Academic literature on the topic 'CuGaS2'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'CuGaS2.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "CuGaS2"

1

Son, Namgyu, Jun Heo, Young-Sang Youn, Youngsoo Kim, Jeong Do, and Misook Kang. "Enhancement of Hydrogen Productions by Accelerating Electron-Transfers of Sulfur Defects in the CuS@CuGaS2 Heterojunction Photocatalysts." Catalysts 9, no. 1 (January 4, 2019): 41. http://dx.doi.org/10.3390/catal9010041.

Full text
Abstract:
CuS and CuGaS2 heterojunction catalysts were used to improve hydrogen production performance by photo splitting of methanol aqueous solution in the visible region in this study. CuGaS2, which is a chalcogenide structure, can form structural defects to promote separation of electrons and holes and improve visible light absorbing ability. The optimum catalytic activity of CuGaS2 was investigated by varying the heterojunction ratio of CuGaS2 with CuS. Physicochemical properties of CuS, CuGaS2 and CuS@CuGaS2 nanoparticles were confirmed by X-ray diffraction, ultraviolet visible spectroscopy, high-resolution transmission electron microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. Compared with pure CuS, the hydrogen production performance of CuGaS2 doped with Ga dopant was improved by methanol photolysis, and the photoactivity of the heterogeneous CuS@CuGaS2 catalyst was increased remarkably. Moreover, the 0.5CuS@1.5CuGaS2 catalyst produced 3250 μmol of hydrogen through photolysis of aqueous methanol solution under 10 h UV light irradiation. According to the intensity modulated photovoltage spectroscopy (IMVS) results, the high photoactivity of the CuS@CuGaS2 catalyst is attributed to the inhibition of recombination between electron-hole pairs, accelerating electron-transfer by acting as a trap site at the interface between CuGaS2 structural defects and the heterojunction.
APA, Harvard, Vancouver, ISO, and other styles
2

Miyake, Hideto, Moriki Hata, and Koichi Sugiyama. "Solution growth of CuGaS2 and CuGaSe2 using CuI solvent." Journal of Crystal Growth 130, no. 3-4 (June 1993): 383–88. http://dx.doi.org/10.1016/0022-0248(93)90523-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ullah, Shafi, Miguel Mollar, and Bernabé Marí. "Electrodeposition of CuGaSe2 and CuGaS2 thin films for photovoltaic applications." Journal of Solid State Electrochemistry 20, no. 8 (May 14, 2016): 2251–57. http://dx.doi.org/10.1007/s10008-016-3237-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Qin, Ming Sheng, Fu Qiang Huang, and Ping Chen. "Wide Spectrum Absorption of CuGaS2 with Intermediate Bands." Applied Mechanics and Materials 148-149 (December 2011): 1558–61. http://dx.doi.org/10.4028/www.scientific.net/amm.148-149.1558.

Full text
Abstract:
The intermediate bands materials CuGa1-xQxS2 (Q = Ge, Sn) were investigated, and the narrow half-filled intermediate bands were successfully introduced into the chalcopyrite CuGaS2 when Ga3+ ion were partially replaced by Ge4+(Sn4+) impurities. The absorption edge of CuGa1-xQxS2 red shifts greatly with the increasing in the doping content due to the form of Ge-4s (Sn-5s) and S-3p hybridization orbits intermediate band, even small Q-doping content(2mol %), considerable red shifts are still achieved. CuGa1-xQxS2 (Q = Ge, Sn) with IBs extend the range of solar spectrum and could be the excellent candidates for the theoretical predictions of enhanced solar cell efficiency.
APA, Harvard, Vancouver, ISO, and other styles
5

Massé, George. "Luminescence of CuGaS2." Journal of Applied Physics 58, no. 2 (July 15, 1985): 930–35. http://dx.doi.org/10.1063/1.336168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Berestok, Taisiia, Pablo Guardia, Sònia Estradé, Jordi Llorca, Francesca Peiró, Andreu Cabot, and Stephanie Brock. "CuGaS2 and CuGaS2–ZnS Porous Layers from Solution-Processed Nanocrystals." Nanomaterials 8, no. 4 (April 5, 2018): 220. http://dx.doi.org/10.3390/nano8040220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jahangirova, S. K., Sh H. Mammadov, G. R. Gurbanov, and O. M. Aliyev. "INTERACTION IN THE SYSTEM CuGaS2–PbGa2S4." Azerbaijan Chemical Journal, no. 1 (March 19, 2019): 46–49. http://dx.doi.org/10.32737/0005-2531-2019-1-46-49.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Grechenkov, Jurij, Aleksejs Gopejenko, Dmitry Bocharov, Inta Isakoviča, Anatoli I. Popov, Mikhail G. Brik, and Sergei Piskunov. "Ab Initio Modeling of CuGa1−xInxS2, CuGaS2(1−x)Se2x and Ag1−xCuxGaS2 Chalcopyrite Solid Solutions for Photovoltaic Applications." Energies 16, no. 12 (June 20, 2023): 4823. http://dx.doi.org/10.3390/en16124823.

Full text
Abstract:
Chalcopyrites are ternary semiconductor compounds with successful applications in photovoltaics. Certain chalcopyrites are well researched, yet others remain understudied despite showing promise. In this study, we use ab initio methods to study CuGaS2, AgGaS2, and CuGaSe2 chalcopyrites with a focus on their less studied solid solutions. We use density functional theory (DFT) to study the effects that atomic configurations have on the properties of a solid solution and we calculate the optical absorption spectra using a many-body perturbation theory. Our theoretical simulations predict that excess of In and Se in the solid solutions leads to narrowing of the band gap and to the broadening of the absorption spectra. Obtained results show promise for possible photovoltaic applications, as well as developed methodology can be used for further study of other promising chalcopyritic compounds.
APA, Harvard, Vancouver, ISO, and other styles
9

Syrbu, N. N., L. L. Nemerenco, V. N. Bejan, and V. E. Tezlevan. "Bound exciton in CuGaS2." Optics Communications 280, no. 2 (December 2007): 387–92. http://dx.doi.org/10.1016/j.optcom.2007.08.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shirakata, Sho, Kazuo Murakami, and Shigehiro Isomura. "Electroreflectance Studies in CuGaS2." Japanese Journal of Applied Physics 28, Part 1, No. 9 (September 20, 1989): 1728–29. http://dx.doi.org/10.1143/jjap.28.1728.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "CuGaS2"

1

Branch, Matthew Stewart. "Epitaxial growth and characterisation of CuGaS2." Thesis, Nelson Mandela Metropolitan University, 2006. http://hdl.handle.net/10948/438.

Full text
Abstract:
In this work, the growth and characterisation of the chalcopyrite semiconductor CuGaS2 is presented. The purpose of this study is to gain a better understanding of the defect chemistry of this class of materials through a systematic study relating the structural and optical properties to the composition of thin films grown by metalorganic vapour phase epitaxy. Details associated with the optimisation of the growth process are presented in a format relating the changes in the composition and morphology to variations in the growth process. The structural properties of thin films grown on GaAs(001) substrates are described. A dominance of polycrystalline growth is found to occur for Cu-rich material, whereas near-stoichiometric to Ga-rich material is typified by epitaxial growth. Secondary phases are identified by X-ray diffractometry and Raman spectroscopy for severely non-stoichiometric material. In some cases, the formation of the cubic zincblende and CuPt polytype of CuGaS2 are identified by transmission electron microscopy. It will be shown that changes in the Cu/Ga ratio of the solid strongly influence the photoluminescence response of the layers. Weak excitonic luminescence is observed for both slightly Ga-rich and Cu-rich material. Near stoichiometric layers exhibit luminescence centered at ~2.4 eV. Cu-rich layers are dominated by a line occurring at ~2.1 eV, whereas a different line at ~2.25 eV dominates for Ga-rich layers. A clear picture emerges of the radiative mechanisms dominating for Cu-rich and Ga-rich layers.
APA, Harvard, Vancouver, ISO, and other styles
2

Movaghgharnezhad, Shirin. "Electrodeposition of CuGaS2 from Aqueous and Non-aqueous Electrolyte Mixtures." OpenSIUC, 2017. https://opensiuc.lib.siu.edu/theses/2251.

Full text
Abstract:
Shirin Movaghgharnezhad for the master of science degree in mechanical engineering, presented on November 6, 2017, at Southern Illinois University Carbondale. TITLE: Electrodeposition of CuGaS2 from Aqueous and Non-Aqueous Electrolyte Mixtures MAJOR PROFESSOR: Dr. Ian I. Suni Electrodeposition of CuGaS2 from aqueous and non-aqueous electrolyte mixtures is reported in this work. Acetonitrile complexation is used to shift the reduction potential of Cu (II) in the cathodic direction. With the presence of 50% acetonitrile, the difference between the peak reduction currents of Cu (II) and Ga (III) during cyclic voltammetry is only 140 mV, whereas the standard reduction potentials of the individual components in aqueous electrolytes differ by 870 mV. When all components are present in the electrolyte, a new reduction peak obtained in cyclic voltammograms at −260 mV and pH 2.7 that is anodically shifted relative to the cathodic peaks when only one component is present. According to the composition, and morphology analysis at deposition potential -260 mV vs. Ag/AgCl for 15 minutes from aqueous and non-aqueous solutions of 10 mM Ga(NO3)3, 0.5 CuSO4, 1 mM Na2S, 100 mM LiClO4 and a 50-50 mixture of water and acetonitrile at pH 2.7 was found to be the optimum condition to obtain stoichiometric CuGaS2 thin films. In addition, oxygen incorporation in the electrodeposit is observed, because electrodeposition of stoichiometric CuGaS2 appears to be immediately followed by Ga oxidation. The sample were annealed at temperature 300°C in Ar atmosphere for 2 hours to improve crystallinity and reduce the extent of oxidation. Thin film analysis by EDX, top-view SEM, and also cross-sectional SEM were also performed to determine the elemental ratio of Cu:Ga:S, thin film morphology, and thin film thickness, respectively. This material has potential application in solar cells. The EDX analysis of copper gallium sulfide thin films at different potentials and different gallium solution phase concentration were also performed.
APA, Harvard, Vancouver, ISO, and other styles
3

Capet, Frédéric. "Évolution sous pression hydrostatique des propriétés structurales, optiques et électroniques du semi-conducteur ternaire : cugas2." Lille 1, 1995. http://www.theses.fr/1995LIL10148.

Full text
Abstract:
Le travail présente consiste en l'étude d'un semi-conducteur ternaire: CuGaS2. La famille de la chalcopyrite dont fait partie ce compose suscite, à l'heure actuelle, un intérêt grandissant compte tenu des applications possibles dans le domaine de l'optique non linéaire, des détecteurs photovoltaïques et des cellules solaires. En dépit d'une grande similitude structurale entre CuGaS2 et son analogue binaire (ZnS), la largeur de la bande interdite du compose ternaire est notablement plus faible. A partir de mesures de l'absorption optique, nous montrons l'évolution, sous pression hydrostatique, de cette anomalie du gap. Par diffraction des rayons x sur monocristaux, nous avons étudié la structure cristalline, sous pression, du compose ternaire et mis en évidence les différences essentielles qui résident entre les composes binaire et ternaire : (1) la substitution de l'atome de zinc par alternativement du cuivre et du gallium crée des liaisons différentes avec un changement dans l'électronégativité des ions. (2) Du fait de cette disparité des ions, l'atome chalcogène se trouve déplace de sa position spéciale. (3) Enfin, apparaît une distorsion tétragonale. L'origine de l'anomalie du gap a été attribuée principalement à une hybridation p-d entre les électrons p du soufre et les électrons d du cuivre. Une analyse multipolaire de la distribution de la densité électronique nous a permis de comparer les liaisons Ga-S et Cu-S.
APA, Harvard, Vancouver, ISO, and other styles
4

Meeder, Alexander. "Defektspektroskopie an CuGaSe2 aus der halogenunterstützten Gasphasenabscheidung." [S.l.] : [s.n.], 2004. http://www.diss.fu-berlin.de/2004/15/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gerhard, Andreas. "Elektrische Defektspektroskopie an CuGaSe2 und verwandten Halbleiterdünnschichten." [S.l. : s.n.], 2000. http://www.diss.fu-berlin.de/2000/142/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fischer, Daniel. "Eigenschaften von CuGaSe2-Dünnschichten hergestellt mit chemischer Gasphasenabscheidung." [S.l. : s.n.], 2000. http://www.diss.fu-berlin.de/2001/27/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Klenk, Markus. "CuGaSe2-Absorberschichten aus mehrstufigen Prozessen : Materialcharakterisierung und Solarzellenherstellung /." [S.l. : s.n.], 2001. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB9673658.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Schuler, Steffen. "Transporteigenschaften und Defekte in polykristallinen CuGaSe2-Schichten und Heterostrukturen." [S.l. : s.n.], 2002. http://www.diss.fu-berlin.de/2002/294/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schmid, Martina [Verfasser]. "Optik der CuGaSe2-Solarzelle für hocheffiziente Tandemkonzepte / Martina Schmid." Berlin : Freie Universität Berlin, 2010. http://d-nb.info/1024006301/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Romain, Nahel. "Caractérisations de couches minces de CuGaSe2 obtenues par MOVCD." Montpellier 2, 1999. http://www.theses.fr/1999MON20203.

Full text
Abstract:
Des echantillons en couches minces de cu xga yse z proches de la stchiometrie de valence (x + 3y 2z) ont ete fabriques par mocvd a partir de trois composes organometalliques. Diverses compositions allant des riches en cuivre aux riches en gallium ont pu etre analysees et caracterisees. Quelque soit la composition, une forte orientation preferentielle est observee dans la direction 112. La structure cristalline et la largeur de bande interdite du cu 2se, du cugase 2, du cuga 3se 5 et du ga 2se 3 fabriques ont ete etablies. Les caracterisations electriques revelent une densite de porteurs elevee. La photoluminescence a permis d'identifier les defauts intrinseques les plus couramment observes. Par spectrophotometrie, il a ete possible de determiner l'epaisseur, les indices n et k des couches, ainsi que d'evaluer les seuils des transitions a, b, c et leurs types.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "CuGaS2"

1

Cugat. Madrid: Ediciones del Imán, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dānā cugate murage. Dillī: Satsāhitya Prakāśana, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Juan, Poch Soler, ed. Cugat vivió. Barcelona: Tibidabo Actualidad, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cauhāna, Haramana. Haṃsā cugai kaṅkaṛa. Dillī: Jñāna Bhāratī, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Aspiroz, J. Muniz. Sant Cugat geothermal project. Luxembourg: Commission of the European Communities, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

San Cugat del Vallés (Spain). Ajuntament. Sant Cugat del Vallès. Edited by Marrodán Paz. 2nd ed. Sant Cugat del Vallès: Ajuntament de San Cugat, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Garrod, Charles. Xavier Cugat and his orchestra. Zephyrhills, Fla. (Box 1687, Zephyrhills 33539): Joyce Record Club, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Riera, Josep Maria. Sant Cugat i Marràqueix: Terres d'artistes. Cerdanyola del Vallès: Editorial Montflorit, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Outlaw, Adam. Papa Joe Cugan and a bit of Americana. Mountain Brook, Ala: Outlaw Design and Development, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Joan, Troyano Cussó, Sant Cugat del Vallés (Spain) Ajuntament, and Museu de Sant Cugat, eds. Sant Cugat del Vallès: Recull gràfic, 1880-1965. El Papiol (Baix Llobregat): Efadós, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "CuGaS2"

1

Rössler, U. "CuGaS2: force constants." In New Data and Updates for several Semiconductors with Chalcopyrite Structure, for several II-VI Compounds and diluted magnetic IV-VI Compounds, 35–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-28531-8_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rössler, U. "CuGaS2: complex refractive index." In New Data and Updates for several Semiconductors with Chalcopyrite Structure, for several II-VI Compounds and diluted magnetic IV-VI Compounds, 37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-28531-8_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Karwasara, Hansraj, Karina Khan, Aditi Gaur, Amit Soni, K. C. Bhamu, and Jagrati Sahariya. "Optoelectronic Analysis of CuGaS2-Based Flexible Thin Film Solar Cell: First Principle Investigation." In Lecture Notes in Electrical Engineering, 547–52. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0588-9_53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Khan, Karina, Aditi Gaur, Amit Soni, U. Ahuja, and J. Sahariya. "Revealing Structural and Optoelectronic Properties for Bi-Doped CuGaS2 Chalcopyrite: A Density Functional Investigation." In Emerging Technologies for Smart Cities, 171–77. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1550-4_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rössler, U. "CuGaSe2: total energy." In New Data and Updates for several Semiconductors with Chalcopyrite Structure, for several II-VI Compounds and diluted magnetic IV-VI Compounds, 38–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-28531-8_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rössler, U. "CuGaSe2: force constants." In New Data and Updates for several Semiconductors with Chalcopyrite Structure, for several II-VI Compounds and diluted magnetic IV-VI Compounds, 40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-28531-8_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rössler, U. "CuGaSe2: extinction coefficient." In New Data and Updates for several Semiconductors with Chalcopyrite Structure, for several II-VI Compounds and diluted magnetic IV-VI Compounds, 41–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-28531-8_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rössler, U. "CuGaTe2: force constants." In New Data and Updates for several Semiconductors with Chalcopyrite Structure, for several II-VI Compounds and diluted magnetic IV-VI Compounds, 43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-28531-8_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rössler, U. "CuGaTe2: extinction coefficient." In New Data and Updates for several Semiconductors with Chalcopyrite Structure, for several II-VI Compounds and diluted magnetic IV-VI Compounds, 44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-28531-8_32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Siebentritt, Susanne. "Shallow Defects in the Wide Gap Chalcopyrite CuGaSe2." In Wide-Gap Chalcopyrites, 113–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-31293-5_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "CuGaS2"

1

Ullah, Shafi, Amal Bouich, Miguel Mollar, Bernabe Mari, Hanif Ullah, and Rahat Ullah. "Synthesis of Ternary CuGaSe2 and CuGaS2 Electrochemical Deposition for Photovoltaic Application." In 2018 6th International Renewable and Sustainable Energy Conference (IRSEC). IEEE, 2018. http://dx.doi.org/10.1109/irsec.2018.8702949.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yu, Liuyang, Yong Xu, and Kegao Liu. "Study on Energy Band-gap Calculation of CuGaS2." In 2015 3rd International Conference on Machinery, Materials and Information Technology Applications. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icmmita-15.2015.173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Singh, Pravesh, Ruchita Gautam, Ajay Singh Verma, and Sarita Kumari. "Modeling and analysis of CuGaS2 thin-film solar cell." In DAE SOLID STATE PHYSICS SYMPOSIUM 2015. Author(s), 2016. http://dx.doi.org/10.1063/1.4948100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Prabukanth, P., G. Harichandran, R. J. Soukup, N. J. Ianno, C. L. Exstrom, S. A. Darveau, and J. Olejnicek. "Self organized nanostructures of vapor phase grown CuGaS2 thin films." In 2009 34th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2009. http://dx.doi.org/10.1109/pvsc.2009.5411249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kumar, Pancham, Jagrati Sahariya, and Amit Soni. "A systematic approach to investigate electronic and optical property of CuGaS2 using DFT." In 2016 IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics Engineering (UPCON). IEEE, 2016. http://dx.doi.org/10.1109/upcon.2016.7894615.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ahsan, Nazmul, Sivaperuman Kalainathan, Naoya Miyashita, Takuya Hoshii, and Yoshitaka Okada. "Multiband Formation in Cr doped CuGaS2 Thin Films Synthesized by Chemical Spray Pyrolysis." In 2017 IEEE 44th Photovoltaic Specialists Conference (PVSC). IEEE, 2017. http://dx.doi.org/10.1109/pvsc.2017.8366569.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Matiev, A. Kh, R. T. Uspazhiev, V. M. Khamkhoev, A. M. Gachaev, Z. S. Torshkhoeva, R. M. Evtieva, L. I. Israilova, S. Kh Umarov, and A. Kh Matiev. "Phasing Diagrams TlGaSe2 - CuGaSe2 and TlInS2 - CuInS2 Systems." In Proceedings of the International Symposium "Engineering and Earth Sciences: Applied and Fundamental Research" dedicated to the 85th anniversary of H.I. Ibragimov (ISEES 2019). Paris, France: Atlantis Press, 2019. http://dx.doi.org/10.2991/isees-19.2019.49.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Islam, Muhammad Monirul, Hajime Shibata, Koji Matsubara, Shigeru Niki, Takeaki Sakurai, and Katsuhiro Akimoto. "Compositional dependence photoluminescence study of polycrystalline CuGaSe2 thin films." In 2015 IEEE 42nd Photovoltaic Specialists Conference (PVSC). IEEE, 2015. http://dx.doi.org/10.1109/pvsc.2015.7355791.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Alias, Afishah, Khairul Anuar Mohamad, Katsuhiro Uesugi, and Hisashi Fukuda. "Electrical and structural characterization of Zn doped CuGaO2 films." In 2013 IEEE Regional Symposium on Micro and Nanoelectronics (RSM). IEEE, 2013. http://dx.doi.org/10.1109/rsm.2013.6706503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Çelik, Ahmet, Uǧur Çevik, Hasan Baltaş, and Emin Bacaksiz. "Determination of Mass Attenuation Coefficients for CuInSe2 and CuGaSe2 Semiconductors." In SIXTH INTERNATIONAL CONFERENCE OF THE BALKAN PHYSICAL UNION. AIP, 2007. http://dx.doi.org/10.1063/1.2733090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography