linear equations. We compute the level set equation associated with suitable first order systems of conservation laws, with the mean curvature flow of a manifold of arbitrary codimension and with systems of reaction-diffusion equations. Finally, we provide a level set equation associated with the parametric curvature flow of planar curves.
APA, Harvard, Vancouver, ISO, and other styles
27

Dahmani, Kamilia. "Weighted LP estimates on Riemannian manifolds." Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30188/document.

Full text
Abstract:
Cette thèse s'inscrit dans le domaine de l'analyse harmonique et plus exactement, des estimations à poids. Un intérêt particulier est porté aux estimations Lp à poids des transformées de Riesz sur des variétés Riemanniennes complètes ainsi qu'à l'optimalité des résultats en terme de la puissance de la caractéristique des poids. On obtient un premier résultat (en terme de la linéarité et de la non dépendance de la dimension) sur des espaces pas nécessairement de type homogène, lorsque p = 2 et la courbure de Bakry-Emery est positive. On utilise pour cela une approche analytique en exhibant une fonction de Bellman concrète. Puis, en utilisant des techniques stochastiques et une domination éparse, on démontre que les transformées de Riesz sont bornées sur Lp, pour p ∈ (1, +∞) et on déduit également le résultat précèdent. Enfin, on utilise un changement élégant dans la preuve précèdente pour affaiblir l'hypothèse sur la courbure et la supposer minorée
The topics addressed in this thesis lie in the field of harmonic analysis and more pre- cisely, weighted inequalities. Our main interests are the weighted Lp-bounds of the Riesz transforms on complete Riemannian manifolds and the sharpness of the bounds in terms of the power of the characteristic of the weights. We first obtain a linear and dimensionless result on non necessarily homogeneous spaces, when p = 2 and the Bakry-Emery curvature is non-negative. We use here an analytical approach by exhibiting a concrete Bellman function. Next, using stochastic techniques and sparse domination, we prove that the Riesz transforms are Lp-bounded for p ∈ (1, +∞) and obtain the previous result for free. Finally, we use an elegant change in the precedent proof to weaken the condition on the curvature and assume it is bounded from below
APA, Harvard, Vancouver, ISO, and other styles
28

Hussain, Jakir. "Three Essays on the Measurement of Productivity." Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36194.

Full text
Abstract:
This doctoral thesis consists of three essays. In the first essay I investigate the presence of productivity convergence in eight regional pulp and paper industries of U.S. and Canada over the period of 1971-2005. Expectation of productivity convergence in the pulp and paper industries of Canadian provinces and of the states of its southern neighbour is high since they are trading partners with fairly high level of exchanges in both pulp and paper products. Moreover, they share a common production technology that changed very little over the last century. I supplement the North-American regional data with national data for two Nordic countries, Finland and Sweden, which provides a scope to compare the productivity performances of four leading players in global pulp and paper industry. I find evidence in favour of the catch-up hypothesis among the regional pulp and paper industries of U.S. and Canada in my sample. The growth performance is at the advantage of Canadian provinces relative to their U.S. counterparts. However, it is not good enough to surpass the growth rates of this industry in the two Nordic countries. It is well-known that econometric productivity estimation using flexible functional forms often encounter violations of curvature conditions. However, the productivity literature does not provide any guidance on the selection of appropriate functional forms once they satisfy the theoretical regularity conditions. The second chapter of my thesis provides an empirical evidence that imposing local curvature conditions on the flexible functional forms affect total factor productivity (TFP) estimates in addition to the elasticity estimates. Moreover, I use this as a criterion for evaluating the performances of three widely used locally flexible cost functional forms - the translog (TL), the Generalized Leontief (GL), and the Normalized Quadratic (NQ) - in providing TFP estimates. Results suggest that the NQ model performs better than the other two functional forms in providing TFP estimates. The third essay capitalizes on newly available high frequency energy consumption data from commercial buildings in the District of Columbia (DC) to provide novel insights on the realized energy use impacts of energy efficiency standards in commercial buildings. Combining these data with hourly weather data and information on tenancy contract structure I evaluate the impacts of energy standards, contractual structure of utility bill payments, and energy star labeling on account level electricity consumption. Using this unique panel dataset, the analysis takes advantage of detailed building-level characteristics and the heterogeneity in the building age distribution, resulting in buildings constructed before and after mandatory energy standards came into effect. Estimation results suggest that in commercial buildings constructed under a code, electricity consumption is lower by about 0.48 kWh per cooling degree hour. When tenants pay for their own utilities, consumption is lower by 0.82 kWh per cooling degree hour. The Energy Star effect is a 0.31 kWh reduction per cooling degree hour. Finally, peak savings for all three variables of interest occur at 2pm in the summer months, whereas peak summer marginal prices at DC's local electric utility occur at 5pm.
APA, Harvard, Vancouver, ISO, and other styles
29

Maity, Soma. "On the Stability of Certain Riemannian Functionals." Thesis, 2012. http://hdl.handle.net/2005/3230.

Full text
Abstract:
Given a compact smooth manifold Mn without boundary and n ≥ 3, the Lp-norm of the curvature tensor, defines a Riemannian functional on the space of Riemannian metrics with unit volume M1. Consider C2,α-topology on M1 Rp remains invariant under the action of the group of diffeomorphisms D of M. So, Rp is defined on M1/ D. Our first result is that Rp restricted to the space M1/D has strict local minima at Riemannian metrics with constant sectional curvature for certain values of p. The product of spherical space forms and the product of compact hyperbolic manifolds are also critical point for Rp if they are product of same dimensional manifolds. We prove that these spaces are strict local minima for Rp restricted to M1/D. Compact locally symmetric isotropy irreducible metrics are critical points for Rp. We give a criteria for the local minima of Rp restricted to the conformal class of metrics of a given irreducible symmetric metric. We also prove that the metrics with constant bisectional curvature are strict local minima for Rp restricted to the space of Kahlar metrics with unite volume quotient by D. Next we consider the Riemannian functional given by In [GV], M. J. Gursky and J. A. Viaclovsky studied the local properties of the moduli space of critical metrics for the functional Ric2.We generalize their results for any p > 0.
APA, Harvard, Vancouver, ISO, and other styles
30

"Conformal deformation and prescribing scalar curvature." 1999. http://library.cuhk.edu.hk/record=b5889855.

Full text
Abstract:
by Lam Chi Fung.
Thesis (M.Phil.)--Chinese University of Hong Kong, 1999.
Includes bibliographical references (leaves 58-63).
Abstract also in Chinese.
Chapter Chapter 0 --- Introduction --- p.6
Chapter Chapter 1 --- Preliminaries --- p.10
Chapter Chapter 2 --- Uniform L∞ Bounds and Blow-up Behavior --- p.20
Chapter Chapter 3 --- Branch Bubbling and Pre-branch Bubbling Sequences --- p.32
Chapter Chapter 4 --- Related Problems --- p.46
Bibliography --- p.58
APA, Harvard, Vancouver, ISO, and other styles
31

Keshari, Dinesh Kumar. "Infinitely Divisible Metrics, Curvature Inequalities And Curvature Formulae." Thesis, 2012. http://etd.iisc.ernet.in/handle/2005/2332.

Full text
Abstract:
The curvature of a contraction T in the Cowen-Douglas class is bounded above by the curvature of the backward shift operator. However, in general, an operator satisfying the curvature inequality need not be contractive. In this thesis, we characterize a slightly smaller class of contractions using a stronger form of the curvature inequality. Along the way, we find conditions on the metric of the holomorphic Hermitian vector bundle E corresponding to the operator T in the Cowen-Douglas class which ensures negative definiteness of the curvature function. We obtain a generalization for commuting tuples of operators in the Cowen-Douglas class. Secondly, we obtain an explicit formula for the curvature of the jet bundle of the Hermitian holomorphic bundle E f on a planar domain Ω. Here Ef is assumed to be a pull-back of the tautological bundle on gr(n, H ) by a nondegenerate holomorphic map f :Ω →Gr (n, H ). Clearly, finding relationships amongs the complex geometric invariants inherent in the short exact sequence 0 → Jk(Ef ) → Jk+1(Ef ) →J k+1(Ef )/ Jk(Ef ) → 0 is an important problem, whereJk(Ef ) represents the k-th order jet bundle. It is known that the Chern classes of these bundles must satisfy c(Jk+1(Ef )) = c(Jk(Ef )) c(Jk+1(Ef )/ Jk(Ef )). We obtain a refinement of this formula: trace Idnxn ( KJk(Ef )) - trace Idnxn ( KJk-1(Ef ))= KJk(Ef )/ Jk-1(Ef )(z).
APA, Harvard, Vancouver, ISO, and other styles
32

Hawkins, Christopher Ryan. "A minimization of a curvature functional on fiber bundles." Thesis, 1998. http://hdl.handle.net/1911/19268.

Full text
Abstract:
Let B be a smooth compact orientable surface without boundary and with $\chi(B) < 0.$ We examine two types of fiber bundles M over B with fiber F. The first is a principle fiber bundle with a two-torus fiber and the second is an $S\sp2$ fiber bundle with an SO(3) group action. In each case, the tangent space of the bundle can be decomposed into a vertical space, those vectors tangent to fibers, and a horizontal space complementary to the vertical space and invariant under the group action. The bundle can be given a metric that is the direct sum of metrics on the vertical and horizontal spaces. Additionally, with this metric, M, is locally isometric to a product space $B\times F$ with metric $g\sb{b} + g\sb{f}.$ Here $g\sb{b}$ is any fixed metric on the base, $g\sb{f}$ is a constant curvature metric on the fiber invariant under the action of the group. We can obtain a new metric on M by scaling the horizontal component of the original by $e\sp{2u}$ and the vertical component by $f\sp2,$ where u and f are smooth functions on the base. We put certain constraints on u and f and consider the family of all such variations. In this thesis, we show, using nonlinear elliptic estimates, that among these metrics there is one for which the integral of the norm of the Ricci curvature tensor squared, $\int\sb{M}\vert Ric\vert\sp2dV,$ is minimized.
APA, Harvard, Vancouver, ISO, and other styles
33

"Harmonic functions on manifolds of non-positive curvature." 1999. http://library.cuhk.edu.hk/record=b5889983.

Full text
Abstract:
by Lei Ka Keung.
Thesis (M.Phil.)--Chinese University of Hong Kong, 1999.
Includes bibliographical references (leaves 70-71).
Abstracts in English and Chinese.
Chapter 0 --- Introduction --- p.5
Chapter 1 --- Dirichlet Problem at infinity --- p.9
Chapter 1.1 --- The Geometric Boundary --- p.9
Chapter 1.2 --- Dirichlet Problem --- p.15
Chapter 2 --- The Martin Boundary --- p.29
Chapter 2.1 --- The Martin Metric --- p.30
Chapter 2.2 --- The Representation Formula --- p.31
Chapter 2.3 --- Uniqueness of Representation --- p.36
Chapter 3 --- The Geometric boundary and the Martin boundary --- p.42
Chapter 3.1 --- Estimates for harmonic functions in cones --- p.42
Chapter 3.2 --- A Harnack Inequality at Infinity --- p.49
Chapter 3.3 --- The kernel function --- p.54
Chapter 3.4 --- The Main Theorem --- p.55
Chapter 4 --- Positive Harmonic Functions on Product of Manifolds --- p.61
Chapter 4.1 --- Splitting Theorem --- p.61
Chapter 4.2 --- Riemannian Halfspace and the parabolic Martin boundary --- p.62
Chapter 4.3 --- Splitting of parabolic Martin kernels --- p.63
Chapter 4.4 --- Proof of theorem 4.1 --- p.66
Bibliography
APA, Harvard, Vancouver, ISO, and other styles
34

CHEN, CHUANG-YI, and 陳創義. "The harmonic functions on complete riemannian manifolds of nonnegative ricci curvature." Thesis, 1988. http://ndltd.ncl.edu.tw/handle/27426541147655831097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

PAPARCONE, RAFFAELLA, Stefano MOROSETTI, Anita SCIPIONI, and SANTIS Pasquale DE. "Superstructural information in DNA sequences: from structural toward functional genomics." Doctoral thesis, 2005. http://hdl.handle.net/11573/391173.

Full text
Abstract:
Although DNA is iconized as a straight double helix, it does not exist in this canonical form in biological systems. Instead, it is characterized by sequence dependent structural and dynamic deviations from the monotonous regularity of the canonical B-DNA. Despite the complexity of the system, we showed that DNA structural and dynamics large-scale properties can be predicted starting from the simple knowledge of nucleotide sequence by adopting a statistical approach. The paper reports the statistical analysis of large pools of different prokaryotic genes in terms of the sequence-dependent curvature and flexibility. Conserved features characterize the regions close to the Start Translation Site, which are related to their function in the regulation system. In addition, regular patterns with three-fold periodicity were found in the coding regions. They were reproduced in terms of the nucleotide frequency expected on the basis of the genetic code and the pertinent occurrence of the aminoacid residues.
APA, Harvard, Vancouver, ISO, and other styles
36

Bacher, Kathrin [Verfasser]. "Curvature dimension bounds and functional inequalities : localization, tensorization and stability / vorgelegt von Kathrin Bacher." 2010. http://d-nb.info/1002425204/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Berthaume, Michael Anthony. "Tooth Cusp Radius of Curvature as a Dietary Correlate in Primates." 2013. https://scholarworks.umass.edu/open_access_dissertations/835.

Full text
Abstract:
Tooth cusp radius of curvature (RoC) has been hypothesized to play an important role in food item breakdown, but has remained largely unstudied due to difficulties in measuring and modeling RoC in multicusped teeth. We tested these hypotheses using a parametric model of a four cusped, maxillary, bunodont molar in conjunction with finite element analysis. When our data failed to support existing hypotheses, we put forth and tested the Complex Cusp Hypothesis which states that, during brittle food items breakdown, an optimally shaped molar would be maximizing stresses in the food item while minimizing stresses in the enamel. After gaining support for this hypothesis, we tested the effects of relative food item size on optimal molar morphology and found that the optimal set of RoCs changed as relative food item size changed. However, all optimal morphologies were similar, having one dull cusp that produced high stresses in the food item and three cusps that acted to stabilize the food item. We then set out to measure tooth cusp RoC in several species of extant apes to determine if any of the predicted optimal morphologies existed in nature and whether tooth cusp RoC was correlated with diet. While the optimal morphologies were not found in apes, we did find that tooth cusp RoC was correlated with diet and folivores had duller cusps while frugivores had sharper cusps. We hypothesize that, because of wear patterns, tooth cusp RoC is not providing a mechanical advantage during food item breakdown but is instead causing the tooth to wear in a beneficial fashion. Next, we investigate two possible relationships between tooth cusp RoC and enamel thickness, as enamel thickness plays a significant role in the way a tooth wears, using CT scans from hundreds of unworn cusps. There was no relationship between the two variables, indicating that selection may be acting on both variables independently to create an optimally shaped tooth. Finally, we put forth a framework for testing the functional optimality in teeth that takes into account tooth strength, food item breakdown efficiency, and trapability (the ability to trap and stabilize a food item).
APA, Harvard, Vancouver, ISO, and other styles
38

Ulsamer, Stefanie [Verfasser]. "Non-trivial bounded harmonic functions on Cartan-Hadamard manifolds of unbounded curvature / vorgelegt von Stefanie Ulsamer." 2004. http://d-nb.info/969897324/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Reza, Md Ramiz. "Curvature Inequalities for Operators in the Cowen-Douglas Class of a Planar Domain." Thesis, 2016. http://etd.iisc.ernet.in/handle/2005/2974.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Yu, Li-Chung, and 游禮中. "Gradient Estimate and Liouville Property of L-pseudoharmonic Functions on a Complete Pseudohermitian Manifold with Bakry-Emery Pseudohermitian Ricci Curvature." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/30158114766343627405.

Full text
Abstract:
碩士
國立臺灣大學
數學研究所
103
In this paper, we modify Yau''s method to discuss a gradient estimate of a nonnegative L-pseudoharmonic function on a oriented, complete, pseudohermitian manifold which satisfies Witten-sub-Laplacian comparison property. Since the manifold we considered in this paper is weighted manifold, the curvature we consider is not only Ricci curvature but Bakry-Emery Ricci curvature Ric_m,n (L). At the end of this paper, we can get that when the form 2Ric_m,n (L) - Tor(L) is bounded below, any gradient estimate of a nonnegative L-pseudoharmonic function is bounded. Moreover, we can then deduce Liouville property on such manifold with curvature satisfies 2Ric_m,n (L) > Tor(L).
APA, Harvard, Vancouver, ISO, and other styles
41

Lafrance, Marie. "Solutions à courbure constante de modèles sigma supersymétriques." Thèse, 2017. http://hdl.handle.net/1866/20204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography