Journal articles on the topic 'CUO NANOSTRUCTURES'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'CUO NANOSTRUCTURES.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Supakosl, Benjara, Vatcharinkorn Mekla, and Chakkaphan Raksapha. "Effect of Temperature and Synthesis of CuO Nanostructures on Cu Plate by Thermal Method." Advanced Materials Research 634-638 (January 2013): 2160–62. http://dx.doi.org/10.4028/www.scientific.net/amr.634-638.2160.
Full textKaur, Gurjinder, Amlan Baishya, R. Manoj Kumar, Debrupa Lahiri, and Indranil Lahiri. "Distinct Levels of Adhesion Energy of In-Situ Grown CuO Nanostructures." Journal of Nanoscience and Nanotechnology 20, no. 6 (June 1, 2020): 3527–34. http://dx.doi.org/10.1166/jnn.2020.17419.
Full textCandemir, Duygu, and Filiz Boran. "Size Controllable Synthesis and Characterization of CuO Nanostructure." Materials Science Forum 915 (March 2018): 98–103. http://dx.doi.org/10.4028/www.scientific.net/msf.915.98.
Full textRaksa, Phathaitep, A. Gardchareon, N. Mangkorntong, and Supab Choopun. "CuO Nanostructure by Oxidization of Copper Thin Films." Advanced Materials Research 55-57 (August 2008): 645–48. http://dx.doi.org/10.4028/www.scientific.net/amr.55-57.645.
Full textKasian, Pristanuch, and Supakorn Pukird. "Gas Sensing Properties of CuO Nanostructures Synthesized by Thermal Evaporation of Copper Metal Plate." Advanced Materials Research 93-94 (January 2010): 316–19. http://dx.doi.org/10.4028/www.scientific.net/amr.93-94.316.
Full textFu, Xiao Ming, and Jie Ren. "Synthesis of CuO Flower-Nanostructure via the Hydrothermal Method." Advanced Materials Research 873 (December 2013): 131–34. http://dx.doi.org/10.4028/www.scientific.net/amr.873.131.
Full textZhang, W. X., Z. H. Yang, S. X. Ding, and S. H. Yang. "Synthesis and Characterization of Nanostructured CuO Array Films." Solid State Phenomena 121-123 (March 2007): 303–6. http://dx.doi.org/10.4028/www.scientific.net/ssp.121-123.303.
Full textTatsuoka, Hirokazu, Wen Li, Er Chao Meng, Daisuke Ishikawa, and Kaito Nakane. "Syntheses and Structural Control of Silicide, Oxide and Metallic Nano-Structured Materials." Solid State Phenomena 213 (March 2014): 35–41. http://dx.doi.org/10.4028/www.scientific.net/ssp.213.35.
Full textChan, Yu Bin, Vidhya Selvanathan, Lai-Hock Tey, Md Akhtaruzzaman, Farah Hannan Anur, Sinouvassane Djearamane, Akira Watanabe, and Mohammod Aminuzzaman. "Effect of Calcination Temperature on Structural, Morphological and Optical Properties of Copper Oxide Nanostructures Derived from Garcinia mangostana L. Leaf Extract." Nanomaterials 12, no. 20 (October 13, 2022): 3589. http://dx.doi.org/10.3390/nano12203589.
Full textTran, Thi Ha, and Viet Tuyen Nguyen. "Copper Oxide Nanomaterials Prepared by Solution Methods, Some Properties, and Potential Applications: A Brief Review." International Scholarly Research Notices 2014 (December 17, 2014): 1–14. http://dx.doi.org/10.1155/2014/856592.
Full textHwa, Kuo Yuan, and Palpandi Karuppaiah. "Comparative Studies on the Synthesis of Copper Oxide Nano-Structures." Materials Science Forum 962 (July 2019): 51–56. http://dx.doi.org/10.4028/www.scientific.net/msf.962.51.
Full textSchlur, Laurent, Pierre Agostini, Guillaume Thomas, Geoffrey Gerer, Jacques Grau, and Denis Spitzer. "Detection of Organophosphorous Chemical Agents with CuO-Nanorod-Modified Microcantilevers." Sensors 20, no. 4 (February 15, 2020): 1061. http://dx.doi.org/10.3390/s20041061.
Full textSabry, Raad S., and Roonak Abdul Salam A. Alkareem. "Synthesis of ZnO-CuO flower-like hetero-nanostructures as volatile organic compounds (VOCs) sensor at room temperature." Materials Science-Poland 36, no. 3 (September 1, 2018): 452–59. http://dx.doi.org/10.2478/msp-2018-0055.
Full textIbupoto, Zafar, Aneela Tahira, Hamid Raza, Gulzar Ali, Aftab Khand, Nabila Jilani, Arfana Mallah, Cong Yu, and Magnus Willander. "Synthesis of Heart/Dumbbell-Like CuO Functional Nanostructures for the Development of Uric Acid Biosensor." Materials 11, no. 8 (August 8, 2018): 1378. http://dx.doi.org/10.3390/ma11081378.
Full textNoontasa, Sopa, Vatcharinkorn Mekla, and Sert Kiennork. "Structural and Photocatalytic Properties of CuO Nanorods Using the Hydrothermal Treatment Method." Advanced Materials Research 634-638 (January 2013): 2258–60. http://dx.doi.org/10.4028/www.scientific.net/amr.634-638.2258.
Full textSupunnee, Khun Ngern, Vatcharinkorn Mekla, and Eakkarach Raksasri. "Structural and Photocatalytic Properties of Fe-Dope TiO2 Nanostructure Using the Hydrothermal Treatment Method." Advanced Materials Research 634-638 (January 2013): 2261–63. http://dx.doi.org/10.4028/www.scientific.net/amr.634-638.2261.
Full textMargaret, S. Mary, Albin John P. Paul Winston, S. Muthupandi, P. Shobha, and P. Sagayaraj. "A Comparative Study of Nanostructures of CuO/Cu2O Fabricated via Potentiostatic and Galvanostatic Anodization." Journal of Nanomaterials 2021 (August 14, 2021): 1–8. http://dx.doi.org/10.1155/2021/5533845.
Full textSobahi, Nebras, Mohd Imran, Mohammad Ehtisham Khan, Akbar Mohammad, Md Mottahir Alam, Taeho Yoon, Ibrahim M. Mehedi, Mohammad A. Hussain, Mohammed J. Abdulaal, and Ahmad A. Jiman. "Facile Fabrication of CuO Nanoparticles Embedded in N-Doped Carbon Nanostructure for Electrochemical Sensing of Dopamine." Bioinorganic Chemistry and Applications 2022 (October 14, 2022): 1–9. http://dx.doi.org/10.1155/2022/6482133.
Full textZou, Yun Ling, Yan Li, Nan Zhang, and Jian Gang Li. "Prepared of Flower-Like CuO via CTAB-Assisted Hydrothermal Method." Advanced Materials Research 152-153 (October 2010): 909–14. http://dx.doi.org/10.4028/www.scientific.net/amr.152-153.909.
Full textKhan, M. A., Hasan Mahmood, Raja Naveed Ahmed, Ayaz Arif Khan, Mahboobullah, Tariq Iqbal, Asma Ishaque, and Rizwana Mofeed. "Influence of Temperature on the Morphology and Grain Size of Cupric Oxide (CuO) Nanostructures via Solvothermal Method." Journal of Nano Research 40 (March 2016): 1–7. http://dx.doi.org/10.4028/www.scientific.net/jnanor.40.1.
Full textChamninok, Pattanasuk, Dheerachai Polsongkram, Ki Seok An, Jaruwan Pongsuwan, and Supakorn Pukird. "The Effect of Temperature on Preparing CuO Nanostructures for Changing of Electrical Resistance." Applied Mechanics and Materials 620 (August 2014): 409–12. http://dx.doi.org/10.4028/www.scientific.net/amm.620.409.
Full textDíaz-Solís, M., A. Báez-Rodríguez, J. Hernández-Torres, L. García-González, and L. Zamora-Peredo. "Raman spectroscopy of nanograins, nanosheets and nanorods of copper oxides obtained by anodization technique." MRS Advances 4, no. 53 (2019): 2913–19. http://dx.doi.org/10.1557/adv.2019.413.
Full textRao, Martha Purnachander, Jerry J. Wu, Abdullah M. Asiri, and Sambandam Anandan. "Photocatalytic degradation of tartrazine dye using CuO straw-sheaf-like nanostructures." Water Science and Technology 75, no. 6 (January 2, 2017): 1421–30. http://dx.doi.org/10.2166/wst.2017.008.
Full textFeng, Qi, Shao Yuan Li, Wen Hui Ma, Xiao He, and Yu Xin Zou. "Hydrothermal Synthesis of Flower-Like CuO/ZnO/SiNWs Photocatalyst for Degradation of R6G under Visible Light Irradiation." Key Engineering Materials 727 (January 2017): 847–52. http://dx.doi.org/10.4028/www.scientific.net/kem.727.847.
Full textZhou, Ning, Meng Yuan, Dongsheng Li, and Deren Yang. "One-Pot Fast Synthesis of Leaf-Like CuO Nanostructures and CuO/Ag Microspheres with Photocatalytic Application." Nano 12, no. 03 (March 2017): 1750035. http://dx.doi.org/10.1142/s1793292017500357.
Full textWang, Li Min, Hong Ming Sun, Zhong Chao Ma, and Ao Xuan Wang. "Preparation of Hierarchical CuO Nanoparticles and their Photocatalytic Activity." Advanced Materials Research 785-786 (September 2013): 378–81. http://dx.doi.org/10.4028/www.scientific.net/amr.785-786.378.
Full textJabbar, Saja Mohsen. "Synthesis of CuO Nano structure via Sol-Gel and Precipitation Chemical Methods." Al-Khwarizmi Engineering Journal 12, no. 4 (December 18, 2017): 126–31. http://dx.doi.org/10.22153/kej.2016.07.001.
Full textZheng, Ju Gong, and Ting Yang. "Microwave Assisted Synthesis of CuO Nanostructures in Lonic Liquids." Advanced Materials Research 281 (July 2011): 127–31. http://dx.doi.org/10.4028/www.scientific.net/amr.281.127.
Full textKhalid, Awais, Pervaiz Ahmad, Abdulrahman I. Alharthi, Saleh Muhammad, Mayeen Uddin Khandaker, Mubasher Rehman, Mohammad Rashed Iqbal Faruque, et al. "Structural, Optical, and Antibacterial Efficacy of Pure and Zinc-Doped Copper Oxide Against Pathogenic Bacteria." Nanomaterials 11, no. 2 (February 10, 2021): 451. http://dx.doi.org/10.3390/nano11020451.
Full textChen, Hao Long, Zin Ching Liou, and Shian Jang Lin. "Oxygen Plasma Induced ZnO-CuO Nanostructure Growth on a Brass Substrate by Atmospheric-Pressure Plasma Jet." Materials Science Forum 688 (June 2011): 186–90. http://dx.doi.org/10.4028/www.scientific.net/msf.688.186.
Full textJung, Kichang, Taehoon Lim, Yaqiong Li, and Alfredo A. Martinez-Morales. "ZnO-CuO core-shell heterostructure for improving the efficiency of ZnO-based dye-sensitized solar cells." MRS Advances 2, no. 15 (2017): 857–62. http://dx.doi.org/10.1557/adv.2017.247.
Full textZeng, Chunyan, Chen Gao, Li Yuan, Tao Liang, Ruisong Yang, Wei Zhang, and Song Nie. "Water Evaporation-Induced Self-Assembly of Hierarchical CuO/MnO2 Composite Nanospheres and their Applications in Lithium-Ion Batteries." Nano 12, no. 02 (February 2017): 1750022. http://dx.doi.org/10.1142/s1793292017500229.
Full textHsieh, Chien-Te, Jin-Ming Chen, Hung-Hsiao Lin, and Han-Chang Shih. "Field emission from various CuO nanostructures." Applied Physics Letters 83, no. 16 (October 20, 2003): 3383–85. http://dx.doi.org/10.1063/1.1619229.
Full textGiziński, Damian, Anna Brudzisz, Janaina S. Santos, Francisco Trivinho-Strixino, Wojciech J. Stępniowski, and Tomasz Czujko. "Nanostructured Anodic Copper Oxides as Catalysts in Electrochemical and Photoelectrochemical Reactions." Catalysts 10, no. 11 (November 17, 2020): 1338. http://dx.doi.org/10.3390/catal10111338.
Full textLeitner, Jindřich, David Sedmidubský, and Ondřej Jankovský. "Size and Shape-Dependent Solubility of CuO Nanostructures." Materials 12, no. 20 (October 15, 2019): 3355. http://dx.doi.org/10.3390/ma12203355.
Full textZhang, Lijuan, Jinhua Lu, Jianfeng Wei, and Yan Wang. "Novel Flower-Like CuO/N-rGO as Enhanced Electrocatalyst for Oxygen Reduction Reaction." Nano 14, no. 10 (October 2019): 1950132. http://dx.doi.org/10.1142/s1793292019501327.
Full textLi, Jiang Ying, Bao Juan Xi, Jun Pan, and Yi Tai Qian. "Synthesis and Gas Sensing Properties of Urchin-Like CuO Self-Assembled by Nanorods through a Poly(ethylene glycol)-Assisted Hydrothermal Process." Advanced Materials Research 79-82 (August 2009): 1059–62. http://dx.doi.org/10.4028/www.scientific.net/amr.79-82.1059.
Full textRani, B. Jansi, P. Mohana, S. Swathi, R. Yuvakkumar, G. Ravi, M. Thambidurai, Hung D. Nguyen, and Dhayalan Velauthapillai. "Exploration of Bifunctionality in Mn, Co Codoped CuO Nanoflakes for Overall Water Splitting." International Journal of Energy Research 2023 (August 31, 2023): 1–15. http://dx.doi.org/10.1155/2023/6052251.
Full textMugheri, Abdul Qayoom, Aneela Tahira, Umair Aftab, Muhammad Ishaq Abro, Adeel Liaquat Bhatti, Shahid Ali, Mazhar Ali Abbasi, and Zafar Hussain Ibupoto. "A Low Charge Transfer Resistance CuO Composite for Efficient Oxygen Evolution Reaction in Alkaline Media." Journal of Nanoscience and Nanotechnology 21, no. 4 (April 1, 2021): 2613–20. http://dx.doi.org/10.1166/jnn.2021.19091.
Full textWisz, Grzegorz, Paulina Sawicka-Chudy, Maciej Sibiński, Dariusz Płoch, Mariusz Bester, Marian Cholewa, Janusz Woźny, Rostyslav Yavorskyi, Lyubomyr Nykyruy, and Marta Ruszała. "TiO2/CuO/Cu2O Photovoltaic Nanostructures Prepared by DC Reactive Magnetron Sputtering." Nanomaterials 12, no. 8 (April 12, 2022): 1328. http://dx.doi.org/10.3390/nano12081328.
Full textJoshi, Siddharth, Mrunmaya Mudigere, L. Krishnamurthy, and G. L. Shekar. "Growth of Horizontal Nanopillars of CuO on NiO/ITO Surfaces." Journal of Nanoscience 2014 (August 28, 2014): 1–6. http://dx.doi.org/10.1155/2014/635308.
Full textSenthilkumar, V., Yong Soo Kim, S. Chandrasekaran, Balasubramaniyan Rajagopalan, Eui Jung Kim, and Jin Suk Chung. "Comparative supercapacitance performance of CuO nanostructures for energy storage device applications." RSC Advances 5, no. 26 (2015): 20545–53. http://dx.doi.org/10.1039/c5ra00035a.
Full textShinde, S. K., D. P. Dubal, G. S. Ghodake, and V. J. Fulari. "Hierarchical 3D-flower-like CuO nanostructure on copper foil for supercapacitors." RSC Advances 5, no. 6 (2015): 4443–47. http://dx.doi.org/10.1039/c4ra11164h.
Full textBeevi, M. Hussain, S. Vignesh, T. Pandiyarajan, P. Jegatheesan, R. Arthur James, N. V. Giridharan, and B. Karthikeyan. "Synthesis and Antifungal Studies on CuO Nanostructures." Advanced Materials Research 488-489 (March 2012): 666–70. http://dx.doi.org/10.4028/www.scientific.net/amr.488-489.666.
Full textLi, Xiling, Wenfeng Guo, Hui Huang, Tingfang Chen, Moyu Zhang, and Yinshu Wang. "Synthesis and Photocatalytic Properties of CuO Nanostructures." Journal of Nanoscience and Nanotechnology 14, no. 5 (May 1, 2014): 3428–32. http://dx.doi.org/10.1166/jnn.2014.7965.
Full textGao, Daqiang, Guijin Yang, Jinyun Li, Jing Zhang, Jinlin Zhang, and Desheng Xue. "Room-Temperature Ferromagnetism of Flowerlike CuO Nanostructures." Journal of Physical Chemistry C 114, no. 43 (October 8, 2010): 18347–51. http://dx.doi.org/10.1021/jp106015t.
Full textIm, Yunhyeok, Carter Dietz, Seung S. Lee, and Yogendra Joshi. "Flower-Like CuO Nanostructures for Enhanced Boiling." Nanoscale and Microscale Thermophysical Engineering 16, no. 3 (July 2012): 145–53. http://dx.doi.org/10.1080/15567265.2012.678564.
Full textKonar, Suraj, Himani Kalita, Nagaprasad Puvvada, Sangeeta Tantubay, Madhusudan Kr Mahto, Suprakash Biswas, and Amita Pathak. "Shape-dependent catalytic activity of CuO nanostructures." Journal of Catalysis 336 (April 2016): 11–22. http://dx.doi.org/10.1016/j.jcat.2015.12.017.
Full textLi, D., Y. H. Leung, A. B. Djurišić, Z. T. Liu, M. H. Xie, J. Gao, and W. K. Chan. "CuO nanostructures prepared by a chemical method." Journal of Crystal Growth 282, no. 1-2 (August 2005): 105–11. http://dx.doi.org/10.1016/j.jcrysgro.2005.04.090.
Full textWang, Li, Bin Zhao, ZhongYong Yuan, XueJun Zhang, QingDuan Wu, LiXian Chang, and WenJun Zheng. "Syntheses of CuO nanostructures in ionic liquids." Science in China Series B: Chemistry 50, no. 1 (February 2007): 63–69. http://dx.doi.org/10.1007/s11426-007-0016-x.
Full text