Journal articles on the topic 'Cumulenes; organic compounds synthesis'

To see the other types of publications on this topic, follow the link: Cumulenes; organic compounds synthesis.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Cumulenes; organic compounds synthesis.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Mai, Juri, and Sascha Ott. "The Fascinating World of Phosphanylphosphonates: From Acetylenic Phosphaalkenes to Reductive Aldehyde Couplings." Synlett 30, no. 16 (August 13, 2019): 1867–85. http://dx.doi.org/10.1055/s-0039-1690129.

Full text
Abstract:
This account highlights the versatility of phosphanylphosphonates, which can be used for the preparation of phosphorus-containing π-systems and as reagents for the reductive coupling of carbonyl compounds to alkenes. Phosphanylphosphonates with metal fragments coordinated to the P-lone pair have been known for a long time and they have been used for the synthesis of phosphaalkenes by means of the phospha-Horner–Wadsworth–Emmons reaction. With the original aim of incorporating phosphorus heteroatoms into classical all-carbon ethynylethene scaffolds, we entered the field of phosphanylphosphonates with the discovery that these compounds engage in complex cascade reactions with acetylenic ketones, forming 1,2-oxaphospholes, cumulenes, and bisphospholes. Later, we synthesized the first metal-free phosphanylphosphonate, which reacts with aldehydes to yield phosphaalkenes, but gives phospholones when diacetylenic ketones are used as substrates. In the final part of the account, we outline our discovery and the development of an unprecedented carbonyl–carbonyl cross-coupling reaction. This protocol offers a straightforward method for the synthesis of nonsymmetric 1,2-disubstituted alkenes directly from two dissimilar aldehydes.1 Combining Acetylenes with Phosphaalkenes2 Synthetic Examples of Acetylenic Phosphaalkenes3 The Phospha-Horner–Wadsworth–Emmons Approach to Phosphaalkenes3.1 Metal-Coordinated Phosphanylphosphonates3.2 Mechanism of the Phospha-Horner–Wadsworth–Emmons Reaction3.3 The First Metal-Free Phosphanylphosphonate and Its Reactivity with Aldehydes4 Reactions with Acetylenic Ketones4.1 Metal-Coordinated Phosphanylphosphonate and Monoacetylenic Ketones4.2 Metal-Coordinated Phosphanylphosphonate and Diacetylenic Ketones4.3 Metal-Free Phosphanylphosphonate and Diacetylenic Ketones5 Metal-Free Phosphanylphosphonate as a Coupling Reagent for Aldehydes6 E-Alkenes by the Reductive Coupling of Two Aldehydes7 Conclusions and Outlook
APA, Harvard, Vancouver, ISO, and other styles
2

Hopf, Henning, and Georgios Markopoulos. "The chemistry of bisallenes." Beilstein Journal of Organic Chemistry 8 (November 15, 2012): 1936–98. http://dx.doi.org/10.3762/bjoc.8.225.

Full text
Abstract:
This review describes the preparation, structural properties and the use of bisallenes in organic synthesis for the first time. All classes of compounds containing at least two allene moieties are considered, starting from simple conjugated bisallenes and ending with allenes in which the two cumulenic units are connected by complex polycyclic ring systems, heteroatoms and/or heteroatom-containing tethers. Preparatively the bisallenes are especially useful in isomerization and cycloaddition reactions of all kinds leading to the respective target molecules with high atom economy and often in high yield. Bisallenes are hence substrates for generating molecular complexity in a small number of steps (high step economy).
APA, Harvard, Vancouver, ISO, and other styles
3

Santos, Jose, Pavel Jelínek, David Ecija, and Nazario Martin. "(Invited) On-Surface Synthesis of Acene Polymers." ECS Meeting Abstracts MA2022-01, no. 11 (July 7, 2022): 811. http://dx.doi.org/10.1149/ma2022-0111811mtgabs.

Full text
Abstract:
The design and study of π-conjugated polymers has received great attention along the last decades. The relevant optical and electronic properties stemming from their delocalised π-electrons allow for a number of applications in the emerging field of organic electronics. However, the inherent limited solubility of planar π-conjugated systems hinders their development, forcing chemists to introduce ancillary solubilising side-chains. On the other hand, ultrahigh-vacuum on-surface synthesis has become a powerful discipline that enables designing with atomistic precision a new plethora of molecular compounds, polymers, and nanomaterials that otherwise are unachievable by conventional organic chemistry. Herein we present a novel on-surface chemical transformation that allows obtaining π-conjugated acene polymers from simple aromatic molecules carrying =CBr2 functionalities. The deposition of such precursors on an Au(111) surface gives rise to close-packed assemblies. Thermal annealing promotes the debromination of the species that thereafter homocouple and give rise to long anthracene wires linked by acetylene bridges, featuring a bandgap of 1.5 eV (see figure below). When larger acenes or periacenes are used (i.e. pentacene, bisanthene, peripentacene) the resulting polymers undergo dramatic structural and electronic changes. Non-contact-AFM evince that the benzoid subunits evolve from aromatic (anthracene) to quinoid (pentacene, bisanthene...), while the alkyne linkers turn into cumulenic. The STM images allow witnessing the HOMO-LUMO levels crossing from anthracene to pentacene. This swap destabilises the aromatic structure and enables a biradical-quinoid one, that permit almost vanishing bandgaps below 0.35 eV. These findings can also be rationalised by topological band gap theory: DFT, tight binding and GW calculations predict that polymers these quasi-metallic polymers exhibit a topologically non-trivial electronic structure. Our results herald novel pathways to engineer π-conjugated polymers on solid surfaces, addressing the relevant family of acenes and, thus, contributing to develop the field of on-surface chemistry and to steer the design of modern low bandgap polymers. Figure 1
APA, Harvard, Vancouver, ISO, and other styles
4

Gawel, Przemyslaw, Elias A. Halabi, David Schweinfurth, Nils Trapp, Laurent Ruhlmann, Corinne Boudon, and François Diederich. "Synthesis of Dicyano-Substituted Benzo[c]fluorenes from Tetraaryl[3]cumulenes." European Journal of Organic Chemistry 2016, no. 17 (May 30, 2016): 2919–24. http://dx.doi.org/10.1002/ejoc.201600470.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yranzo, Gloria I., José Elguero, Robert Flammang, and Curt Wentrup. "Formation of Cumulenes, Triple-Bonded, and Related Compounds by Flash Vacuum Thermolysis of Five-Membered Heterocycles." European Journal of Organic Chemistry 2001, no. 12 (June 2001): 2209–20. http://dx.doi.org/10.1002/1099-0690(200106)2001:12<2209::aid-ejoc2209>3.0.co;2-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

MURAHASHI, Shun-Ichi, and Takeshi NAOTA. "Organic synthesis using ruthenium compounds." Journal of Synthetic Organic Chemistry, Japan 46, no. 10 (1988): 930–42. http://dx.doi.org/10.5059/yukigoseikyokaishi.46.930.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

KUSAMA, Hiroyuki, and Koichi NARASAKA. "Rhenium Compounds in Organic Synthesis." Journal of Synthetic Organic Chemistry, Japan 54, no. 8 (1996): 644–53. http://dx.doi.org/10.5059/yukigoseikyokaishi.54.644.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

SHINOKUBO, Hiroshi, and Koichiro OSHIMA. "Organic Synthesis Using Organomanganese Compounds." Journal of Synthetic Organic Chemistry, Japan 57, no. 1 (1999): 13–23. http://dx.doi.org/10.5059/yukigoseikyokaishi.57.13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Negishi, Ei-ichi, and Tamotsu Takahashi. "Organozirconium Compounds in Organic Synthesis." Synthesis 1988, no. 01 (1988): 1–19. http://dx.doi.org/10.1055/s-1988-27453.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sadekov, Igor D., B. B. Rivkin, and Vladimir I. Minkin. "Organotellurium Compounds in Organic Synthesis." Russian Chemical Reviews 56, no. 4 (April 30, 1987): 343–54. http://dx.doi.org/10.1070/rc1987v056n04abeh003275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Khusnutdinov, R. I., T. M. Oshnyakova, and U. M. Dzhemilev. "Molybdenum compounds in organic synthesis." Russian Chemical Reviews 86, no. 2 (February 28, 2017): 128–63. http://dx.doi.org/10.1070/rcr4617.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Jiao, Jiao, and Yasushi Nishihara. "Alkynylboron compounds in organic synthesis." Journal of Organometallic Chemistry 721-722 (December 2012): 3–16. http://dx.doi.org/10.1016/j.jorganchem.2012.05.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Knölker, H. J. "Iron Compounds in Organic Synthesis." Synthesis 1994, no. 10 (1994): 1106. http://dx.doi.org/10.1055/s-1994-25646.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Eaborn, Colin. "Organoboron Compounds in Organic Synthesis." Journal of Organometallic Chemistry 284, no. 2 (April 1985): C43. http://dx.doi.org/10.1016/0022-328x(85)87227-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Birch, Arthur J., Brian Chauncy, Lawrence F. Kelly, and David J. Thompson. "Organometallic compounds in organic synthesis." Journal of Organometallic Chemistry 286, no. 1 (April 1985): 37–46. http://dx.doi.org/10.1016/0022-328x(85)87233-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Chaloner, Penny A. "Organomercury compounds in organic synthesis." Journal of Organometallic Chemistry 307, no. 1 (June 1986): C10—C11. http://dx.doi.org/10.1016/0022-328x(86)80188-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Petasis, N. A., S. P. Lu, E. I. Bzowej, D. K. Fu, J. P. Staszewski, Irini Akritopoulou-Zanze, M. A. Patane, and Y. H. Hu. "Organotitanium compounds in organic synthesis." Pure and Applied Chemistry 68, no. 3 (January 1, 1996): 667–70. http://dx.doi.org/10.1351/pac199668030667.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Roberts, R. M. G. "Iron compounds in organic synthesis." Journal of Organometallic Chemistry 490, no. 1-2 (March 1995): C37. http://dx.doi.org/10.1016/0022-328x(95)90297-r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Wang, Kung K., Bin Liu, and Yong-de Lu. "Facile Synthesis of [3]Cumulenes via 1,4-Elimination of Hydroxytrimethylsilane from 4-(Trimethylsilyl)-2-butyn-1-ols." Journal of Organic Chemistry 60, no. 6 (March 1995): 1885–87. http://dx.doi.org/10.1021/jo00111a059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Fajdek-Bieda, Anna, and Andrzej Perec. "Optimization of the organic compounds synthesis." Procedia Computer Science 207 (2022): 819–28. http://dx.doi.org/10.1016/j.procs.2022.09.137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Gouverneur, Véronique, Sophie Boldon, Ida Stenhagen, Jane Moore, and Sajinder Luthra. "Supported Synthesis of Halogenated Organic Compounds." Synthesis 2011, no. 24 (November 8, 2011): 3929–53. http://dx.doi.org/10.1055/s-0031-1289590.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Wirth, Thomas. "Chiral selenium compounds in organic synthesis." Tetrahedron 55, no. 1 (January 1999): 1–28. http://dx.doi.org/10.1016/s0040-4020(98)00946-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Peppe, C. "Indium(I) Compounds in Organic Synthesis." Current Organic Synthesis 1, no. 3 (July 1, 2004): 227–31. http://dx.doi.org/10.2174/1570179043366657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

DOCKX, Jozef. "Quaternary Ammonium Compounds in Organic Synthesis." Synthesis 1973, no. 08 (September 12, 2002): 441–56. http://dx.doi.org/10.1055/s-1973-22233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Yoneda, Norihiko, Tsuyoshi Fukuhara, Yukio Takahashi, and Mitsuhiro Okimoto. "Electrochemical Synthesis of Fluoro-Organic Compounds Using Iodine Compounds." ECS Transactions 2, no. 22 (December 21, 2019): 1–6. http://dx.doi.org/10.1149/1.2408998.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Zhao, Yucheng, Qiang Xiao, Baoqu Wang, Jun Lin, and Shengjiao Yan. "Synthesis of Iminopyrrolone Compounds." Chinese Journal of Organic Chemistry 37, no. 10 (2017): 2696. http://dx.doi.org/10.6023/cjoc201705004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Ismail, M. T., M. F. El-Zohry, and A. A. Abdel-Wahab. "Electvosynthesis of organic compounds. IV. Synthesis of some arylnitromethane compounds." Journal of Applied Electrochemistry 15, no. 3 (May 1985): 469–70. http://dx.doi.org/10.1007/bf00616003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Miyagawa, Masamichi. "Synthesis of β-Fluorocarbonyl Compounds." Journal of Synthetic Organic Chemistry, Japan 76, no. 9 (September 1, 2018): 954–55. http://dx.doi.org/10.5059/yukigoseikyokaishi.76.954.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

TOKUDA, Masao. "Organometallic compounds in electroorganic synthesis." Journal of Synthetic Organic Chemistry, Japan 43, no. 6 (1985): 522–32. http://dx.doi.org/10.5059/yukigoseikyokaishi.43.522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Wang, Chun-Shan, Yih-Min Sun, and A. Mendoza. "SYNTHESIS OF NOVELmeta-BROMOPHENOLIC COMPOUNDS." Organic Preparations and Procedures International 24, no. 2 (April 1992): 176–81. http://dx.doi.org/10.1080/00304949209355693.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Thomas, P. J., Mike A. Gonzalez, and R. G. Pews. "Synthesis of Novel Benzocyclobutene Compounds." Synthetic Communications 25, no. 18 (September 1995): 2813–17. http://dx.doi.org/10.1080/00397919508011828.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Yoshida, Junichi, Katsuhiko Muraki, Hirokatsu Funahashi, and Nariyoshi Kawabata. "Electrochemical synthesis of organosilicon compounds." Journal of Organic Chemistry 51, no. 21 (October 1986): 3996–4000. http://dx.doi.org/10.1021/jo00371a016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Tsuboi, Sadao, Koichi Shinhama, and Akira Takeda. "Synthesis of santonin related compounds." Journal of Heterocyclic Chemistry 25, no. 2 (March 1988): 523–25. http://dx.doi.org/10.1002/jhet.5570250231.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Minko, Yury, and Ilan Marek. "Oxenoids in organic synthesis." Org. Biomol. Chem. 12, no. 10 (2014): 1535–46. http://dx.doi.org/10.1039/c3ob42349b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Talhi, Oualid, and Artur M. S. Silva. "Organic Synthesis of C-Prenylated Phenolic Compounds." Current Organic Chemistry 17, no. 10 (May 1, 2013): 1067–102. http://dx.doi.org/10.2174/1385272811317100009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Hanamoto, Takeshi. "Application of Fluoroacetylene Compounds to Organic Synthesis." Journal of Synthetic Organic Chemistry, Japan 69, no. 9 (2011): 994–1005. http://dx.doi.org/10.5059/yukigoseikyokaishi.69.994.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Ishikura, Minoru. "Applications of Heteroarylboron Compounds to Organic Synthesis." Current Organic Chemistry 6, no. 6 (May 1, 2002): 507–21. http://dx.doi.org/10.2174/1385272024604907.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

WADA, Makoto, and Hidenori OHKI. "Organic synthesis using bismuth and bismuth compounds." Journal of Synthetic Organic Chemistry, Japan 47, no. 5 (1989): 425–35. http://dx.doi.org/10.5059/yukigoseikyokaishi.47.425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Izumi, Minoru. "Solid-phase organic synthesis of heterocyclic compounds." Journal of Pesticide Science 31, no. 1 (2006): 1–5. http://dx.doi.org/10.1584/jpestics.31.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Fleming, Ian. "Stereocontrol in Organic Synthesis Using Silicon Compounds." Frontiers in Natural Product Chemistry 1, no. 1 (January 1, 2005): 55–64. http://dx.doi.org/10.2174/1574089054583731.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Zhirov, A. M., and A. V. Aksenov. "Azodicarboxylates: synthesis and functionalization of organic compounds." Russian Chemical Reviews 83, no. 6 (June 27, 2014): 502–22. http://dx.doi.org/10.1070/rc2014v083n06abeh004419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Ford, Alan, Hugues Miel, Aoife Ring, Catherine N. Slattery, Anita R. Maguire, and M. Anthony McKervey. "Modern Organic Synthesis with α-Diazocarbonyl Compounds." Chemical Reviews 115, no. 18 (August 18, 2015): 9981–10080. http://dx.doi.org/10.1021/acs.chemrev.5b00121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Baran, J. R., and R. J. Lagow. "New general synthesis for polylithium organic compounds." Journal of the American Chemical Society 112, no. 25 (December 1990): 9415–16. http://dx.doi.org/10.1021/ja00181a066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Ye, Tao, and M. Anthony McKervey. "Organic Synthesis with .alpha.-Diazo Carbonyl Compounds." Chemical Reviews 94, no. 4 (June 1994): 1091–160. http://dx.doi.org/10.1021/cr00028a010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Fleming, I. "Stereocontrol in organic synthesis using silicon compounds." Pure and Applied Chemistry 60, no. 1 (January 1, 1988): 71–78. http://dx.doi.org/10.1351/pac198860010071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Fleming, I. "Stereocontrol in organic synthesis using silicon compounds." Pure and Applied Chemistry 62, no. 10 (January 1, 1990): 1879–86. http://dx.doi.org/10.1351/pac199062101879.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Shesterenko, E. A. "CARBOXYLESTERASES IN ENANTIOSELECTIVE SYNTHESIS OF ORGANIC COMPOUNDS." Biotechnologia Acta 6, no. 1 (2013): 9–21. http://dx.doi.org/10.15407/biotech6.01.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

HOSOMI, Akira, and Makoto HOJO. "Organic Synthesis Utilizing Characteristics of Organosilicon Compounds." YAKUGAKU ZASSHI 112, no. 3 (1992): 147–60. http://dx.doi.org/10.1248/yakushi1947.112.3_147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

ZANI, P. "ChemInform Abstract: Organometallic Compounds in Organic Synthesis." ChemInform 26, no. 19 (August 18, 2010): no. http://dx.doi.org/10.1002/chin.199519271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Shinokubo, Hiroshi, and Koichiro Oshima. "ChemInform Abstract: Organic Synthesis Using Organomanganese Compounds." ChemInform 30, no. 30 (June 14, 2010): no. http://dx.doi.org/10.1002/chin.199930280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography