Journal articles on the topic 'CuGaS2'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'CuGaS2.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Son, Namgyu, Jun Heo, Young-Sang Youn, Youngsoo Kim, Jeong Do, and Misook Kang. "Enhancement of Hydrogen Productions by Accelerating Electron-Transfers of Sulfur Defects in the CuS@CuGaS2 Heterojunction Photocatalysts." Catalysts 9, no. 1 (January 4, 2019): 41. http://dx.doi.org/10.3390/catal9010041.
Full textMiyake, Hideto, Moriki Hata, and Koichi Sugiyama. "Solution growth of CuGaS2 and CuGaSe2 using CuI solvent." Journal of Crystal Growth 130, no. 3-4 (June 1993): 383–88. http://dx.doi.org/10.1016/0022-0248(93)90523-y.
Full textUllah, Shafi, Miguel Mollar, and Bernabé Marí. "Electrodeposition of CuGaSe2 and CuGaS2 thin films for photovoltaic applications." Journal of Solid State Electrochemistry 20, no. 8 (May 14, 2016): 2251–57. http://dx.doi.org/10.1007/s10008-016-3237-0.
Full textQin, Ming Sheng, Fu Qiang Huang, and Ping Chen. "Wide Spectrum Absorption of CuGaS2 with Intermediate Bands." Applied Mechanics and Materials 148-149 (December 2011): 1558–61. http://dx.doi.org/10.4028/www.scientific.net/amm.148-149.1558.
Full textMassé, George. "Luminescence of CuGaS2." Journal of Applied Physics 58, no. 2 (July 15, 1985): 930–35. http://dx.doi.org/10.1063/1.336168.
Full textBerestok, Taisiia, Pablo Guardia, Sònia Estradé, Jordi Llorca, Francesca Peiró, Andreu Cabot, and Stephanie Brock. "CuGaS2 and CuGaS2–ZnS Porous Layers from Solution-Processed Nanocrystals." Nanomaterials 8, no. 4 (April 5, 2018): 220. http://dx.doi.org/10.3390/nano8040220.
Full textJahangirova, S. K., Sh H. Mammadov, G. R. Gurbanov, and O. M. Aliyev. "INTERACTION IN THE SYSTEM CuGaS2–PbGa2S4." Azerbaijan Chemical Journal, no. 1 (March 19, 2019): 46–49. http://dx.doi.org/10.32737/0005-2531-2019-1-46-49.
Full textGrechenkov, Jurij, Aleksejs Gopejenko, Dmitry Bocharov, Inta Isakoviča, Anatoli I. Popov, Mikhail G. Brik, and Sergei Piskunov. "Ab Initio Modeling of CuGa1−xInxS2, CuGaS2(1−x)Se2x and Ag1−xCuxGaS2 Chalcopyrite Solid Solutions for Photovoltaic Applications." Energies 16, no. 12 (June 20, 2023): 4823. http://dx.doi.org/10.3390/en16124823.
Full textSyrbu, N. N., L. L. Nemerenco, V. N. Bejan, and V. E. Tezlevan. "Bound exciton in CuGaS2." Optics Communications 280, no. 2 (December 2007): 387–92. http://dx.doi.org/10.1016/j.optcom.2007.08.028.
Full textShirakata, Sho, Kazuo Murakami, and Shigehiro Isomura. "Electroreflectance Studies in CuGaS2." Japanese Journal of Applied Physics 28, Part 1, No. 9 (September 20, 1989): 1728–29. http://dx.doi.org/10.1143/jjap.28.1728.
Full textBodnar, I. V., G. F. Smirnova, A. G. Karoza, and A. P. Chernyakova. "Vibrational Spectra of CuGaS2 and CuGaSe2 Compounds and CuGaS2xSe2(1−x) Solid Solutions2)." physica status solidi (b) 158, no. 2 (April 1, 1990): 469–74. http://dx.doi.org/10.1002/pssb.2221580207.
Full textHase, Shunnosuke, Yoshiki Iso, and Tetsuhiko Isobe. "Bandgap-tuned fluorescent CuGaS2/ZnS core/shell quantum dots for photovoltaic applications." Journal of Materials Chemistry C 10, no. 9 (2022): 3523–30. http://dx.doi.org/10.1039/d1tc05358b.
Full textMassé, G. "Time resolved spectra in CuGaS2." physica status solidi (a) 87, no. 2 (February 16, 1985): K171—K173. http://dx.doi.org/10.1002/pssa.2210870254.
Full textKobayashi, Satoshi, Futao Kaneko, Takeo Maruyama, Nozomu Tsuboi, and Hitoshi Tamura. "ZnyCd1-yS-CuGaS2 heterojunction diode." Electronics and Communications in Japan (Part II: Electronics) 74, no. 10 (1991): 73–81. http://dx.doi.org/10.1002/ecjb.4420741008.
Full textKeating, Logan, and Moonsub Shim. "Mechanism of morphology variations in colloidal CuGaS2 nanorods." Nanoscale Advances 3, no. 18 (2021): 5322–31. http://dx.doi.org/10.1039/d1na00434d.
Full textElalfy, Loay, Denis Music, and Ming Hu. "First Principles Investigation of Anomalous Pressure-Dependent Thermal Conductivity of Chalcopyrites." Materials 12, no. 21 (October 25, 2019): 3491. http://dx.doi.org/10.3390/ma12213491.
Full textNuriyev, Mubariz. "Electron Diffraction Study of CuGaS2 Film." Physical Science International Journal 5, no. 3 (January 10, 2015): 165–71. http://dx.doi.org/10.9734/psij/2015/12881.
Full textBotha, J. R., M. S. Branch, A. W. R. Leitch, and J. Weber. "Radiative defects in CuGaS2 thin films." Physica B: Condensed Matter 340-342 (December 2003): 923–27. http://dx.doi.org/10.1016/j.physb.2003.09.203.
Full textSyrbu, N. N., L. L. Nemerenco, and V. E. Tezlevan. "Resonance impurity radiation in CuGaS2 crystals." Optical Materials 30, no. 3 (November 2007): 451–56. http://dx.doi.org/10.1016/j.optmat.2006.12.002.
Full textMARUSHKO, L. P., Y. E. ROMANYUK, L. V. PISKACH PISKACH, O. V. PARASYUK, I. D. OLEKSEYUK, S. V. VOLKOV, and V. I. PEKHNYO. "The reciprocal system CuGaS2+CuInSe2DCuGaSe2+CuInS2." Chemistry of Metals and Alloys 3, no. 1/2 (2010): 18–23. http://dx.doi.org/10.30970/cma3.0112.
Full textMarushko, L. P., L. V. Piskach, Y. E. Romanyuk, O. V. Parasyuk, I. D. Olekseyuk, S. V. Volkov, and V. I. Pekhnyo. "Quasi-ternary system CuGaS2–CuInS2–2CdS." Journal of Alloys and Compounds 492, no. 1-2 (March 2010): 184–89. http://dx.doi.org/10.1016/j.jallcom.2009.11.171.
Full textKim, Myeongok, Nazmul Ahsan, Zacharie Jehl, Yudania Sánchez, and Yoshitaka Okada. "Properties of sputter-grown CuGaS2 absorber and CuGaS2/Cd1-xZnxS buffer heterointerface for solar cell application." Thin Solid Films 743 (February 2022): 139063. http://dx.doi.org/10.1016/j.tsf.2021.139063.
Full textHan, M. M., X. L. Zhang, and Z. Zeng. "Sn doping induced intermediate band in CuGaS2." RSC Advances 6, no. 112 (2016): 110511–16. http://dx.doi.org/10.1039/c6ra16855h.
Full textShirakata, Sho, and Shigehiro Isomura. "Yb-Related Photoluminescence in CuGaS2, AgGaSe2and AgGaS2." Japanese Journal of Applied Physics 37, Part 1, No. 3A (March 15, 1998): 776–80. http://dx.doi.org/10.1143/jjap.37.776.
Full textMetzner, H., Th Hahn, J. Cieslak, U. Grossner, U. Reislöhner, W. Witthuhn, R. Goldhahn, J. Eberhardt, G. Gobsch, and J. Kräußlich. "Epitaxial growth of CuGaS2 on Si(111)." Applied Physics Letters 81, no. 1 (July 2002): 156–58. http://dx.doi.org/10.1063/1.1492003.
Full textAbdullaev, N. A., Kh V. Aliguliyeva, L. N. Aliyeva, I. Qasimoglu, and T. G. Kerimova. "Low-temperature conductivity in CuGaS2 single crystals." Semiconductors 49, no. 4 (April 2015): 428–31. http://dx.doi.org/10.1134/s1063782615040028.
Full textChoi, In-Hwan, Sung-Hwan Eom, and Peter Y. Yu. "Dispersion of birefringence in AgGaS2 and CuGaS2." Journal of Applied Physics 82, no. 6 (September 15, 1997): 3100–3104. http://dx.doi.org/10.1063/1.366150.
Full textBotha, J. R., M. S. Branch, A. G. Chowles, A. W. R. Leitch, and J. Weber. "Photoluminescence of vacuum-deposited CuGaS2 thin films." Physica B: Condensed Matter 308-310 (December 2001): 1065–68. http://dx.doi.org/10.1016/s0921-4526(01)00848-1.
Full textCieslak, J., H. Metzner, Th Hahn, U. Reislöhner, U. Kaiser, J. Kräußlich, and W. Witthuhn. "Microstructure of epitaxial CuGaS2 on Si(111)." Journal of Physics and Chemistry of Solids 64, no. 9-10 (September 2003): 1777–80. http://dx.doi.org/10.1016/s0022-3697(03)00197-5.
Full textBranch, M. S., P. R. Berndt, J. R. Botha, A. W. R. Leitch, and J. Weber. "Structure and morphology of CuGaS2 thin films." Thin Solid Films 431-432 (May 2003): 94–98. http://dx.doi.org/10.1016/s0040-6090(03)00208-6.
Full textJulien, C., and S. Barnier. "Properties of several varieties of CuGaS2 microcrystals." Materials Science and Engineering: B 86, no. 2 (September 2001): 152–56. http://dx.doi.org/10.1016/s0921-5107(01)00678-x.
Full textTanaka, K., H. Uchiki, S. Iida, T. Terasako, and S. Shirakata. "Biexciton luminescence from CuGaS2 bulk single crystals." Solid State Communications 114, no. 4 (March 2000): 197–201. http://dx.doi.org/10.1016/s0038-1098(00)00035-1.
Full textSainctavit, Ph, J. Petiau, A. M. Flank, J. Ringeissen, and S. Lewonczuk. "XANES in chalcopyrites semiconductors: CuFeS2, CuGaS2, CuInSe2." Physica B: Condensed Matter 158, no. 1-3 (June 1989): 623–24. http://dx.doi.org/10.1016/0921-4526(89)90413-4.
Full textSudarsan, V., and S. K. Kulshreshtha. "Low temperature synthesis of the semiconductor CuGaS2." Materials Chemistry and Physics 49, no. 2 (June 1997): 146–49. http://dx.doi.org/10.1016/s0254-0584(97)01875-0.
Full textCastellanos Águila, J. E., P. Palacios, J. C. Conesa, J. Arriaga, and P. Wahnón. "Electronic band alignment at CuGaS2 chalcopyrite interfaces." Computational Materials Science 121 (August 2016): 79–85. http://dx.doi.org/10.1016/j.commatsci.2016.04.032.
Full textTinoco, T., J. P. Itié, A. Polian, A. San Miguel, E. Moya, P. Grima, J. Gonzalez, and F. Gonzalez. "Combined x-ray absorption and x-ray diffraction studies of CuGaS2, CuGaSe2, CuFeS2 and CuFeSe2 under high pressure." Le Journal de Physique IV 04, no. C9 (November 1994): C9–151—C9–154. http://dx.doi.org/10.1051/jp4:1994923.
Full textSusaki, Masami, Kazuki Wakita, and Nobuyuki Yamamoto. "Luminescence of Mixed-Mode Exciton-Polariton in CuGaS2." Japanese Journal of Applied Physics 38, Part 1, No. 5A (May 15, 1999): 2787–91. http://dx.doi.org/10.1143/jjap.38.2787.
Full textMiyake, Hideto, and Koichi Sugiyama. "Phase Diagram of the CuGaS2-In Pseudobinary System." Japanese Journal of Applied Physics 29, Part 2, No. 6 (June 20, 1990): L998—L1000. http://dx.doi.org/10.1143/jjap.29.l998.
Full textSyrbu, N. N., M. Blazhe, I. M. Tiginyanu, and V. E. Tezlevan. "Resonance Raman scattering by excitonic polaritons in CuGaS2." Optics and Spectroscopy 92, no. 3 (March 2002): 395–401. http://dx.doi.org/10.1134/1.1465466.
Full textSyrbu, N. N., M. Blaje, V. E. Tezlevan, and V. V. Ursaki. "Spatial dispersion in polariton spectra of CuGaS2 crystals." Optics and Spectroscopy 92, no. 3 (March 2002): 402–8. http://dx.doi.org/10.1134/1.1465467.
Full textLiu, Zhongping, Qiaoyan Hao, Rui Tang, Linlin Wang, and Kaibin Tang. "Facile one-pot synthesis of polytypic CuGaS2 nanoplates." Nanoscale Research Letters 8, no. 1 (2013): 524. http://dx.doi.org/10.1186/1556-276x-8-524.
Full textHu, J. Q., B. Deng, C. R. Wang, K. B. Tang, and Y. T. Qian. "Hydrothermal preparation of CuGaS2 crystallites with different morphologies." Solid State Communications 121, no. 9-10 (March 2002): 493–96. http://dx.doi.org/10.1016/s0038-1098(01)00516-6.
Full textOh, Nuri, Logan P. Keating, Gryphon A. Drake, and Moonsub Shim. "CuGaS2–CuInE2 (E = S, Se) Colloidal Nanorod Heterostructures." Chemistry of Materials 31, no. 6 (February 27, 2019): 1973–80. http://dx.doi.org/10.1021/acs.chemmater.8b04769.
Full textSusaki, Masami, Hiromichi Horinaka, and Nobuyuki Yamamoto. "Photoconductivity Decay Characteristics of Undoped p-Type CuGaS2." Japanese Journal of Applied Physics 31, Part 1, No. 2A (February 15, 1992): 301–4. http://dx.doi.org/10.1143/jjap.31.301.
Full textOtoma, Hiromi, Tohru Honda, Kazuhiko Hara, Junji Yoshino, and Hiroshi Kukimoto. "Growth of CuGaS2 by alternating-source-feeding MOVPE." Journal of Crystal Growth 115, no. 1-4 (December 1991): 807–10. http://dx.doi.org/10.1016/0022-0248(91)90850-5.
Full textCaudillo-Flores, Uriel, Anna Kubacka, Taisiia Berestok, Ting Zhang, Jordi Llorca, Jordi Arbiol, Andreu Cabot, and Marcos Fernández-García. "Hydrogen photogeneration using ternary CuGaS2-TiO2-Pt nanocomposites." International Journal of Hydrogen Energy 45, no. 3 (January 2020): 1510–20. http://dx.doi.org/10.1016/j.ijhydene.2019.11.019.
Full textZalewski, W., R. Bacewicz, J. Antonowicz, S. Schorr, C. Streeck, and B. Korzun. "Local structure of Mn dopants in CuAlS2and CuGaS2." physica status solidi (a) 205, no. 10 (October 2008): 2428–36. http://dx.doi.org/10.1002/pssa.200723587.
Full textHan, Miaomiao, Xiaoli Zhang, and Z. Zeng. "The investigation of transition metal doped CuGaS2 for promising intermediate band materials." RSC Adv. 4, no. 107 (2014): 62380–86. http://dx.doi.org/10.1039/c4ra10007g.
Full textWei, Yaowei, Daming Zhuang, Ming Zhao, Ning Zhang, Xinping Yu, Xinchen Li, Xunyan Lyu, Chen Wang, and Lan Hu. "Fabrication of in-situ Ti-doped CuGaS2 thin films for intermediate band solar cell applications by sputtering with CuGaS2:Ti targets." Vacuum 169 (November 2019): 108921. http://dx.doi.org/10.1016/j.vacuum.2019.108921.
Full textZheng, Wen-Chen, Hui-Ning Dong, Sheng Tang, and Jian Zi. "Zero-field Splitting and Local Lattice Distortions for Fe3+ Ions in Some Ib-IIIb-VI2 Semiconductors." Zeitschrift für Naturforschung A 59, no. 1-2 (February 1, 2004): 100–102. http://dx.doi.org/10.1515/zna-2004-1-215.
Full text