To see the other types of publications on this topic, follow the link: CuGaS2.

Journal articles on the topic 'CuGaS2'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'CuGaS2.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Son, Namgyu, Jun Heo, Young-Sang Youn, Youngsoo Kim, Jeong Do, and Misook Kang. "Enhancement of Hydrogen Productions by Accelerating Electron-Transfers of Sulfur Defects in the CuS@CuGaS2 Heterojunction Photocatalysts." Catalysts 9, no. 1 (January 4, 2019): 41. http://dx.doi.org/10.3390/catal9010041.

Full text
Abstract:
CuS and CuGaS2 heterojunction catalysts were used to improve hydrogen production performance by photo splitting of methanol aqueous solution in the visible region in this study. CuGaS2, which is a chalcogenide structure, can form structural defects to promote separation of electrons and holes and improve visible light absorbing ability. The optimum catalytic activity of CuGaS2 was investigated by varying the heterojunction ratio of CuGaS2 with CuS. Physicochemical properties of CuS, CuGaS2 and CuS@CuGaS2 nanoparticles were confirmed by X-ray diffraction, ultraviolet visible spectroscopy, high-resolution transmission electron microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. Compared with pure CuS, the hydrogen production performance of CuGaS2 doped with Ga dopant was improved by methanol photolysis, and the photoactivity of the heterogeneous CuS@CuGaS2 catalyst was increased remarkably. Moreover, the 0.5CuS@1.5CuGaS2 catalyst produced 3250 μmol of hydrogen through photolysis of aqueous methanol solution under 10 h UV light irradiation. According to the intensity modulated photovoltage spectroscopy (IMVS) results, the high photoactivity of the CuS@CuGaS2 catalyst is attributed to the inhibition of recombination between electron-hole pairs, accelerating electron-transfer by acting as a trap site at the interface between CuGaS2 structural defects and the heterojunction.
APA, Harvard, Vancouver, ISO, and other styles
2

Miyake, Hideto, Moriki Hata, and Koichi Sugiyama. "Solution growth of CuGaS2 and CuGaSe2 using CuI solvent." Journal of Crystal Growth 130, no. 3-4 (June 1993): 383–88. http://dx.doi.org/10.1016/0022-0248(93)90523-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ullah, Shafi, Miguel Mollar, and Bernabé Marí. "Electrodeposition of CuGaSe2 and CuGaS2 thin films for photovoltaic applications." Journal of Solid State Electrochemistry 20, no. 8 (May 14, 2016): 2251–57. http://dx.doi.org/10.1007/s10008-016-3237-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Qin, Ming Sheng, Fu Qiang Huang, and Ping Chen. "Wide Spectrum Absorption of CuGaS2 with Intermediate Bands." Applied Mechanics and Materials 148-149 (December 2011): 1558–61. http://dx.doi.org/10.4028/www.scientific.net/amm.148-149.1558.

Full text
Abstract:
The intermediate bands materials CuGa1-xQxS2 (Q = Ge, Sn) were investigated, and the narrow half-filled intermediate bands were successfully introduced into the chalcopyrite CuGaS2 when Ga3+ ion were partially replaced by Ge4+(Sn4+) impurities. The absorption edge of CuGa1-xQxS2 red shifts greatly with the increasing in the doping content due to the form of Ge-4s (Sn-5s) and S-3p hybridization orbits intermediate band, even small Q-doping content(2mol %), considerable red shifts are still achieved. CuGa1-xQxS2 (Q = Ge, Sn) with IBs extend the range of solar spectrum and could be the excellent candidates for the theoretical predictions of enhanced solar cell efficiency.
APA, Harvard, Vancouver, ISO, and other styles
5

Massé, George. "Luminescence of CuGaS2." Journal of Applied Physics 58, no. 2 (July 15, 1985): 930–35. http://dx.doi.org/10.1063/1.336168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Berestok, Taisiia, Pablo Guardia, Sònia Estradé, Jordi Llorca, Francesca Peiró, Andreu Cabot, and Stephanie Brock. "CuGaS2 and CuGaS2–ZnS Porous Layers from Solution-Processed Nanocrystals." Nanomaterials 8, no. 4 (April 5, 2018): 220. http://dx.doi.org/10.3390/nano8040220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jahangirova, S. K., Sh H. Mammadov, G. R. Gurbanov, and O. M. Aliyev. "INTERACTION IN THE SYSTEM CuGaS2–PbGa2S4." Azerbaijan Chemical Journal, no. 1 (March 19, 2019): 46–49. http://dx.doi.org/10.32737/0005-2531-2019-1-46-49.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Grechenkov, Jurij, Aleksejs Gopejenko, Dmitry Bocharov, Inta Isakoviča, Anatoli I. Popov, Mikhail G. Brik, and Sergei Piskunov. "Ab Initio Modeling of CuGa1−xInxS2, CuGaS2(1−x)Se2x and Ag1−xCuxGaS2 Chalcopyrite Solid Solutions for Photovoltaic Applications." Energies 16, no. 12 (June 20, 2023): 4823. http://dx.doi.org/10.3390/en16124823.

Full text
Abstract:
Chalcopyrites are ternary semiconductor compounds with successful applications in photovoltaics. Certain chalcopyrites are well researched, yet others remain understudied despite showing promise. In this study, we use ab initio methods to study CuGaS2, AgGaS2, and CuGaSe2 chalcopyrites with a focus on their less studied solid solutions. We use density functional theory (DFT) to study the effects that atomic configurations have on the properties of a solid solution and we calculate the optical absorption spectra using a many-body perturbation theory. Our theoretical simulations predict that excess of In and Se in the solid solutions leads to narrowing of the band gap and to the broadening of the absorption spectra. Obtained results show promise for possible photovoltaic applications, as well as developed methodology can be used for further study of other promising chalcopyritic compounds.
APA, Harvard, Vancouver, ISO, and other styles
9

Syrbu, N. N., L. L. Nemerenco, V. N. Bejan, and V. E. Tezlevan. "Bound exciton in CuGaS2." Optics Communications 280, no. 2 (December 2007): 387–92. http://dx.doi.org/10.1016/j.optcom.2007.08.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shirakata, Sho, Kazuo Murakami, and Shigehiro Isomura. "Electroreflectance Studies in CuGaS2." Japanese Journal of Applied Physics 28, Part 1, No. 9 (September 20, 1989): 1728–29. http://dx.doi.org/10.1143/jjap.28.1728.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Bodnar, I. V., G. F. Smirnova, A. G. Karoza, and A. P. Chernyakova. "Vibrational Spectra of CuGaS2 and CuGaSe2 Compounds and CuGaS2xSe2(1−x) Solid Solutions2)." physica status solidi (b) 158, no. 2 (April 1, 1990): 469–74. http://dx.doi.org/10.1002/pssb.2221580207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Hase, Shunnosuke, Yoshiki Iso, and Tetsuhiko Isobe. "Bandgap-tuned fluorescent CuGaS2/ZnS core/shell quantum dots for photovoltaic applications." Journal of Materials Chemistry C 10, no. 9 (2022): 3523–30. http://dx.doi.org/10.1039/d1tc05358b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Massé, G. "Time resolved spectra in CuGaS2." physica status solidi (a) 87, no. 2 (February 16, 1985): K171—K173. http://dx.doi.org/10.1002/pssa.2210870254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Kobayashi, Satoshi, Futao Kaneko, Takeo Maruyama, Nozomu Tsuboi, and Hitoshi Tamura. "ZnyCd1-yS-CuGaS2 heterojunction diode." Electronics and Communications in Japan (Part II: Electronics) 74, no. 10 (1991): 73–81. http://dx.doi.org/10.1002/ecjb.4420741008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Keating, Logan, and Moonsub Shim. "Mechanism of morphology variations in colloidal CuGaS2 nanorods." Nanoscale Advances 3, no. 18 (2021): 5322–31. http://dx.doi.org/10.1039/d1na00434d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Elalfy, Loay, Denis Music, and Ming Hu. "First Principles Investigation of Anomalous Pressure-Dependent Thermal Conductivity of Chalcopyrites." Materials 12, no. 21 (October 25, 2019): 3491. http://dx.doi.org/10.3390/ma12213491.

Full text
Abstract:
The effect of compression on the thermal conductivity of CuGaS2, CuInS2, CuInTe2, and AgInTe2 chalcopyrites (space group I-42d) was studied at 300 K using phonon Boltzmann transport equation (BTE) calculations. The thermal conductivity was evaluated by solving the BTE with harmonic and third-order interatomic force constants. The thermal conductivity of CuGaS2 increases with pressure, which is a common behavior. Striking differences occur for the other three compounds. CuInTe2 and AgInTe2 exhibit a drop in the thermal conductivity upon increasing pressure, which is anomalous. AgInTe2 reaches a very low thermal conductivity of 0.2 W·m−1·K−1 at 2.6 GPa, being beneficial for many energy devices, such as thermoelectrics. CuInS2 is an intermediate case. Based on the phonon dispersion data, the phonon frequencies of the acoustic modes for CuInTe2 and AgInTe2 decrease with increasing pressure, thereby driving the anomaly, while there is no significant pressure effect for CuGaS2. This leads to the negative Grüneisen parameter for CuInTe2 and AgInTe2, a decreased phonon relaxation time, and a decreased thermal conductivity. This softening of the acoustic modes upon compression is suggested to be due to a rotational motion of the chalcopyrite building blocks rather than a compressive oscillation. The negative Grüneisen parameters and the anomalous phonon behavior yield a negative thermal expansion coefficient at lower temperatures, based on the Grüneisen vibrational theory.
APA, Harvard, Vancouver, ISO, and other styles
17

Nuriyev, Mubariz. "Electron Diffraction Study of CuGaS2 Film." Physical Science International Journal 5, no. 3 (January 10, 2015): 165–71. http://dx.doi.org/10.9734/psij/2015/12881.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Botha, J. R., M. S. Branch, A. W. R. Leitch, and J. Weber. "Radiative defects in CuGaS2 thin films." Physica B: Condensed Matter 340-342 (December 2003): 923–27. http://dx.doi.org/10.1016/j.physb.2003.09.203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Syrbu, N. N., L. L. Nemerenco, and V. E. Tezlevan. "Resonance impurity radiation in CuGaS2 crystals." Optical Materials 30, no. 3 (November 2007): 451–56. http://dx.doi.org/10.1016/j.optmat.2006.12.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

MARUSHKO, L. P., Y. E. ROMANYUK, L. V. PISKACH PISKACH, O. V. PARASYUK, I. D. OLEKSEYUK, S. V. VOLKOV, and V. I. PEKHNYO. "The reciprocal system CuGaS2+CuInSe2DCuGaSe2+CuInS2." Chemistry of Metals and Alloys 3, no. 1/2 (2010): 18–23. http://dx.doi.org/10.30970/cma3.0112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Marushko, L. P., L. V. Piskach, Y. E. Romanyuk, O. V. Parasyuk, I. D. Olekseyuk, S. V. Volkov, and V. I. Pekhnyo. "Quasi-ternary system CuGaS2–CuInS2–2CdS." Journal of Alloys and Compounds 492, no. 1-2 (March 2010): 184–89. http://dx.doi.org/10.1016/j.jallcom.2009.11.171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Kim, Myeongok, Nazmul Ahsan, Zacharie Jehl, Yudania Sánchez, and Yoshitaka Okada. "Properties of sputter-grown CuGaS2 absorber and CuGaS2/Cd1-xZnxS buffer heterointerface for solar cell application." Thin Solid Films 743 (February 2022): 139063. http://dx.doi.org/10.1016/j.tsf.2021.139063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Han, M. M., X. L. Zhang, and Z. Zeng. "Sn doping induced intermediate band in CuGaS2." RSC Advances 6, no. 112 (2016): 110511–16. http://dx.doi.org/10.1039/c6ra16855h.

Full text
Abstract:
As an intermediate band material, the dynamical and phase stability and optoelectronic properties of Sn doped CuGaS2 are systematically investigated, and suggest that CuGaS2 that is moderately doped with Sn can be a potential candidate for photovoltaic applications.
APA, Harvard, Vancouver, ISO, and other styles
24

Shirakata, Sho, and Shigehiro Isomura. "Yb-Related Photoluminescence in CuGaS2, AgGaSe2and AgGaS2." Japanese Journal of Applied Physics 37, Part 1, No. 3A (March 15, 1998): 776–80. http://dx.doi.org/10.1143/jjap.37.776.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Metzner, H., Th Hahn, J. Cieslak, U. Grossner, U. Reislöhner, W. Witthuhn, R. Goldhahn, J. Eberhardt, G. Gobsch, and J. Kräußlich. "Epitaxial growth of CuGaS2 on Si(111)." Applied Physics Letters 81, no. 1 (July 2002): 156–58. http://dx.doi.org/10.1063/1.1492003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Abdullaev, N. A., Kh V. Aliguliyeva, L. N. Aliyeva, I. Qasimoglu, and T. G. Kerimova. "Low-temperature conductivity in CuGaS2 single crystals." Semiconductors 49, no. 4 (April 2015): 428–31. http://dx.doi.org/10.1134/s1063782615040028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Choi, In-Hwan, Sung-Hwan Eom, and Peter Y. Yu. "Dispersion of birefringence in AgGaS2 and CuGaS2." Journal of Applied Physics 82, no. 6 (September 15, 1997): 3100–3104. http://dx.doi.org/10.1063/1.366150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Botha, J. R., M. S. Branch, A. G. Chowles, A. W. R. Leitch, and J. Weber. "Photoluminescence of vacuum-deposited CuGaS2 thin films." Physica B: Condensed Matter 308-310 (December 2001): 1065–68. http://dx.doi.org/10.1016/s0921-4526(01)00848-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Cieslak, J., H. Metzner, Th Hahn, U. Reislöhner, U. Kaiser, J. Kräußlich, and W. Witthuhn. "Microstructure of epitaxial CuGaS2 on Si(111)." Journal of Physics and Chemistry of Solids 64, no. 9-10 (September 2003): 1777–80. http://dx.doi.org/10.1016/s0022-3697(03)00197-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Branch, M. S., P. R. Berndt, J. R. Botha, A. W. R. Leitch, and J. Weber. "Structure and morphology of CuGaS2 thin films." Thin Solid Films 431-432 (May 2003): 94–98. http://dx.doi.org/10.1016/s0040-6090(03)00208-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Julien, C., and S. Barnier. "Properties of several varieties of CuGaS2 microcrystals." Materials Science and Engineering: B 86, no. 2 (September 2001): 152–56. http://dx.doi.org/10.1016/s0921-5107(01)00678-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Tanaka, K., H. Uchiki, S. Iida, T. Terasako, and S. Shirakata. "Biexciton luminescence from CuGaS2 bulk single crystals." Solid State Communications 114, no. 4 (March 2000): 197–201. http://dx.doi.org/10.1016/s0038-1098(00)00035-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Sainctavit, Ph, J. Petiau, A. M. Flank, J. Ringeissen, and S. Lewonczuk. "XANES in chalcopyrites semiconductors: CuFeS2, CuGaS2, CuInSe2." Physica B: Condensed Matter 158, no. 1-3 (June 1989): 623–24. http://dx.doi.org/10.1016/0921-4526(89)90413-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Sudarsan, V., and S. K. Kulshreshtha. "Low temperature synthesis of the semiconductor CuGaS2." Materials Chemistry and Physics 49, no. 2 (June 1997): 146–49. http://dx.doi.org/10.1016/s0254-0584(97)01875-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Castellanos Águila, J. E., P. Palacios, J. C. Conesa, J. Arriaga, and P. Wahnón. "Electronic band alignment at CuGaS2 chalcopyrite interfaces." Computational Materials Science 121 (August 2016): 79–85. http://dx.doi.org/10.1016/j.commatsci.2016.04.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Tinoco, T., J. P. Itié, A. Polian, A. San Miguel, E. Moya, P. Grima, J. Gonzalez, and F. Gonzalez. "Combined x-ray absorption and x-ray diffraction studies of CuGaS2, CuGaSe2, CuFeS2 and CuFeSe2 under high pressure." Le Journal de Physique IV 04, no. C9 (November 1994): C9–151—C9–154. http://dx.doi.org/10.1051/jp4:1994923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Susaki, Masami, Kazuki Wakita, and Nobuyuki Yamamoto. "Luminescence of Mixed-Mode Exciton-Polariton in CuGaS2." Japanese Journal of Applied Physics 38, Part 1, No. 5A (May 15, 1999): 2787–91. http://dx.doi.org/10.1143/jjap.38.2787.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Miyake, Hideto, and Koichi Sugiyama. "Phase Diagram of the CuGaS2-In Pseudobinary System." Japanese Journal of Applied Physics 29, Part 2, No. 6 (June 20, 1990): L998—L1000. http://dx.doi.org/10.1143/jjap.29.l998.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Syrbu, N. N., M. Blazhe, I. M. Tiginyanu, and V. E. Tezlevan. "Resonance Raman scattering by excitonic polaritons in CuGaS2." Optics and Spectroscopy 92, no. 3 (March 2002): 395–401. http://dx.doi.org/10.1134/1.1465466.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Syrbu, N. N., M. Blaje, V. E. Tezlevan, and V. V. Ursaki. "Spatial dispersion in polariton spectra of CuGaS2 crystals." Optics and Spectroscopy 92, no. 3 (March 2002): 402–8. http://dx.doi.org/10.1134/1.1465467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Liu, Zhongping, Qiaoyan Hao, Rui Tang, Linlin Wang, and Kaibin Tang. "Facile one-pot synthesis of polytypic CuGaS2 nanoplates." Nanoscale Research Letters 8, no. 1 (2013): 524. http://dx.doi.org/10.1186/1556-276x-8-524.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Hu, J. Q., B. Deng, C. R. Wang, K. B. Tang, and Y. T. Qian. "Hydrothermal preparation of CuGaS2 crystallites with different morphologies." Solid State Communications 121, no. 9-10 (March 2002): 493–96. http://dx.doi.org/10.1016/s0038-1098(01)00516-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Oh, Nuri, Logan P. Keating, Gryphon A. Drake, and Moonsub Shim. "CuGaS2–CuInE2 (E = S, Se) Colloidal Nanorod Heterostructures." Chemistry of Materials 31, no. 6 (February 27, 2019): 1973–80. http://dx.doi.org/10.1021/acs.chemmater.8b04769.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Susaki, Masami, Hiromichi Horinaka, and Nobuyuki Yamamoto. "Photoconductivity Decay Characteristics of Undoped p-Type CuGaS2." Japanese Journal of Applied Physics 31, Part 1, No. 2A (February 15, 1992): 301–4. http://dx.doi.org/10.1143/jjap.31.301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Otoma, Hiromi, Tohru Honda, Kazuhiko Hara, Junji Yoshino, and Hiroshi Kukimoto. "Growth of CuGaS2 by alternating-source-feeding MOVPE." Journal of Crystal Growth 115, no. 1-4 (December 1991): 807–10. http://dx.doi.org/10.1016/0022-0248(91)90850-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Caudillo-Flores, Uriel, Anna Kubacka, Taisiia Berestok, Ting Zhang, Jordi Llorca, Jordi Arbiol, Andreu Cabot, and Marcos Fernández-García. "Hydrogen photogeneration using ternary CuGaS2-TiO2-Pt nanocomposites." International Journal of Hydrogen Energy 45, no. 3 (January 2020): 1510–20. http://dx.doi.org/10.1016/j.ijhydene.2019.11.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Zalewski, W., R. Bacewicz, J. Antonowicz, S. Schorr, C. Streeck, and B. Korzun. "Local structure of Mn dopants in CuAlS2and CuGaS2." physica status solidi (a) 205, no. 10 (October 2008): 2428–36. http://dx.doi.org/10.1002/pssa.200723587.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Han, Miaomiao, Xiaoli Zhang, and Z. Zeng. "The investigation of transition metal doped CuGaS2 for promising intermediate band materials." RSC Adv. 4, no. 107 (2014): 62380–86. http://dx.doi.org/10.1039/c4ra10007g.

Full text
Abstract:
Metal (Fe, Co and Ni) doped CuGaS2 systems are systematically investigated by using a screened-exchange hybrid density functional theory, which shows that Fe and Ni doped CuGaS2 systems are potential candidates for the photovoltaic area.
APA, Harvard, Vancouver, ISO, and other styles
49

Wei, Yaowei, Daming Zhuang, Ming Zhao, Ning Zhang, Xinping Yu, Xinchen Li, Xunyan Lyu, Chen Wang, and Lan Hu. "Fabrication of in-situ Ti-doped CuGaS2 thin films for intermediate band solar cell applications by sputtering with CuGaS2:Ti targets." Vacuum 169 (November 2019): 108921. http://dx.doi.org/10.1016/j.vacuum.2019.108921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Zheng, Wen-Chen, Hui-Ning Dong, Sheng Tang, and Jian Zi. "Zero-field Splitting and Local Lattice Distortions for Fe3+ Ions in Some Ib-IIIb-VI2 Semiconductors." Zeitschrift für Naturforschung A 59, no. 1-2 (February 1, 2004): 100–102. http://dx.doi.org/10.1515/zna-2004-1-215.

Full text
Abstract:
The EPR zero-field splitting D for Fe3+ ions in some Ib-IIIb-VI2 semiconductors is calculated with the superposition model. The calculated D values, when using the local rotation angles τ (Fe3+) for Fe3+ in CuGaS2 and AgGaS2 crystals, are consistent with the observed values, whereas for Fe3+ in CuAlS2 crystal they are not. The calculated results are discussed. The local lattice distortions except the local rotation angles τ for Fe3+ in CuAlS2 are suggested.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography