Dissertations / Theses on the topic 'Curvature functionals'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 41 dissertations / theses for your research on the topic 'Curvature functionals.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Mondino, Andrea. "The Willmore functional and other L^p curvature functionals in Riemannian manifolds." Doctoral thesis, SISSA, 2011. http://hdl.handle.net/20.500.11767/4840.
Full textPARRILLO, ANTONELLA. "Analytical and computational study of curvature depending functionals in image segmentation." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2008. http://hdl.handle.net/2108/689.
Full textIn the present thesis we study variational problems for image segmentation. We consider two specific classes of functionals which contain the integral of a function of curvature along the unknown set of curves $C$, the length of such curves and the counting measure of the set of theirs endpoints. For the second functionals we derive the system of Euler equations, we design an iterative numerical scheme based on finite differences for the solution of the Euler equations, and we discuss the outcome of some computer experiments on simulated images.
Winklmann, Sven. "Krümmungsabschätzungen für stabile Extremalen parametrischer Funktionale / Curvature estimates for stable extremals of parametric functionals." Gerhard-Mercator-Universitaet Duisburg, 2004. http://www.ub.uni-duisburg.de/ETD-db/theses/available/duett-03192004-115454/.
Full textKäfer, Bastian [Verfasser], der Mosel Heiko Akademischer Betreuer] von, Alfred [Akademischer Betreuer] [Wagner, and Pawel [Akademischer Betreuer] Strzelecki. "Scale-invariant geometric curvature functionals, and characterization of Lipschitz- and $C^1$-submanifolds / Bastian Käfer ; Heiko von der Mosel, Alfred Wagner, Pawel Strzelecki." Aachen : Universitätsbibliothek der RWTH Aachen, 2021. http://d-nb.info/1239566719/34.
Full textSilva, Adam Oliveira da. "Rigidez de métricas críticas para funcionais riemannianos." reponame:Repositório Institucional da UFC, 2017. http://www.repositorio.ufc.br/handle/riufc/25969.
Full textSubmitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-09-19T19:08:04Z No. of bitstreams: 1 2017_tese_aosilva.pdf: 481005 bytes, checksum: 2bdfc6ab68b042a5cfd4f67caf1e21e4 (MD5)
Rejected by Rocilda Sales (rocilda@ufc.br), reason: Bom dia, Estou devolvendo a Tese de ADAM OLIVEIRA DA SILVA, para que o arquivo seja substituído, pois o aluno já veio na BCM e orientei quais eram as correções a serem feitas. Atenciosamente, on 2017-09-20T14:03:26Z (GMT)
Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-09-20T16:47:21Z No. of bitstreams: 1 2017_tese_aosilva.pdf: 480774 bytes, checksum: a1267dd82f8a82a19f79902004e1afb5 (MD5)
Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-09-21T12:26:34Z (GMT) No. of bitstreams: 1 2017_tese_aosilva.pdf: 480774 bytes, checksum: a1267dd82f8a82a19f79902004e1afb5 (MD5)
Made available in DSpace on 2017-09-21T12:26:35Z (GMT). No. of bitstreams: 1 2017_tese_aosilva.pdf: 480774 bytes, checksum: a1267dd82f8a82a19f79902004e1afb5 (MD5) Previous issue date: 2017-09-15
The aim of this work is to study metrics that are critical points for some Riemannian functionals. In the first part, we investigate critical metrics for functionals which are quadratic in the curvature on closed Riemannian manifolds. It is known that space form metrics are critical points for these functionals, denoted by F t,s (g). Moreover, when s = 0, always Einstein metrics are critical to F t (g). We proved that under some conditions the converse is true. For instance, among others results, we prove that if n ≥ 5 and g is a Bach-flat critical metric to F −n/4(n−1) , with second elementary symmetric function of the Schouten tensor σ 2 (A) > 0, then g should be Einstein. Furthermore, we show that a locally conformally flat critical metric with some additional conditions are space form metrics. In the second part, we study the critical metrics to volume functional on compact Riemannian manifolds with connected smooth boundary. We call such critical points of Miao-Tam critical metrics due to the variational study making by Miao and Tam (2009). In this work, we show that the geodesics balls in space forms Rn , Sn and Hn have the maximum possible boundary volume among Miao-Tam critical metrics with connected boundary provided that the boundary be an Einstein manifold. In the same spirit, we also extend a rigidity theorem due to Boucher et al. (1984) and Shen (1997) to n-dimensional static metrics with positive constant scalar curvature, which give us another way to get a partial answer to the Cosmic no-hair conjecture already obtained by Chrusciel (2003).
Este trabalho tem como principal objetivo estudar métricas que são pontos críticos de alguns funcionais Riemannianos. Na primeira parte, investigaremos métricas críticas de funcionais que são quadráticos na curvatura sobre variedades Riemannianas fechadas. É de conhecimento que métricas tipo formas espaciais são pontos críticos para tais funcionais, denotados aqui por F t,s (g). Além disso, no caso s = 0, métricas de Einstein são sempre críticas para F t (g). Provamos que sob algumas condições, a recíproca destes fatos são verdadeiras. Por exemplo, dentre outros resultados, provamos que se n ≥ 5 e g é uma métrica Bach-flat crìtica para F−n/4(n−1) com segunda função simétrica elementar do tensor de Schouten σ 2 (A) > 0, então g tem que ser métrica de Einstein. Ademais, mostramos que uma métrica crítica localmente conformemente plana, com algumas hipóteses adicionais, tem que ser tipo forma espacial. Na segunda parte, estudamos as métricas críticas do funcional volume sobre variedades Riemannianas compactas com bordo suave conexo. Chamamos tais pontos críticos de métricas críticas de Miao-Tam, devido ao estudo variacional feito por Miao e Tam (2009). Neste trabalho provamos que as bolas geodésicas das formas espaciais Rn , S n e H n possuem o valor máximo para o volume do bordo dentre todas as métricas críticas de Miao-Tam com bordo conexo, desde que o bordo seja uma variedade de Einstein. No mesmo sentido, também estendemos um teorema de rigidez devido à Boucher et al. (1984) e Shen (1997) para métricas estáticas de dimensão n e com curvatura escalar constante positiva, o qual nos fornece outra maneira para obter uma resposta parcial para a Cosmic no-hair conjecture já obtida por Chrusciel (2003).
Guo, Li. "Shape blending using discrete curvature-variation functional /." View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?IEEM%202005%20GUO.
Full textDalphin, Jérémy. "Étude de fonctionnelles géométriques dépendant de la courbure par des méthodes d'optimisation de formes. Applications aux fonctionnelles de Willmore et Canham-Helfrich." Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0167/document.
Full textIn biology, when a large amount of phospholipids is inserted in aqueous media, they immediatly gather in pairs to form bilayers also called vesicles. In 1973, Helfrich suggested a simple model to characterize the shapes of vesicles. Imposing the area of the bilayer and the volume of fluid it contains, their shape is minimizing a free-Bending energy involving geometric quantities like curvature, and also a spontanuous curvature measuring the asymmetry between the two layers. Red blood cells are typical examples of vesicles on which is fixed a network of proteins playing the role of a skeleton inside the membrane. One of the main work of this thesis is to introduce and study a uniform ball condition, in particular to model the effects of the skeleton. First, we minimize the Helfrich energy without constraint then with an area constraint. The case of zero spontaneous curvature is known as the Willmore energy. Since the sphere is the global minimizer of the Willmore energy, it is a good candidate to be a minimizer of the Helfrich energy among surfaces of prescribed area. Our first main contribution in this thesis was to study its optimality. We show that apart from a specific interval of parameters, the sphere is no more a global minimizer, neither a local minimizer. However, it is always a critical point. Then, in the specific case of membranes with negative spontaneous curvature, one can wonder whether the minimization of the Helfrich energy with an area constraint can be done by minimizing individually each term. This leads us to minimize total mean curvature with prescribed area and to determine if the sphere is a solution to this problem. We show that it is the case in the class of axisymmetric axiconvex surfaces but that it does not hold true in the general case. Finally, considering both area and volume constraints, the minimizer cannot be the sphere, which is no more admissible. Using the shape optimization point of view, the third main and most important contribution of this thesis is to introduce a more reasonable class of surfaces, in which the existence of an enough regular minimizer is ensured for general functionals and constraints involving the first- and second-Order geometric properties of surfaces. Inspired by what Chenais did in 1975 when she considered the uniform cone property, we consider surfaces satisfying a uniform ball condition. We first study purely geometric functionals then we allow a dependence through the solution of some second-Order elliptic boundary value problems posed on the inner domain enclosed by the shape
ALESSANDRONI, ROBERTA. "Evolution of hypersurfaces by curvature functions." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2008. http://hdl.handle.net/2108/661.
Full textWe consider a smooth n-dimensional hypersurface of ℝⁿ⁺¹, with n≥2, and its evolution by a class of geometric flows. The speed of these flows has normal direction with respect to the surface and its modulus S is a symmetric function of the principal curvatures. We show some general properties of these flows and compute the evolution equation for any homogeneous function of principal curvatures. Then we apply the flow with speed S=(H/(logH)), where H is the mean curvature plus a constant, to a mean convex surface to prove some convexity estimates. Using only the maximum principle we prove that the negative part of the scalar curvature tends to zero on a limit of rescalings of the evolving surfaces near a singularity. The following part is dedicated to the study of a convex initial manifold moving by powers of scalar curvature: S=R^{p}, with p>1/2. We show that if the initial surface satisfies a pinching estimate on the principal curvatures then it shrinks to a point in finite time and the shape of the evolving surfaces approaches the one of a sphere. Since the homogeneity degree of this speed is strictly greater than one, the convergence to a "round point" can be proved using just the maximum principle, avoiding the integral estimates. Then we also construct an example of a non convex surface forming a neck pinching singularity. Finally we study the case of an entire graph over ℝⁿ with at most linear growth at infinity. We show that a graph evolving by any flow in the considered class remains a graph. Moreover we prove a long time existence result for flows where the speed is S=R^{p} with p≥1/2 and describe some explicit solutions in the rotationally symmetric case.
Evangelista, Israel de Sousa. "Compact almost Ricci soliton, critical metrics of the total scalar curvature functional and p-fundamental tone estimates." reponame:Repositório Institucional da UFC, 2017. http://www.repositorio.ufc.br/handle/riufc/23920.
Full textSubmitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-07-10T12:41:32Z No. of bitstreams: 1 2017_tese_isevangelista.pdf: 618771 bytes, checksum: 7e4bb8d9fd8825ef347e309171075037 (MD5)
Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-07-10T14:06:18Z (GMT) No. of bitstreams: 1 2017_tese_isevangelista.pdf: 618771 bytes, checksum: 7e4bb8d9fd8825ef347e309171075037 (MD5)
Made available in DSpace on 2017-07-10T14:06:18Z (GMT). No. of bitstreams: 1 2017_tese_isevangelista.pdf: 618771 bytes, checksum: 7e4bb8d9fd8825ef347e309171075037 (MD5) Previous issue date: 2017-07-04
The present thesis is divided in three different parts. The aim of the first part is to prove that a compact almost Ricci soliton with null Cotton tensor is isometric to a standard sphere provided one of the following conditions associated to the Schouten tensor holds: the second symmetric function is constant and positive; two consecutive symmetric functions are non null multiple or some symmetric function is constant and the quoted tensor is positive. The aim of the second part is to study the critical metrics of the total scalar curvature funcional on compact manifolds with constant scalar curvature and unit volume, for simplicity, CPE metrics. It has been conjectured that every CPE metric must be Einstein. We prove that the Conjecture is true for CPE metrics under a suitable integral condition and we also prove that it suffices the metric to be conformal to an Einstein metric. In the third part we estimate the p-fundamental tone of submanifolds in a Cartan-Hadamard manifold. First we obtain lower bounds for the p-fundamental tone of geodesic balls and submanifolds with bounded mean curvature. Moreover, we provide the p-fundamental tone estimates of minimal submanifolds with certain conditions on the norm of the second fundamental form. Finally, we study transversely oriented codimension one C 2-foliations of open subsets Ω of Riemannian manifolds M and obtain lower bounds estimates for the infimum of the mean curvature of the leaves in terms of the p-fundamental tone of Ω.
A presente tese está dividida em três partes diferentes. O objetivo da primeira parte é provar que um quase soliton de Ricci compacto com tensor de Cotton nulo é isométrico a uma esfera canônica desde que uma das seguintes condições associadas ao tensor de Schouten seja válida: a segunda função simétrica é constante e positiva; duas funções simétricas consecutivas são múltiplas, não nulas, ou alguma função simétrica é constante e o tensor de Schouten é positivo. O objetivo da segunda parte é estudar as métricas críticas do funcional curvatura escalar total em variedades compactas com curvatura escalar constante e volume unitário, por simplicidade, métricas CPE. Foi conjecturado que toda métrica CPE deve ser Einstein. Prova-se que a conjectura é verdadeira para as métricas CPE sob uma condição integral adequada e também se prova que é suficiente que a métrica seja conforme a uma métrica Einstein. Na terceira parte, estima-se o p-tom fundamental de subvariedades em uma variedade tipo Cartan-Hadamard. Primeiramente, obtém-se estimativas por baixo para o p-tom fundamental de bolas geodésicas e em subvariedades com curvatura média limitada. Além disso, obtém-se estimativas do p-tom fundamental de subvariedades mínimas com certas condições sobre a norma da segunda forma fundamental. Por fim, estudam-se folheações de classe C 2 transversalmente orientadas de codimensão 1 de subconjuntos abertos Ω de variedades riemannianas M e obtêm-se estimativas por baixo para o ínfimo da curvatura média das folhas em termos do p-tom fundamental de Ω.
Buckland, John A. (John Anthony) 1978. "Mean curvature flow with free boundary on smooth hypersurfaces." Monash University, School of Mathematical Sciences, 2003. http://arrow.monash.edu.au/hdl/1959.1/5809.
Full textWalsh, Mark. "Metrics of positive scalar curvature and generalised Morse functions /." Connect to title online (Scholars' Bank) Connect to title online (ProQuest), 2009. http://hdl.handle.net/1794/10265.
Full textWalsh, Mark 1976. "Metrics of positive scalar curvature and generalised Morse functions." Thesis, University of Oregon, 2009. http://hdl.handle.net/1794/10265.
Full textWe study the topology of the space of metrics of positive scalar curvature on a compact manifold. The main tool we use for constructing such metrics is the surgery technique of Gromov and Lawson. We extend this technique to construct families of positive scalar curvature cobordisms and concordances which are parametrised by Morse functions and later, by generalised Morse functions. We then use these results to study concordances of positive scalar curvature metrics on simply connected manifolds of dimension at least five. In particular, we describe a subspace of the space of positive scalar curvature concordances, parametrised by generalised Morse functions. We call such concordances Gromov-Lawson concordances. One of the main results is that positive scalar curvature metrics which are Gromov-Lawson concordant are in fact isotopic. This work relies heavily on contemporary Riemannian geometry as well as on differential topology, in particular pseudo-isotopy theory. We make substantial use of the work of Eliashberg and Mishachev on wrinkled maps and of results by Hatcher and Igusa on the space of generalised Morse functions.
Committee in charge: Boris Botvinnik, Chairperson, Mathematics; James Isenberg, Member, Mathematics; Hal Sadofsky, Member, Mathematics; Christopher Phillips, Member, Mathematics; Michael Kellman, Outside Member, Chemistry
DiÃgenes, Rafael Jorge Pontes. "MÃtricas crÃticas do funcional volume, volume mÃnimo e curvatura mÃnima em variedades de dimensÃo quatro." Universidade Federal do CearÃ, 2015. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=14179.
Full textCoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior
Este trabalho tem como principal objetivo estudar as mÃtricas do funcional volume, volume mÃnimo e curvatura mÃnima em variedades compactas de dimensÃo quatro. Na primeira parte o objetivo à investigar as mÃtricas crÃticas do funcional volume sob a condiÃÃo de tais mÃtricas serem Bach-flats em uma variedade compacta com bordo ∂M. Provamos que uma mÃtrica crÃtica do funcional volume Bach-flat em uma variedade simplesmente conexa de dimensÃo quatro com bordo isomÃtrico a uma esfera padrÃo à necessariamente isomÃtrico a uma bola geodÃsica em um espaÃo forma simplesmente conexo R4, H4 ou S4. AlÃm disso, mostramos que em dimensÃo trÃs o resultado continua valido substituindo a condiÃÃo Bach-flat pela condiÃÃo mais fraca de M ter o tensor de Bach harmÃnico. Na segunda parte estudamos os invariantes geomÃtricos: volume mÃnimo e curvatura mÃnima. Em 1982, Gromov introduziu o conceito de volume mÃnimo para uma variedade suave como sendo o Ãnfimo de todos os volumes sob as mÃtricas de curvatura seccional limitada, em valor absoluto, por 1. Enquanto a curvatura mÃnima, que foi introduzido por Yun, à o menor pinching da curvatura seccional dentre as mÃtricas de volume 1. Em ambos os casos damos estimativas inferiores envolvendo alguns invariantes diferenciÃveis e topolÃgicos. Dentre elas mostraremos exemplos em que as estimativas sÃo Ãtimas. AlÃm disso, obtemos uma caracterizaÃÃo para o caso da igualdade em algumas estimativas.
This aim of this is to study the critical metrics of the volume functional, minimal volume and minimal curvature on four-dimensional compact manifolds. In the first part, we investigate Bach-flat critical metrics of the volume functional on a compact manifold M with boundary ∂M. Here, we prove that a Bach-flat critical metric of the volume functional on a simply connected 4-dimensional manifold with boundary isometric to a standard sphere must be isometric to a geodesic ball in a simply connected space form R4, H4 or S4. Moreover, we show that in dimension three the result even is true replacing the Bach-flat condition by the weaker assumption that M has divergence-free Bach tensor. In the second part we investigate the geometric invariants: minimal volume and minimal curvature. In 1982, Gromov introduced the concept of minimal volume for a smooth manifold as the greatest lower bound of the total volumes of Mn with respect to complete Riemannian metrics whose sectional curvature is bounded above in absolute value by 1. While the minimal curvature, introduced by G. Yun in 1966, is the smallest pinching of the sectional curvature among metrics of volume 1. In both cases we give below estimates to minimal volume and minimal curvature on 4-dimensional compact manifolds involving some differential and topological invariants. Among these ones, we get some sharp estimates. Moreover, we deduce characterizations for the equality case in some estimates.
Mroz, Kamil. "Bounds on eigenfunctions and spectral functions on manifolds of negative curvature." Thesis, Loughborough University, 2014. https://dspace.lboro.ac.uk/2134/15038.
Full textGarcia, Edijane Paredes. "Uso de polinômios fracionários nos modelos mistos." Botucatu, 2019. http://hdl.handle.net/11449/181646.
Full textResumo: A classe dos modelos de regressão incorporando polinômios fracionários - FPs (Fractional Polynomials), proposta por Royston & Altman (1994), tem sido amplamente estudada. O uso de FPs em modelos mistos constitui uma alternativa muito atrativa para explicar a dependência das medidas intra-unidades amostrais em modelos em que há não linearidade na relação entre a variável resposta e variáveis regressoras contínua. Tal característica ocorre devido aos FPs oferecerem, para a resposta média, uma variedade de formas funcionais não lineares para as variáveis regressoras contínuas, em que se destacam a família dos polinômios convencionais e algumas curvas assimétricas e com assíntotas. A incorporação dos FPs na estrutura dos modelos mistos tem sido investigada por diversos autores. Porém, não existem publicações sobre: a exploração da problemática da modelagem na parte fixa e na parte aleatória (principalmente na presença de várias variáveis regressoras contínuas e categóricas); o estudo da influência dos FPs na estrutura dos efeitos aleatórios; a investigação de uma adequada estrutura para a matriz de covariâncias do erro; ou, um ponto de fundamental importância para colaborar com a seleção do modelo, a realização da análise de diagnóstico dos modelos ajustados. Uma contribuição, do nosso ponto de vista, de grande relevância é a investigação e oferecimento de estratégias de ajuste dos modelos polinômios fracionários com efeitos mistos englobando os pontos citados acima com o objetiv... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: The class of regression models incorporating Fractional Polynomials (FPs), proposed by Royston & Altman (1994), has been extensively studied. The use of FPs in mixed models is a very attractive alternative to explain the within-subjects’ measurements dependence in models where there is non-linearity in the relationship between the response variable and continuous covariates. This characteristic occurs because the FPs offers a variety of non-linear functional forms for the continuous covariates in the average response, in which the family of the conventional polynomials and some asymmetric curves with asymptotes stand out. The incorporation of FPs into the structure of the mixed models has been investigated by several authors. However, there are no works about the following issues: the modeling of the fixed and random effects (mainly in the presence of several continuous and categorical covariates), the study of the influence of the FPs on the structure of the random effects, the investigation of an adequate structure for the covariance of the random errors, or, a point that has central importance to the selection of the model, to perform a diagnostic analysis of the fitted models. In our point of view, a contribution of great relevance is the investigation and the proposition of strategies for fitting FPs with mixed effects encompassing the points mentioned above, with the goals of filling these gaps and to awaken the users to the great potential of mixed models, now even mor... (Complete abstract click electronic access below)
Doutor
Paparcone, Raffaella. "SUPERSTRUCTURAL INFORMATION IN DNA SEQUENCES: FROM STRUCTURAL TOWARD FUNCTIONAL GENOMICS." Doctoral thesis, La Sapienza, 2005. http://hdl.handle.net/11573/917359.
Full textAmato, Stefano. "Some results on anisotropic mean curvature and other phase transition models." Doctoral thesis, SISSA, 2015. http://hdl.handle.net/20.500.11767/4859.
Full textTewodrose, David. "Some functional inequalities and spectral properties of metric measure spaces with curvature bounded below." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEE076.
Full textThe aim of this thesis is to present new results in the analysis of metric measure spaces. We first extend to a certain class of spaces with doubling and Poincaré some weighted Sobolev inequalities introduced by V. Minerbe in 2009 in the context of Riemannian manifolds with non-negative Ricci curvature. In the context of RCD(0,N) spaces, we deduce a weighted Nash inequality and a uniform control of the associated weighted heat kernel. Then we prove Weyl’s law for compact RCD(K,N) spaces thanks to a pointwise convergence theorem for the heat kernels associated with a mGH-convergent sequence of RCD(K,N) spaces. Finally we address in the RCD(K,N) context a theorem from Bérard, Besson and Gallot which provides, by means of the heat kernel, an asymptotically isometric family of embeddings for a closed Riemannian manifold into its space of square integrable functions. We notably introduce the notions of RCD metrics, pull-back metrics, weak/strong convergence of RCD metrics, and we prove a convergence theorem analog to the one of Bérard, Besson and Gallot
Tewodrose, David. "Some functional inequalities and spectral properties of metric measure spaces with curvature bounded below." Doctoral thesis, Scuola Normale Superiore, 2018. http://hdl.handle.net/11384/85734.
Full textBäcklund, Pierre. "Studies on boundary values of eigenfunctions on spaces of constant negative curvature." Doctoral thesis, Uppsala University, Department of Mathematics, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8920.
Full textThis thesis consists of two papers on the spectral geometry of locally symmetric spaces of Riemannian and Lorentzian signature. Both works are concerned with the idea of relating analysis on such spaces to structures on their boundaries.
The first paper is motivated by a conjecture of Patterson on the Selberg zeta function of Kleinian groups. We consider geometrically finite hyperbolic cylinders with non-compact Riemann surfaces of finite area as cross sections. For these cylinders, we present a detailed investigation of the Bunke-Olbrich extension operator under the assumption that the cross section of the cylinder has one cusp. We establish the meromorphic continuation of the extension of Eisenstein series and incomplete theta series through the limit set. Furthermore, we derive explicit formulas for the residues of the extension operator in terms of boundary values of automorphic eigenfunctions.
The motivation for the second paper comes from conformal geometry in Lorentzian signature. We prove the existence and uniqueness of a sequence of differential intertwining operators for spherical principal series representations, which are realized on boundaries of anti de Sitter spaces. Algebraically, these operators correspond to homomorphisms of generalized Verma modules. We relate these families to the asymptotics of eigenfunctions on anti de Sitter spaces.
Xu, Chao. "Non-conformal geometry on noncommutative two tori." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1566225527101998.
Full textFilho, Francisco de Assiss Benjamim. "A partial answer to the CPE conjecture, diameter estimates and manifolds with constant energy." Universidade Federal do CearÃ, 2015. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=14748.
Full textConselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico
Esta tese està dividida em quatro partes. Na primeira delas estudaremos pontos crÃticos do funcional curvatura escalar total restrito ao espaÃo das mÃtricas de curvatura escalar constante e volume unitÃrio. Provaremos que sob certas condiÃÃes integrais convenientes os pontos crÃticos de tal funcional sÃo variedades de Einstein provando assim a conjectura dos pontos crÃticos neste caso. Na segunda parte, veremos duas estimativas para o primeiro autovalor do Laplaciano de uma variedade compacta com curvatura de Ricci limitada por baixo por uma constante. As estimativas que obtemos melhoram a estimativa correspondente provada por Li e Yau (1980). Na terceira parte, estamos interessados em estimar o diÃmetro de hipersuperfÃcies mÃnimas da esfera. A estimativa que encontramos depende apenas do primeiro autovalor do Laplaciano da hipersuperfÃcie considerada. Para superfÃcies imersas na esfera de dimensÃo trÃs, obtemos uma estimativa ligeiramente melhor do que a obtida no caso de dimensÃo alta. Na Ãltima parte, introduzimos o conceito de variedade de energia constante e provamos que a esfera e o toro sÃo as Ãnicas superfÃcies que tÃm energia constante. Em dimensÃo mais alta a situaÃÃo à bem diferente uma vez que o produto de uma esfera por qualquer variedade compacta tem energia constante. Entretanto, se impusermos uma condiÃÃo sobre a curvatura de Ricci, à possÃvel caracterizar a esfera tambÃm neste caso. Em seguida, aplicamos as informa-ÃÃes obtidas ao estudo de hipersuperfÃcies da esfera provando alguns resultados de rigidez desde que a hipersuperfÃcie tenha energia constante.
This thesis is divided into four parts. In the first one we study the critical points of the total scalar curvature functional restricted to the space of metrics with constant scalar curvature and volume one. We shall prove that under certain suitable integral conditions the critical points of such functional are Einstein manifolds proving this way the critical point equation conjecture in this case. In the second part, we will provide an estimate for the first eigenvalue of the Laplacian of a compact manifolds with Ricci curvature bounded from below by a constant. The estimate we obtain improves the corresponding estimate proved by Li and Yau (1980). In the third part, we are interested in to estimate the diameter of minimal hypersurfaces of the sphere. The estimate we get depends only on the first eigenvalue of the Laplacian of the considered hypersurface. For immersed surfaces on the three dimensional sphere, we obtain an estimate slightly better than the one obtained in the case of higher dimension. In the last part, we introduce the concept of manifolds with constant energy and prove that the sphere and the torus are the only compact surfaces that have constant energy. For higher dimension, the situation is very different sine the product of the sphere with any compact manifold has constant energy. Nevertheless, if we impose a condition over the Ricci curvature it is possible to characterize the sphere also in this case. After that, we apply the informations obtained to the study of hypersurfaces of the sphere proving some rigidity results provided that the hypersurfaces has constant energy.
Knecht, Casey Scott. "Crash Prediction Modeling for Curved Segments of Rural Two-Lane Two-Way Highways in Utah." BYU ScholarsArchive, 2014. https://scholarsarchive.byu.edu/etd/4352.
Full textRipani, Luigia. "Le problème de Schrödinger et ses liens avec le transport optimal et les inégalités fonctionnelles." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1274/document.
Full textIn the past 20 years the optimal transport theory revealed to be an efficient tool to study the asymptotic behavior for diffusion equations, to prove functional inequalities, to extend geometrical properties in extremely general spaces like metric measure spaces, etc. The curvature-dimension of the Bakry-Émery theory appears as the cornerstone of those applications. Just think to the easier and most important case of the quadratic Wasserstein distance W2: contraction of the heat flow in W2 characterizes uniform lower bounds for the Ricci curvature; the transport Talagrand inequality, comparing W2 to the relative entropy is implied and implies via the HWI inequality the log-Sobolev inequality; McCann geodesics in the Wasserstein space (P2(Rn),W2) allow to prove important functional properties like convexity, and standard functional inequalities, such as isoperimetry, measure concentration properties, the Prékopa Leindler inequality and so on. However the lack of regularity of optimal maps, requires non-smooth analysis arguments. The Schrödinger problem is an entropy minimization problem with marginal constraints and a fixed reference process. From the Large deviation theory, when the reference process is driven by the Brownian motion, its minimal value A converges to W2 when the temperature goes to zero. The entropic interpolations, solutions of the Schrödinger problem, are characterized in terms of Markov semigroups, hence computation along them naturally involves Γ2 computations and the curvature-dimension condition. Dating back to the 1930s, and neglected for decades, the Schrödinger problem recently enjoys an increasing popularity in different fields, thanks to this relation to optimal transport, smoothness of solutions and other well performing properties in numerical computations. The aim of this work is twofold. First we study some analogy between the Schrödinger problem and optimal transport providing new proofs of the dual Kantorovich and the dynamic Benamou-Brenier formulations for the entropic cost A. Secondly, as an application of these connections we derive some functional properties and inequalities under curvature-dimensions conditions. In particular, we prove the concavity of the exponential entropy along entropic interpolations under the curvature-dimension condition CD(0, n) and regularity of the entropic cost along the heat flow. We also give different proofs the Evolutionary Variational Inequality for A and contraction of the heat flow in A, recovering as a limit case the classical results in W2, under CD(κ,∞) and also in the flat dimensional case. Finally we propose an easy proof of the Gaussian concentration property via the Schrödinger problem as an alternative to classical arguments as the Marton argument which is based on optimal transport
Sandy, Alexis Emily. "Environmental and Digital Data Analysis of the National Wetlands Inventory (NWI) Landscape Position Classification System." Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/33572.
Full textMaster of Science
CHERMISI, MILENA. "Crystalline flow of planar partitions and a geometric approach for systems of PDEs." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2006. http://hdl.handle.net/2108/202647.
Full textThe present thesis deals with two different subjects. Chapter 1 and Chapter 2 concern interfaces evolution problems in the plane. In Chapter 1 I consider the evolution of a polycrystalline material with three (or more) phases, in presence of for an even crystalline anisotropy ϕo whose one-sublevel set Fϕ := {ϕo ≤ 1} (the Frank diagram) is a regular polygon of n sides. The dual function ϕ : R2 → R defined by ϕ(ξ) := sup{ξ ·η : ϕo(η) ≤ 1} is crystalline too and Wϕ := {ϕ ≤ 1} is called the Wulff shape. I am particularly interested in the motion by crystalline curvature of special planar networks called elementary triods, namely a regular three-phase boundary given by the union of three Lipschitz curves, the interfaces, intersecting at a point called triple junction. Each interface is the union of a segment of finite length and a half-line, reproducing two consecutive sides of Wϕ. I analyze local and global existence and stability of the flow. I prove that there exists, locally in time, a unique stable regular flow starting from a stable regular initial datum. I show that if n, the number of sides of Wϕ, is a multiple of 6 then the flow is global and converge to a homothetic flow as t → +∞. The analysis of the long time behavior requires the study of the stability. Stability is the ingredient that ensures that no additional segments develop at the triple junction during the flow. In general, the flow may become unstable at a finite time: if this occurs and none of the segments desappears, it is possible to construct a regular flow at subsequent times by adding an infinitesimal segment (or even an arc with zero crystalline curvature) at the triple junction. I also show that a segment may desappear. In such a case, the Cahn-Hoffman vector field Nmin has a jump discontinuity and the triple junction translates along the remaining adjacent half-line at subsequent times. Each of these flows has the property that all crystalline curvatures remain bounded (even if a segment appears or disappears). I want to stress that Taylor already predicted the appearance of new edges from a triple junction. I also consider the crystalline curvature flow starting from a stable ϕ-regular partition formed by two adjacent elementary triods. I discuss some examples of collapsing situations that lead to changes of topology, such as for instance the collision of two triple junctions. These examples (as well as the local in time existence result) show one of the advantages of crystalline flows with respect, for instance, to the usual mean curvature flow: explicit computations can be performed to some extent, and in case of nonuniqueness, a comparison between the energies of different evolutions (difficult in the euclidean case) can be made. In Chapter 2 we introduce, using the theory of S1-valued functions of bounded variations, a class of energy functionals defined on partitions and we produce, through the first variation, a new model for the evolution of interfaces which partially extends the one in Chapter 1 and which consists of a free boundary problem defined on S1-valued functions of bounded variation. This model is related to the evolution of polycrystals where the Wulff shape is allowed to rotate. Assuming the local existence of the flow, we show convexity preserving and embeddedness preserving properties. The second subject of the thesis is considered in Chapter 3 where we aim to extend the level set method to systems of PDEs. The method we propose is consistent with the previous research pursued by Evans for the heat equation and by Giga and Sato for Hamilton-Jacobi equations. Our approach follows a geometric construction related to the notion of barriers introduced by De Giorgi. The main idea is to force a comparison principle between manifolds of different codimension and require each sub-level of a solution of the level set equation to be a barrier for the graph of a solution of the corresponding system. We apply the method for a class of systems of first order quasi-linear equations. We compute the level set equation associated with suitable first order systems of conservation laws, with the mean curvature flow of a manifold of arbitrary codimension and with systems of reaction-diffusion equations. Finally, we provide a level set equation associated with the parametric curvature flow of planar curves.
Dahmani, Kamilia. "Weighted LP estimates on Riemannian manifolds." Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30188/document.
Full textThe topics addressed in this thesis lie in the field of harmonic analysis and more pre- cisely, weighted inequalities. Our main interests are the weighted Lp-bounds of the Riesz transforms on complete Riemannian manifolds and the sharpness of the bounds in terms of the power of the characteristic of the weights. We first obtain a linear and dimensionless result on non necessarily homogeneous spaces, when p = 2 and the Bakry-Emery curvature is non-negative. We use here an analytical approach by exhibiting a concrete Bellman function. Next, using stochastic techniques and sparse domination, we prove that the Riesz transforms are Lp-bounded for p ∈ (1, +∞) and obtain the previous result for free. Finally, we use an elegant change in the precedent proof to weaken the condition on the curvature and assume it is bounded from below
Hussain, Jakir. "Three Essays on the Measurement of Productivity." Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36194.
Full textMaity, Soma. "On the Stability of Certain Riemannian Functionals." Thesis, 2012. http://hdl.handle.net/2005/3230.
Full text"Conformal deformation and prescribing scalar curvature." 1999. http://library.cuhk.edu.hk/record=b5889855.
Full textThesis (M.Phil.)--Chinese University of Hong Kong, 1999.
Includes bibliographical references (leaves 58-63).
Abstract also in Chinese.
Chapter Chapter 0 --- Introduction --- p.6
Chapter Chapter 1 --- Preliminaries --- p.10
Chapter Chapter 2 --- Uniform L∞ Bounds and Blow-up Behavior --- p.20
Chapter Chapter 3 --- Branch Bubbling and Pre-branch Bubbling Sequences --- p.32
Chapter Chapter 4 --- Related Problems --- p.46
Bibliography --- p.58
Keshari, Dinesh Kumar. "Infinitely Divisible Metrics, Curvature Inequalities And Curvature Formulae." Thesis, 2012. http://etd.iisc.ernet.in/handle/2005/2332.
Full textHawkins, Christopher Ryan. "A minimization of a curvature functional on fiber bundles." Thesis, 1998. http://hdl.handle.net/1911/19268.
Full text"Harmonic functions on manifolds of non-positive curvature." 1999. http://library.cuhk.edu.hk/record=b5889983.
Full textThesis (M.Phil.)--Chinese University of Hong Kong, 1999.
Includes bibliographical references (leaves 70-71).
Abstracts in English and Chinese.
Chapter 0 --- Introduction --- p.5
Chapter 1 --- Dirichlet Problem at infinity --- p.9
Chapter 1.1 --- The Geometric Boundary --- p.9
Chapter 1.2 --- Dirichlet Problem --- p.15
Chapter 2 --- The Martin Boundary --- p.29
Chapter 2.1 --- The Martin Metric --- p.30
Chapter 2.2 --- The Representation Formula --- p.31
Chapter 2.3 --- Uniqueness of Representation --- p.36
Chapter 3 --- The Geometric boundary and the Martin boundary --- p.42
Chapter 3.1 --- Estimates for harmonic functions in cones --- p.42
Chapter 3.2 --- A Harnack Inequality at Infinity --- p.49
Chapter 3.3 --- The kernel function --- p.54
Chapter 3.4 --- The Main Theorem --- p.55
Chapter 4 --- Positive Harmonic Functions on Product of Manifolds --- p.61
Chapter 4.1 --- Splitting Theorem --- p.61
Chapter 4.2 --- Riemannian Halfspace and the parabolic Martin boundary --- p.62
Chapter 4.3 --- Splitting of parabolic Martin kernels --- p.63
Chapter 4.4 --- Proof of theorem 4.1 --- p.66
Bibliography
CHEN, CHUANG-YI, and 陳創義. "The harmonic functions on complete riemannian manifolds of nonnegative ricci curvature." Thesis, 1988. http://ndltd.ncl.edu.tw/handle/27426541147655831097.
Full textPAPARCONE, RAFFAELLA, Stefano MOROSETTI, Anita SCIPIONI, and SANTIS Pasquale DE. "Superstructural information in DNA sequences: from structural toward functional genomics." Doctoral thesis, 2005. http://hdl.handle.net/11573/391173.
Full textBacher, Kathrin [Verfasser]. "Curvature dimension bounds and functional inequalities : localization, tensorization and stability / vorgelegt von Kathrin Bacher." 2010. http://d-nb.info/1002425204/34.
Full textBerthaume, Michael Anthony. "Tooth Cusp Radius of Curvature as a Dietary Correlate in Primates." 2013. https://scholarworks.umass.edu/open_access_dissertations/835.
Full textUlsamer, Stefanie [Verfasser]. "Non-trivial bounded harmonic functions on Cartan-Hadamard manifolds of unbounded curvature / vorgelegt von Stefanie Ulsamer." 2004. http://d-nb.info/969897324/34.
Full textReza, Md Ramiz. "Curvature Inequalities for Operators in the Cowen-Douglas Class of a Planar Domain." Thesis, 2016. http://etd.iisc.ernet.in/handle/2005/2974.
Full textYu, Li-Chung, and 游禮中. "Gradient Estimate and Liouville Property of L-pseudoharmonic Functions on a Complete Pseudohermitian Manifold with Bakry-Emery Pseudohermitian Ricci Curvature." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/30158114766343627405.
Full text國立臺灣大學
數學研究所
103
In this paper, we modify Yau''s method to discuss a gradient estimate of a nonnegative L-pseudoharmonic function on a oriented, complete, pseudohermitian manifold which satisfies Witten-sub-Laplacian comparison property. Since the manifold we considered in this paper is weighted manifold, the curvature we consider is not only Ricci curvature but Bakry-Emery Ricci curvature Ric_m,n (L). At the end of this paper, we can get that when the form 2Ric_m,n (L) - Tor(L) is bounded below, any gradient estimate of a nonnegative L-pseudoharmonic function is bounded. Moreover, we can then deduce Liouville property on such manifold with curvature satisfies 2Ric_m,n (L) > Tor(L).
Lafrance, Marie. "Solutions à courbure constante de modèles sigma supersymétriques." Thèse, 2017. http://hdl.handle.net/1866/20204.
Full text