Academic literature on the topic 'Curvature functionals'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Curvature functionals.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Curvature functionals"
Ivochkina, N. M. "Minimization of functionals generating curvature operators." Journal of Soviet Mathematics 62, no. 3 (November 1992): 2741–46. http://dx.doi.org/10.1007/bf01670999.
Full textSheng, Weimin, and Lisheng Wang. "Variational properties of quadratic curvature functionals." Science China Mathematics 62, no. 9 (June 15, 2018): 1765–78. http://dx.doi.org/10.1007/s11425-017-9232-6.
Full textBrozos‐Vázquez, Miguel, Sandro Caeiro‐Oliveira, and Eduardo García‐Río. "Critical metrics for all quadratic curvature functionals." Bulletin of the London Mathematical Society 53, no. 3 (January 13, 2021): 680–85. http://dx.doi.org/10.1112/blms.12448.
Full textKuwert, Ernst, Tobias Lamm, and Yuxiang Li. "Two-dimensional curvature functionals with superquadratic growth." Journal of the European Mathematical Society 17, no. 12 (2015): 3081–111. http://dx.doi.org/10.4171/jems/580.
Full textJoshi, Pushkar, and Carlo Séquin. "Energy Minimizers for Curvature-Based Surface Functionals." Computer-Aided Design and Applications 4, no. 5 (January 2007): 607–17. http://dx.doi.org/10.1080/16864360.2007.10738495.
Full textvon der Mosel, Heiko. "Nonexistence results for extremals of curvature functionals." Archiv der Mathematik 69, no. 5 (November 1, 1997): 427–34. http://dx.doi.org/10.1007/s000130050141.
Full textBiondi, Biondo. "Velocity estimation by image-focusing analysis." GEOPHYSICS 75, no. 6 (November 2010): U49—U60. http://dx.doi.org/10.1190/1.3506505.
Full textSarkar, Prakash. "Quantifying the Cosmic Web using the Shapefinder diagonistic." Proceedings of the International Astronomical Union 11, S308 (June 2014): 250–53. http://dx.doi.org/10.1017/s1743921316009960.
Full textPulemotov, Artem. "Maxima of Curvature Functionals and the Prescribed Ricci Curvature Problem on Homogeneous Spaces." Journal of Geometric Analysis 30, no. 1 (March 6, 2019): 987–1010. http://dx.doi.org/10.1007/s12220-019-00175-6.
Full textFierro, F., R. Goglione, and M. Paolini. "Finite element minimization of curvature functionals with anisotropy." Calcolo 31, no. 3-4 (September 1994): 191–210. http://dx.doi.org/10.1007/bf02575878.
Full textDissertations / Theses on the topic "Curvature functionals"
Mondino, Andrea. "The Willmore functional and other L^p curvature functionals in Riemannian manifolds." Doctoral thesis, SISSA, 2011. http://hdl.handle.net/20.500.11767/4840.
Full textPARRILLO, ANTONELLA. "Analytical and computational study of curvature depending functionals in image segmentation." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2008. http://hdl.handle.net/2108/689.
Full textIn the present thesis we study variational problems for image segmentation. We consider two specific classes of functionals which contain the integral of a function of curvature along the unknown set of curves $C$, the length of such curves and the counting measure of the set of theirs endpoints. For the second functionals we derive the system of Euler equations, we design an iterative numerical scheme based on finite differences for the solution of the Euler equations, and we discuss the outcome of some computer experiments on simulated images.
Winklmann, Sven. "Krümmungsabschätzungen für stabile Extremalen parametrischer Funktionale / Curvature estimates for stable extremals of parametric functionals." Gerhard-Mercator-Universitaet Duisburg, 2004. http://www.ub.uni-duisburg.de/ETD-db/theses/available/duett-03192004-115454/.
Full textKäfer, Bastian [Verfasser], der Mosel Heiko Akademischer Betreuer] von, Alfred [Akademischer Betreuer] [Wagner, and Pawel [Akademischer Betreuer] Strzelecki. "Scale-invariant geometric curvature functionals, and characterization of Lipschitz- and $C^1$-submanifolds / Bastian Käfer ; Heiko von der Mosel, Alfred Wagner, Pawel Strzelecki." Aachen : Universitätsbibliothek der RWTH Aachen, 2021. http://d-nb.info/1239566719/34.
Full textSilva, Adam Oliveira da. "Rigidez de métricas críticas para funcionais riemannianos." reponame:Repositório Institucional da UFC, 2017. http://www.repositorio.ufc.br/handle/riufc/25969.
Full textSubmitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-09-19T19:08:04Z No. of bitstreams: 1 2017_tese_aosilva.pdf: 481005 bytes, checksum: 2bdfc6ab68b042a5cfd4f67caf1e21e4 (MD5)
Rejected by Rocilda Sales (rocilda@ufc.br), reason: Bom dia, Estou devolvendo a Tese de ADAM OLIVEIRA DA SILVA, para que o arquivo seja substituído, pois o aluno já veio na BCM e orientei quais eram as correções a serem feitas. Atenciosamente, on 2017-09-20T14:03:26Z (GMT)
Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-09-20T16:47:21Z No. of bitstreams: 1 2017_tese_aosilva.pdf: 480774 bytes, checksum: a1267dd82f8a82a19f79902004e1afb5 (MD5)
Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-09-21T12:26:34Z (GMT) No. of bitstreams: 1 2017_tese_aosilva.pdf: 480774 bytes, checksum: a1267dd82f8a82a19f79902004e1afb5 (MD5)
Made available in DSpace on 2017-09-21T12:26:35Z (GMT). No. of bitstreams: 1 2017_tese_aosilva.pdf: 480774 bytes, checksum: a1267dd82f8a82a19f79902004e1afb5 (MD5) Previous issue date: 2017-09-15
The aim of this work is to study metrics that are critical points for some Riemannian functionals. In the first part, we investigate critical metrics for functionals which are quadratic in the curvature on closed Riemannian manifolds. It is known that space form metrics are critical points for these functionals, denoted by F t,s (g). Moreover, when s = 0, always Einstein metrics are critical to F t (g). We proved that under some conditions the converse is true. For instance, among others results, we prove that if n ≥ 5 and g is a Bach-flat critical metric to F −n/4(n−1) , with second elementary symmetric function of the Schouten tensor σ 2 (A) > 0, then g should be Einstein. Furthermore, we show that a locally conformally flat critical metric with some additional conditions are space form metrics. In the second part, we study the critical metrics to volume functional on compact Riemannian manifolds with connected smooth boundary. We call such critical points of Miao-Tam critical metrics due to the variational study making by Miao and Tam (2009). In this work, we show that the geodesics balls in space forms Rn , Sn and Hn have the maximum possible boundary volume among Miao-Tam critical metrics with connected boundary provided that the boundary be an Einstein manifold. In the same spirit, we also extend a rigidity theorem due to Boucher et al. (1984) and Shen (1997) to n-dimensional static metrics with positive constant scalar curvature, which give us another way to get a partial answer to the Cosmic no-hair conjecture already obtained by Chrusciel (2003).
Este trabalho tem como principal objetivo estudar métricas que são pontos críticos de alguns funcionais Riemannianos. Na primeira parte, investigaremos métricas críticas de funcionais que são quadráticos na curvatura sobre variedades Riemannianas fechadas. É de conhecimento que métricas tipo formas espaciais são pontos críticos para tais funcionais, denotados aqui por F t,s (g). Além disso, no caso s = 0, métricas de Einstein são sempre críticas para F t (g). Provamos que sob algumas condições, a recíproca destes fatos são verdadeiras. Por exemplo, dentre outros resultados, provamos que se n ≥ 5 e g é uma métrica Bach-flat crìtica para F−n/4(n−1) com segunda função simétrica elementar do tensor de Schouten σ 2 (A) > 0, então g tem que ser métrica de Einstein. Ademais, mostramos que uma métrica crítica localmente conformemente plana, com algumas hipóteses adicionais, tem que ser tipo forma espacial. Na segunda parte, estudamos as métricas críticas do funcional volume sobre variedades Riemannianas compactas com bordo suave conexo. Chamamos tais pontos críticos de métricas críticas de Miao-Tam, devido ao estudo variacional feito por Miao e Tam (2009). Neste trabalho provamos que as bolas geodésicas das formas espaciais Rn , S n e H n possuem o valor máximo para o volume do bordo dentre todas as métricas críticas de Miao-Tam com bordo conexo, desde que o bordo seja uma variedade de Einstein. No mesmo sentido, também estendemos um teorema de rigidez devido à Boucher et al. (1984) e Shen (1997) para métricas estáticas de dimensão n e com curvatura escalar constante positiva, o qual nos fornece outra maneira para obter uma resposta parcial para a Cosmic no-hair conjecture já obtida por Chrusciel (2003).
Guo, Li. "Shape blending using discrete curvature-variation functional /." View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?IEEM%202005%20GUO.
Full textDalphin, Jérémy. "Étude de fonctionnelles géométriques dépendant de la courbure par des méthodes d'optimisation de formes. Applications aux fonctionnelles de Willmore et Canham-Helfrich." Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0167/document.
Full textIn biology, when a large amount of phospholipids is inserted in aqueous media, they immediatly gather in pairs to form bilayers also called vesicles. In 1973, Helfrich suggested a simple model to characterize the shapes of vesicles. Imposing the area of the bilayer and the volume of fluid it contains, their shape is minimizing a free-Bending energy involving geometric quantities like curvature, and also a spontanuous curvature measuring the asymmetry between the two layers. Red blood cells are typical examples of vesicles on which is fixed a network of proteins playing the role of a skeleton inside the membrane. One of the main work of this thesis is to introduce and study a uniform ball condition, in particular to model the effects of the skeleton. First, we minimize the Helfrich energy without constraint then with an area constraint. The case of zero spontaneous curvature is known as the Willmore energy. Since the sphere is the global minimizer of the Willmore energy, it is a good candidate to be a minimizer of the Helfrich energy among surfaces of prescribed area. Our first main contribution in this thesis was to study its optimality. We show that apart from a specific interval of parameters, the sphere is no more a global minimizer, neither a local minimizer. However, it is always a critical point. Then, in the specific case of membranes with negative spontaneous curvature, one can wonder whether the minimization of the Helfrich energy with an area constraint can be done by minimizing individually each term. This leads us to minimize total mean curvature with prescribed area and to determine if the sphere is a solution to this problem. We show that it is the case in the class of axisymmetric axiconvex surfaces but that it does not hold true in the general case. Finally, considering both area and volume constraints, the minimizer cannot be the sphere, which is no more admissible. Using the shape optimization point of view, the third main and most important contribution of this thesis is to introduce a more reasonable class of surfaces, in which the existence of an enough regular minimizer is ensured for general functionals and constraints involving the first- and second-Order geometric properties of surfaces. Inspired by what Chenais did in 1975 when she considered the uniform cone property, we consider surfaces satisfying a uniform ball condition. We first study purely geometric functionals then we allow a dependence through the solution of some second-Order elliptic boundary value problems posed on the inner domain enclosed by the shape
ALESSANDRONI, ROBERTA. "Evolution of hypersurfaces by curvature functions." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2008. http://hdl.handle.net/2108/661.
Full textWe consider a smooth n-dimensional hypersurface of ℝⁿ⁺¹, with n≥2, and its evolution by a class of geometric flows. The speed of these flows has normal direction with respect to the surface and its modulus S is a symmetric function of the principal curvatures. We show some general properties of these flows and compute the evolution equation for any homogeneous function of principal curvatures. Then we apply the flow with speed S=(H/(logH)), where H is the mean curvature plus a constant, to a mean convex surface to prove some convexity estimates. Using only the maximum principle we prove that the negative part of the scalar curvature tends to zero on a limit of rescalings of the evolving surfaces near a singularity. The following part is dedicated to the study of a convex initial manifold moving by powers of scalar curvature: S=R^{p}, with p>1/2. We show that if the initial surface satisfies a pinching estimate on the principal curvatures then it shrinks to a point in finite time and the shape of the evolving surfaces approaches the one of a sphere. Since the homogeneity degree of this speed is strictly greater than one, the convergence to a "round point" can be proved using just the maximum principle, avoiding the integral estimates. Then we also construct an example of a non convex surface forming a neck pinching singularity. Finally we study the case of an entire graph over ℝⁿ with at most linear growth at infinity. We show that a graph evolving by any flow in the considered class remains a graph. Moreover we prove a long time existence result for flows where the speed is S=R^{p} with p≥1/2 and describe some explicit solutions in the rotationally symmetric case.
Evangelista, Israel de Sousa. "Compact almost Ricci soliton, critical metrics of the total scalar curvature functional and p-fundamental tone estimates." reponame:Repositório Institucional da UFC, 2017. http://www.repositorio.ufc.br/handle/riufc/23920.
Full textSubmitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-07-10T12:41:32Z No. of bitstreams: 1 2017_tese_isevangelista.pdf: 618771 bytes, checksum: 7e4bb8d9fd8825ef347e309171075037 (MD5)
Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-07-10T14:06:18Z (GMT) No. of bitstreams: 1 2017_tese_isevangelista.pdf: 618771 bytes, checksum: 7e4bb8d9fd8825ef347e309171075037 (MD5)
Made available in DSpace on 2017-07-10T14:06:18Z (GMT). No. of bitstreams: 1 2017_tese_isevangelista.pdf: 618771 bytes, checksum: 7e4bb8d9fd8825ef347e309171075037 (MD5) Previous issue date: 2017-07-04
The present thesis is divided in three different parts. The aim of the first part is to prove that a compact almost Ricci soliton with null Cotton tensor is isometric to a standard sphere provided one of the following conditions associated to the Schouten tensor holds: the second symmetric function is constant and positive; two consecutive symmetric functions are non null multiple or some symmetric function is constant and the quoted tensor is positive. The aim of the second part is to study the critical metrics of the total scalar curvature funcional on compact manifolds with constant scalar curvature and unit volume, for simplicity, CPE metrics. It has been conjectured that every CPE metric must be Einstein. We prove that the Conjecture is true for CPE metrics under a suitable integral condition and we also prove that it suffices the metric to be conformal to an Einstein metric. In the third part we estimate the p-fundamental tone of submanifolds in a Cartan-Hadamard manifold. First we obtain lower bounds for the p-fundamental tone of geodesic balls and submanifolds with bounded mean curvature. Moreover, we provide the p-fundamental tone estimates of minimal submanifolds with certain conditions on the norm of the second fundamental form. Finally, we study transversely oriented codimension one C 2-foliations of open subsets Ω of Riemannian manifolds M and obtain lower bounds estimates for the infimum of the mean curvature of the leaves in terms of the p-fundamental tone of Ω.
A presente tese está dividida em três partes diferentes. O objetivo da primeira parte é provar que um quase soliton de Ricci compacto com tensor de Cotton nulo é isométrico a uma esfera canônica desde que uma das seguintes condições associadas ao tensor de Schouten seja válida: a segunda função simétrica é constante e positiva; duas funções simétricas consecutivas são múltiplas, não nulas, ou alguma função simétrica é constante e o tensor de Schouten é positivo. O objetivo da segunda parte é estudar as métricas críticas do funcional curvatura escalar total em variedades compactas com curvatura escalar constante e volume unitário, por simplicidade, métricas CPE. Foi conjecturado que toda métrica CPE deve ser Einstein. Prova-se que a conjectura é verdadeira para as métricas CPE sob uma condição integral adequada e também se prova que é suficiente que a métrica seja conforme a uma métrica Einstein. Na terceira parte, estima-se o p-tom fundamental de subvariedades em uma variedade tipo Cartan-Hadamard. Primeiramente, obtém-se estimativas por baixo para o p-tom fundamental de bolas geodésicas e em subvariedades com curvatura média limitada. Além disso, obtém-se estimativas do p-tom fundamental de subvariedades mínimas com certas condições sobre a norma da segunda forma fundamental. Por fim, estudam-se folheações de classe C 2 transversalmente orientadas de codimensão 1 de subconjuntos abertos Ω de variedades riemannianas M e obtêm-se estimativas por baixo para o ínfimo da curvatura média das folhas em termos do p-tom fundamental de Ω.
Buckland, John A. (John Anthony) 1978. "Mean curvature flow with free boundary on smooth hypersurfaces." Monash University, School of Mathematical Sciences, 2003. http://arrow.monash.edu.au/hdl/1959.1/5809.
Full textBooks on the topic "Curvature functionals"
Metrics of positive scalar curvature and generalised Morse functions. Providence, R.I: American Mathematical Society, 2011.
Find full textYang, Kichoon. Complete Minimal Surfaces of Finite Total Curvature. Dordrecht: Springer Netherlands, 1994.
Find full textWu, K. Chauncey. Free vibration of hexagonal panels simply supported at discrete points. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1991.
Find full textConcentration, functional inequalities, and isoperimetry: International workshop, October 29-November 1, 2009, Florida Atlantic University, Boca Raton, Florida. Providence, R.I: American Mathematical Society, 2011.
Find full textLi, Weiping, and Shihshu Walter Wei. Geometry and topology of submanifolds and currents: 2013 Midwest Geometry Conference, October 19, 2013, Oklahoma State University, Stillwater, Oklahoma : 2012 Midwest Geometry Conference, May 12-13, 2012, University of Oklahoma, Norman, Oklahoma. Providence, Rhode Island: American Mathematical Society, 2015.
Find full textWentworth, Richard A., Duong H. Phong, Paul M. N. Feehan, Jian Song, and Ben Weinkove. Analysis, complex geometry, and mathematical physics: In honor of Duong H. Phong : May 7-11, 2013, Columbia University, New York, New York. Providence, Rhode Island: American Mathematical Society, 2015.
Find full textTretkoff, Paula. Riemann Surfaces, Coverings, and Hypergeometric Functions. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691144771.003.0003.
Full textBriggs, Carey. General Expressions for the 5-Dimensional Riemann-Christoffel, Ricci, and Einstein Curvature Tensors and Riemann Curvature Scalar Allowing for Non-Vanishing Torsion and Arbitrary Functional Dependence on the Fifth Dimension. Lulu Press, Inc., 2021.
Find full textFree vibration of hexagonal panels simply supported at discrete points. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1991.
Find full textRajeev, S. G. Fluid Mechanics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198805021.001.0001.
Full textBook chapters on the topic "Curvature functionals"
Viaclovsky, Jeff. "Critical metrics for Riemannian curvature functionals." In Geometric Analysis, 195–274. Providence, Rhode Island: American Mathematical Society, 2016. http://dx.doi.org/10.1090/pcms/022/05.
Full textBlair, David E. "Curvature Functionals on Spaces of Associated Metrics." In Riemannian Geometry of Contact and Symplectic Manifolds, 157–75. Boston, MA: Birkhäuser Boston, 2002. http://dx.doi.org/10.1007/978-1-4757-3604-5_10.
Full textBlair, David E. "Curvature Functionals on Spaces of Associated Metrics." In Riemannian Geometry of Contact and Symplectic Manifolds, 195–218. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4959-3_10.
Full textNitsche, Johannes C. C. "Periodic Surfaces That are Extremal for Energy Functionals Containing Curvature Functions." In Statistical Thermodynamics and Differential Geometry of Microstructured Materials, 69–98. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4613-8324-6_6.
Full textDineen, Seán. "Curvature." In Functions of Two Variables, 103–14. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-3250-1_14.
Full textJost, Jürgen. "Convex functions and centers of mass." In Nonpositive Curvature: Geometric and Analytic Aspects, 61–68. Basel: Birkhäuser Basel, 1997. http://dx.doi.org/10.1007/978-3-0348-8918-6_3.
Full textSunada, Toshikazu. "L-functions in geometry and some applications." In Curvature and Topology of Riemannian Manifolds, 266–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/bfb0075662.
Full textShiohama, Katsuhiro. "Critical points of Busemann functions on complete open surfaces." In Curvature and Topology of Riemannian Manifolds, 254–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/bfb0075661.
Full textAlexander, Stephanie B., and William A. Karr. "Space-Time Convex Functions and Sectional Curvature." In Lorentzian Geometry and Related Topics, 13–26. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66290-9_2.
Full textKenmotsu, Katsuei. "Harmonic Functions and Parallel Mean Curvature Surfaces." In Springer Proceedings in Mathematics & Statistics, 13–19. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-55215-4_2.
Full textConference papers on the topic "Curvature functionals"
NETERENKO, V. V., A. FEOLI, and G. SCARPETTA. "FUNCTIONALS LINEAR IN CURVATURE AND STATISTICS OF HELICAL PROTEINS." In Proceedings of the International Conference. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702883_0047.
Full textRajidi, Shashidhar Reddy, Abhay Gupta, and Satyajit Panda. "Supersonic Aerodynamic Instability Characteristics of Bidirectional Porous Functionally Graded Panel." In ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/gt2021-59346.
Full textKnippenberg, Christopher H., Oliver J. Myers, and Christopher Nelon. "Functional Description for Thick Bistable Carbon Fiber Laminates With Rayleigh-Ritz, Abaqus, and Experiments." In ASME 2020 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/smasis2020-2293.
Full textYoshida, Norimasa, and Takafumi Saito. "Planar Curves-based on Explicit Bézier Curvature Functions." In CAD'19. CAD Solutions LLC, 2019. http://dx.doi.org/10.14733/cadconfp.2019.323-327.
Full textBRITO, F., H. L. LIU, U. SIMON, and C. P. WANG. "HYPERSURFACES IN SPACE FORMS WITH SOME CONSTANT CURVATURE FUNCTIONS." In Geometry and Topology of Submanifolds IX. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789812817976_0006.
Full textLehky, Sidney R., and Terrence J. Sejnowski. "Extracting 3-D curvatures from images of surfaces using a neural network." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/oam.1987.mh3.
Full textTorselletti, Enrico, Luigino Vitali, Roberto Bruschi, Erik Levold, and Leif Collberg. "Submarine Pipeline Installation Joint Industry Project: Global Response Analysis of Pipelines During S-Laying." In 25th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/omae2006-92377.
Full textYoshida, Norimasa, and Takafumi Saito. "Intrinsically Defined Planar Curves based on Explicit B-spline Curvature Functions." In CAD'21. CAD Solutions LLC, 2021. http://dx.doi.org/10.14733/cadconfp.2021.51-55.
Full textLiu, Yajing, Edwin K. P. Chong, and Ali Pezeshki. "Extending Polymatroid Set Functions With Curvature and Bounding the Greedy Strategy." In 2018 IEEE Statistical Signal Processing Workshop (SSP). IEEE, 2018. http://dx.doi.org/10.1109/ssp.2018.8450732.
Full textYue, Hong-Hao, Xiao-Ying Gao, Bing-Yin Ren, and Horn-Sen Tzou. "Spatial Exact Actuation of Flexible Deep Double-Curvature Shells." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34993.
Full textReports on the topic "Curvature functionals"
Diewert, W. Erwin, and T. J. Wales. Flexible Functional Forms and Global Curvature Conditions. Cambridge, MA: National Bureau of Economic Research, May 1989. http://dx.doi.org/10.3386/t0040.
Full text