Academic literature on the topic 'CUO NANOSTRUCTURES'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'CUO NANOSTRUCTURES.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "CUO NANOSTRUCTURES"
Supakosl, Benjara, Vatcharinkorn Mekla, and Chakkaphan Raksapha. "Effect of Temperature and Synthesis of CuO Nanostructures on Cu Plate by Thermal Method." Advanced Materials Research 634-638 (January 2013): 2160–62. http://dx.doi.org/10.4028/www.scientific.net/amr.634-638.2160.
Full textKaur, Gurjinder, Amlan Baishya, R. Manoj Kumar, Debrupa Lahiri, and Indranil Lahiri. "Distinct Levels of Adhesion Energy of In-Situ Grown CuO Nanostructures." Journal of Nanoscience and Nanotechnology 20, no. 6 (June 1, 2020): 3527–34. http://dx.doi.org/10.1166/jnn.2020.17419.
Full textCandemir, Duygu, and Filiz Boran. "Size Controllable Synthesis and Characterization of CuO Nanostructure." Materials Science Forum 915 (March 2018): 98–103. http://dx.doi.org/10.4028/www.scientific.net/msf.915.98.
Full textRaksa, Phathaitep, A. Gardchareon, N. Mangkorntong, and Supab Choopun. "CuO Nanostructure by Oxidization of Copper Thin Films." Advanced Materials Research 55-57 (August 2008): 645–48. http://dx.doi.org/10.4028/www.scientific.net/amr.55-57.645.
Full textKasian, Pristanuch, and Supakorn Pukird. "Gas Sensing Properties of CuO Nanostructures Synthesized by Thermal Evaporation of Copper Metal Plate." Advanced Materials Research 93-94 (January 2010): 316–19. http://dx.doi.org/10.4028/www.scientific.net/amr.93-94.316.
Full textFu, Xiao Ming, and Jie Ren. "Synthesis of CuO Flower-Nanostructure via the Hydrothermal Method." Advanced Materials Research 873 (December 2013): 131–34. http://dx.doi.org/10.4028/www.scientific.net/amr.873.131.
Full textZhang, W. X., Z. H. Yang, S. X. Ding, and S. H. Yang. "Synthesis and Characterization of Nanostructured CuO Array Films." Solid State Phenomena 121-123 (March 2007): 303–6. http://dx.doi.org/10.4028/www.scientific.net/ssp.121-123.303.
Full textTatsuoka, Hirokazu, Wen Li, Er Chao Meng, Daisuke Ishikawa, and Kaito Nakane. "Syntheses and Structural Control of Silicide, Oxide and Metallic Nano-Structured Materials." Solid State Phenomena 213 (March 2014): 35–41. http://dx.doi.org/10.4028/www.scientific.net/ssp.213.35.
Full textChan, Yu Bin, Vidhya Selvanathan, Lai-Hock Tey, Md Akhtaruzzaman, Farah Hannan Anur, Sinouvassane Djearamane, Akira Watanabe, and Mohammod Aminuzzaman. "Effect of Calcination Temperature on Structural, Morphological and Optical Properties of Copper Oxide Nanostructures Derived from Garcinia mangostana L. Leaf Extract." Nanomaterials 12, no. 20 (October 13, 2022): 3589. http://dx.doi.org/10.3390/nano12203589.
Full textTran, Thi Ha, and Viet Tuyen Nguyen. "Copper Oxide Nanomaterials Prepared by Solution Methods, Some Properties, and Potential Applications: A Brief Review." International Scholarly Research Notices 2014 (December 17, 2014): 1–14. http://dx.doi.org/10.1155/2014/856592.
Full textDissertations / Theses on the topic "CUO NANOSTRUCTURES"
Suman, Pedro Henrique. "Sensores de gás a base de SnO2-CuO /." Araraquara, 2016. http://hdl.handle.net/11449/144288.
Full textBanca: Anderson Andre Felix
Banca: Valmor Roberto Mastelaro
Banca: Luis Vicente de Andrade Scalvi
Banca: Rosario Elida Suman Bretas
Resumo: Neste trabalho, as propriedades sensoras de gás de nanoestruturas de óxido de estanho puras (SnO2) e híbridas (SnO2-Pt, SnO2-CuO e SnO2-CuO-Pt) foram estudadas na presença de diferentes gases. Os materiais foram sintetizados pelo método de electrospinning seguido por tratamento térmico e, posteriormente, foram caracterizados por termogravimetria (TG), difração de raios X (DRX), microscopia eletrônica de varredura com emissão por campo (MEV-FEG), microscopia eletrônica de transmissão (MET), espectroscopia por dispersão em energia de raios X (EDS), microscopia de força atômica (AFM) e área de superfície específica e porosidade (BET). O foco principal do trabalho foi analisar a resposta dos materiais sintetizados como sensores de gás para a detecção de gases tóxicos e inflamáveis em baixas concentrações e em uma temperatura de operação de 300 °C. Os resultados obtidos a partir das caracterizações estruturais e morfológicas mostraram que o método de electrospinning permite a obtenção de materiais unidimensionais (1D) policristalinos com elevada homogeneidade morfológica e pureza cristalina. Além disso, os elementos químicos presentes nas estruturas de cada material sintetizado foram mapeados e identificados, onde verificou-se que todos os elementos estão homogeneamente distribuídos ao longo da estrutura das fibras. As características superficiais dos materiais, tais como rugosidade e porosidade também foram estudadas e os resultados indicaram que, dependendo da composição química... (Resumo completo, clicar acesso eletrônico abaixo)
Doutor
Suman, Pedro Henrique [UNESP]. "Sensores de gás a base de SnO2-CuO." Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/144288.
Full textApproved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-10-04T17:39:33Z (GMT) No. of bitstreams: 1 suman_ph_dr_araiq.pdf: 17387364 bytes, checksum: 4749ea76239f897a32a707ec991707c0 (MD5)
Made available in DSpace on 2016-10-04T17:39:33Z (GMT). No. of bitstreams: 1 suman_ph_dr_araiq.pdf: 17387364 bytes, checksum: 4749ea76239f897a32a707ec991707c0 (MD5) Previous issue date: 2016-06-30
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Neste trabalho, as propriedades sensoras de gás de nanoestruturas de óxido de estanho puras (SnO2) e híbridas (SnO2-Pt, SnO2-CuO e SnO2-CuO-Pt) foram estudadas na presença de diferentes gases. Os materiais foram sintetizados pelo método de electrospinning seguido por tratamento térmico e, posteriormente, foram caracterizados por termogravimetria (TG), difração de raios X (DRX), microscopia eletrônica de varredura com emissão por campo (MEV-FEG), microscopia eletrônica de transmissão (MET), espectroscopia por dispersão em energia de raios X (EDS), microscopia de força atômica (AFM) e área de superfície específica e porosidade (BET). O foco principal do trabalho foi analisar a resposta dos materiais sintetizados como sensores de gás para a detecção de gases tóxicos e inflamáveis em baixas concentrações e em uma temperatura de operação de 300 °C. Os resultados obtidos a partir das caracterizações estruturais e morfológicas mostraram que o método de electrospinning permite a obtenção de materiais unidimensionais (1D) policristalinos com elevada homogeneidade morfológica e pureza cristalina. Além disso, os elementos químicos presentes nas estruturas de cada material sintetizado foram mapeados e identificados, onde verificou-se que todos os elementos estão homogeneamente distribuídos ao longo da estrutura das fibras. As características superficiais dos materiais, tais como rugosidade e porosidade também foram estudadas e os resultados indicaram que, dependendo da composição química das fibras, estruturas com diferentes níveis de rugosidade e área superficial podem ser obtidas. Medidas elétricas na presença de NO2, CO, H2, e CH4 mostraram que todos os materiais exibem comportamento de semicondutor do tipo-n e resposta sensora dependente da concentração do gás analito. As fibras de SnO2 e SnO2-Pt exibiram maior resposta sensora para a detecção de NO2 enquanto as fibras de SnO2-CuO e SnO2-CuO-Pt tiveram maior resposta na presença de H2, além de elevada seletividade para H2 em relação ao CH4. Em geral, os resultados obtidos mostram que os materiais produzidos são bastante promissores e têm grande potencial para serem estudados detalhadamente como sensores de gás.
In this work, the gas sensing properties of pure (SnO2) and hybrid (SnO2-Pt, SnO2-CuO and SnO2-CuO-Pt) tin oxide nanostructures were studied in the presence of different analyte gases. Materials were synthesized by electrospinning method followed by thermal treatment and subsequently characterized by thermogravimetry (TG), X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), atomic force microscopy (AFM) and specific surface area and porosity (BET). The main focus of the work was to analyze the gas sensor response of the synthesized materials for the detection of toxic and flammable gases in low concentrations at 300 °C. The results from the morphological and structural characterizations by XRD, SEM and TEM showed the electrospinning method allows obtaining polycrystalline 1D materials with high morphological homogeneity and crystalline purity. Furthermore, the chemical elements present in the structures of each synthesized material and it was found that all elements are homogeneously distributed throughout the fiber structures. The surface characteristics of materials, such as roughness and porosity were also studied and the results indicated that depending on the chemical composition of the fibers, structures with different levels of roughness and surface area can be obtained. Electrical measurements in the presence of NO2, H2, CO and CH4 were performed in order to verify the gas sensor properties of the nanostructures, and results showed that all materials exhibit n-type semiconducting behavior and the sensor response to be dependent on the analyte gas concentration. The SnO2 and SnO2-Pt fibers showed higher sensor response to NO2 detection while SnO2-CuO and SnO2-CuO-Pt fibers presented greater sensitivity for H2 as well as high selectivity to H2 compared to CH4. In general, the results showed that the produced materials are very promising and have high potential to be studied in detail as gas sensors materials.
FAPESP: 2012/11139-7
Amin, Gul. "ZnO and CuO Nanostructures: Low Temperature Growth, Characterization, their Optoelectronic and Sensing Applications." Doctoral thesis, Linköpings universitet, Fysik och elektroteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-76677.
Full textElsharif, Zainelabdin Ahmed ELtahir. "Lighting and Sensing Applications of Nanostructured ZnO, CuO and Their Composites." Doctoral thesis, Linköpings universitet, Fysik och elektroteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-85111.
Full textNanophotonics
Zaman, Saima. "Synthesis of ZnO, CuO and their Composite Nanostructures for Optoelectronics, Sensing and Catalytic Applications." Doctoral thesis, Linköpings universitet, Institutionen för teknik och naturvetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-81120.
Full textGauthier, Jessica. "Fabrication et mesures de transport de nanostructures de Pr[indice inférieur 2-x]Ce[indice inférieur x]CuO[indice inférieur 4+ [delta]]." Mémoire, Université de Sherbrooke, 2005. http://savoirs.usherbrooke.ca/handle/11143/4645.
Full textBuelna, Quijada Genoveva. "SYNTHESIS AND PROPERTIES OF NANOSTRUCTURED SOL-GEL SORBENTS FOR SIMULTANEOUS REMOVAL OF SULFUR DIOXIDE AND NITROGEN OXIDES FROM FLUE GAS." University of Cincinnati / OhioLINK, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1006200391.
Full textД`яченко, Олексій Вікторович, Алексей Викторович Дьяченко, Oleksii Viktorovych Diachenko, Надія Миколаївна Опанасюк, Надежда Николаевна Опанасюк, Nadiia Mykolaivna Opanasiuk, Денис Ігорович Курбатов, Денис Игоревич Курбатов, Denys Ihorovych Kurbatov, and H. Cheong. "Наноструктуровані плівки CuО, синтезовані методом пульсуючого спрей-піролізу." Thesis, Астропринт, 2016. http://essuir.sumdu.edu.ua/handle/123456789/46070.
Full textEskhult, Jonas. "Electrochemical Deposition of Nanostructured Metal/Metal-Oxide Coatings." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8186.
Full textVlad, Valentina Roxana. "Growth and characterization of chemical solution based nanostructured coated conductors with CeO(2) cap layers." Doctoral thesis, Universitat Autònoma de Barcelona, 2011. http://hdl.handle.net/10803/51489.
Full text100 years after Dutch physicist Heike Kamerlingh Onnes found that mercury has an electrical resistance of zero when cooled in liquid helium, superconductors are finally being rolled out for use in electricity grids. Superconductive wiring carries about ten times as much power as the same volume of conventional copper wiring. Although some of that power is lost (ac losses) and liquid nitrogen must be used to keep cool the superconducting cables or other devices, such power systems are still more efficient than those based on copper wiring, which losses 7-10% of the power it carries as heat. Because of this, several countries, such as USA, Japan, South Korea, China and Europe have established objectives for 'green' electricity networks reducing the greenhouse gas generation (CO2) and build more efficient and robust 'smart grids' based on the superconductors. The high temperature superconducting wires are made based on the ceramic compound yttrium barium copper oxide (YBCO), part of a family of 'high-temperature' superconducting ceramics that were first discovered in 1986. The attractive perspectives offered by coated conductors, known as the 2nd generation of high temperature superconductors (2G-HTS), have triggered broad and fruitful R&D efforts to make them ready for the market place [2]. Recently, LS Cable, a South Korean company based in Anyang-si near Seoul, has ordered three million meters of superconducting wire from the US firm American Superconductor in Devens, Massachusetts, which is the highest commercial order so far of HTS CC [1]. High Temperature Superconductors (HTS) have an enormous potential for significantly improving existing power systems, such as cables, motors, transformers, magnets and generators, because higher power densities and reduced losses can be achieved by replacing copper or low temperature superconductor wires [3]. Superconducting materials will also enable completely new technologies in the power sector, such as fault current limiters or inherently stable magnetic levitation. As examples for innovative applications, advanced energy systems for “all-electrical” ships, off-shore windmills and transportation systems should be mentioned. Although research on the materials aspects of HTS has been highly successful in the past, the development of low cost - high performance HTS materials remains a key factor of success and, in order to bring these emerging materials onto the market in a reasonable time frame, requires significantly more basic and applied materials research. The main objective of this thesis is to develop new simplified nanostructured Coated Conductors architectures based on Chemical Solution Deposition (CSD). For that, the growth and characterization of these Coated Conductors was investigated first on YSZ single crystals where CeO2-derived cap layer can be easily grown. The knowledge generated can be useful for two types of metallic substrates: 1.- MODLZO buffered Ni5%W RABiTS substrates; 2.- ABADYSZ buffered Stainless Steel (SS) polycrystalline substrates. Taking into account the quality of the existing metallic substrates, this thesis has been concentrated on ABADYSZ/SS substrates, provided by Bruker HTS, Germany. The first step for achieving simplified architectures was the investigation of Gd,Zr doped CeO2 which better adapts to the mentioned substrates. The second step consisted in growing YBa2Cu3O7-x superconducting films using the trifluoracetates route. This work starts with a brief description of the superconductivity, followed by a short introduction about the superconductive compound YBCO and ends with the principal methods for obtaining high quality textured YBCO films. A complete characterization of the samples with various techniques (Atomic Force Microscopy (AFM), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Reflection High-Energy Electron Diffraction (RHEED), Pulsed Laser Deposition (PLD), SQUID, X-ray reflectivity (XRR) and electrical transport measurements) is necessary in order to understand the complex mechanism of each superconductor and the interactions between different layers. Various doped cerium oxide thin films used as cap layer, prepared by spin coating were also investigated. The technical requirements for high quality Coated Conductors are very diverse. To achieve a high quality epitaxy and high Jc, it is necessary to perform a detailed morphological and structural characterization by means of SEM and XRD. This microstructure of the YBCO layer needs to be closely correlated with that of the cap layer. In order to study the superconducting properties in more detail, inductive and transport measurements have been performed to examine current flow in YBCO films deposited on different substrates. The results obtained with CeO2-derived cap layers grown on Alternating Beam Assisted Deposition (ABAD) substrates were also reported. Last part of this thesis is dedicated to the development of BaZrO3-YBa2Cu3O7-x and BaCeO3-YBa2Cu3O7-x nanocomposites thin films by MOD using the in-situ approach. Barium zirconate is the most attractive material to induce artificial pinning centers both in YBCO thin films, in order to increase the critical current density. Detailed characterization by SEM, XRD and TEM of BaZrO3 (BZO) nanocomposite grown by MOD will be presented. References [1] Joseph Milton, "Superconductors come of age," Nature (2010). [2] C. Freyhardt Herbert and et al., "Coated conductors and their applications," Superconductor Science and Technology 23 (1), 010201 (2010). [3] "Nespa - NanoEngineered Superconductors for Power Applications," http://www.ifw-dresden.de/nespa.
Books on the topic "CUO NANOSTRUCTURES"
Zi cui hua qi xiang sheng zhang yu yi wei na mi jie gou. Beijing: Ke xue chu ban she, 2013.
Find full textNami kong cai liao hua xue: Cui hua ji gong neng hua. Beijing: Ke xue chu ban she, 2013.
Find full textDiamond, Steve. Review of OECD/OPPTS-harmonized and OPPTS ecotoxicity test guidelines for their applicability to manufactured nanomaterials. Duluth, Minn: U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 2009.
Find full textLin, Nian, and Sebastian Stepanow. Designing low-dimensional nanostructures at surfaces by supramolecular chemistry. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.10.
Full textPanigrahi, Muktikanta, and Arpan Kumar Nayak. Polyaniline based Composite for Gas Sensors. IOR PRESS, 2021. http://dx.doi.org/10.34256/ioriip212.
Full textBook chapters on the topic "CUO NANOSTRUCTURES"
Zhang, W. X., Z. H. Yang, S. X. Ding, and S. H. Yang. "Synthesis and Characterization of Nanostructured CuO Array Films." In Solid State Phenomena, 303–6. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-30-2.303.
Full textLim, Loong-Tak. "Nanostructure Packaging Technologies." In Modified Atmosphere Packaging for Fresh-Cut Fruits and Vegetables, 240–65. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470959145.ch13.
Full textCretu, V., V. Postica, N. Ababii, N. Magariu, V. Sontea, F. Schütt, R. Adelung, and O. Lupan. "Effect of Dopant on Selectivity of CuO Nanostructured Films – Based Sensors." In 3rd International Conference on Nanotechnologies and Biomedical Engineering, 349–52. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-287-736-9_84.
Full textDi Benedetto, Almerinda, Gianluca Landi, and Luciana Lisi. "Preferential Oxidation of Carbon Monoxide in Hydrogen-Rich Streams over CuO/CeO2 Catalysts: How Nano (and Subnano) Structure Affects Catalytic Activity and Selectivity." In Nanostructured Catalysts for Environmental Applications, 79–112. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58934-9_3.
Full textAzimi, H., E. Ahmadi, and S. M. M. Hadavi. "Characteristics of Nanostructured WO3-CuO Powder Mixture Produced by Ball Milling." In Progress in Powder Metallurgy, 169–72. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-419-7.169.
Full textAl-Douri, Y., Y. Al-Douri, Y. Al-Douri, and A. S. Ibraheam. "Synthesized Cu2 Zn1-x Cdx SnS4 Quinternary Alloys Nanostructures for Optoelectronic Applications." In Green and Sustainable Advanced Materials, 209–22. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119528463.ch9.
Full textBritto Hurtado, R., Y. Delgado-Beleño, C. E. Martinez-Nuñez, M. Cortez-Valadez, and M. Flores-Acosta. "Biosynthesis and antibacterial activity of Cu and CuO nanoparticles against pathogenic microorganisms." In Copper Nanostructures: Next-Generation of Agrochemicals for Sustainable Agroecosystems, 417–52. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-823833-2.00013-1.
Full textDjinović, Petar, Jurka Batista, Janez Levec, and Albin Pintar. "Synthesis of ordered nanostructured CuO-CeO2 catalysts by hard template method." In Scientific Bases for the Preparation of Heterogeneous Catalysts - Proceedings of the 10th International Symposium, Louvain-la-Neuve, Belgium, July 11-15, 2010, 245–48. Elsevier, 2010. http://dx.doi.org/10.1016/s0167-2991(10)75034-5.
Full textKumari Arodhiya, Sharmila, Jaspreet Kocher, Jiri Pechousek, Shashank Priya, Ashok Kumar, and Shyam Sundar Pattnaik. "Understanding Synthesis and Characterization of Oxide Semiconductor Nanostructures through the Example of Nanostructured Nickel Doped Hematite." In Synthesis and Applications of Semiconductor Nanostructures, 182–201. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815080117123040013.
Full textKadarkaraithangam, Jeyasubramanian, Thangaiyanadar Suyambulingam Gokul Raja, Silambuselvan Parani Bramma Nayagi, and Karthikeyan Krishnamoorthy. "Nanostructured Materials for the Development of Superhydrophobic Coatings." In Novel Nanomaterials. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96320.
Full textConference papers on the topic "CUO NANOSTRUCTURES"
Enright, Ryan, Nicholas Dou, Nenad Miljkovic, Youngsuk Nam, and Evelyn N. Wang. "Condensation on Superhydrophobic Copper Oxide Nanostructures." In ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/mnhmt2012-75277.
Full textLitra, Dinu, Cristian Lupan, Tudor Zadorojneac, Maxim Chiriac, Nadine Depri, Oleg Lupan, Rainer Adelung, and Leonard Siebert. "CuO-plate decorated ZnO nanostructures and their sensing performances." In 12th International Conference on Electronics, Communications and Computing. Technical University of Moldova, 2022. http://dx.doi.org/10.52326/ic-ecco.2022/el.03.
Full textChand, Prakash, Anurag Gaur, and Ashavani Kumar. "Structural and optical studies of CuO nanostructures." In SOLID STATE PHYSICS: Proceedings of the 58th DAE Solid State Physics Symposium 2013. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4872566.
Full textDakhil, Osama Abdul Azeez, Nibras M. Omran, and Baida M. Ahmed. "Prepared CuO nanostructures as gas sensor for ammonia detection." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0027506.
Full textNam, Youngsuk, and Y. Sungtaek Ju. "Comparative Study of Copper Oxidation Schemes and Their Effects on Surface Wettability." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-67492.
Full textBade, Bharat R., Sachin R. Rondiya, Yogesh V. Hase, Mamta P. Nasane, Sagar B. Jathar, Sunil V. Barma, Kiran B. Kore, Dhanaraj S. Nilegave, Sandesh R. Jadkar, and Adinath M. Funde. "Hydrothermally synthesized CuO nanostructures and their application in humidity sensing." In 4TH INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES; MICRO TO NANO, 2019: (ETMN 2019). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0043341.
Full textWei, Fanan, Quan Tao, Guangyong Li, and Lianqing Liu. "A novel approach for preparation of CuO nanostructures on conductive substrate." In 2015 IEEE Nanotechnology Materials and Devices Conference (NMDC). IEEE, 2015. http://dx.doi.org/10.1109/nmdc.2015.7439267.
Full textChen, W. G., T. Y. Gao, Q. Z. Li, and H. L. Gan. "Study on enhanced H2 gas sensing characteristics of CuO-SnO2 nanostructures." In 2014 International Conference on High Voltage Engineering and Application (ICHVE). IEEE, 2014. http://dx.doi.org/10.1109/ichve.2014.7035507.
Full textSethuraman, R. G., R. Kannan, and T. Venkatachalam. "Effect of Mn on the structural and optical properties of CuO nanostructures." In PROCEEDINGS OF ADVANCED MATERIAL, ENGINEERING & TECHNOLOGY. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0019398.
Full textGehlawat, Devender, R. P. Chauhan, R. G. Sonkawade, S. K. Tripathi, Keya Dharamvir, Ranjan Kumar, and G. S. S. Saini. "Experimental conditions induced variation in Texture Coefficient of Crystal planes in Cu∕CuO Nanostructures." In INTERNATIONAL CONFERENCE ON ADVANCES IN CONDENSED AND NANO MATERIALS (ICACNM-2011). AIP, 2011. http://dx.doi.org/10.1063/1.3653656.
Full textReports on the topic "CUO NANOSTRUCTURES"
Billinge, Simon J. L. Nanostructure Determination by Co-Refining Models to Multiple Datasets. Office of Scientific and Technical Information (OSTI), May 2011. http://dx.doi.org/10.2172/1164153.
Full textMetiu, Horia. Catalysis by Nanostructures: Methane, Ethylene Oxide, and Propylene Oxide Synthesis on Ag, Cu or Au Nanoclusters. Fort Belvoir, VA: Defense Technical Information Center, February 2008. http://dx.doi.org/10.21236/ada477455.
Full text