Journal articles on the topic 'CuFeS2'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'CuFeS2.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Auernik, Kathryne S., and Robert M. Kelly. "Impact of Molecular Hydrogen on Chalcopyrite Bioleaching by the Extremely Thermoacidophilic Archaeon Metallosphaera sedula." Applied and Environmental Microbiology 76, no. 8 (February 26, 2010): 2668–72. http://dx.doi.org/10.1128/aem.02016-09.
Full textChang, Shun-An, Po-Yu Wen, Tsunghsueh Wu, and Yang-Wei Lin. "Microwave-Assisted Synthesis of Chalcopyrite/Silver Phosphate Composites with Enhanced Degradation of Rhodamine B under Photo-Fenton Process." Nanomaterials 10, no. 11 (November 20, 2020): 2300. http://dx.doi.org/10.3390/nano10112300.
Full textWen, Po-Yu, Ting-Yu Lai, Tsunghsueh Wu, and Yang-Wei Lin. "Hydrothermal and Co-Precipitated Synthesis of Chalcopyrite for Fenton-like Degradation toward Rhodamine B." Catalysts 12, no. 2 (January 26, 2022): 152. http://dx.doi.org/10.3390/catal12020152.
Full textYu, Huajian, Jianhua Xu, Yanyan Hu, Huadi Zhang, Cong Zhang, Chengcheng Qiu, Xuping Wang, Bing Liu, Lei Wei, and Jing Li. "Synthesis and characterization of CuFeS2 and Se doped CuFeS2−xSex nanoparticles." Journal of Materials Science: Materials in Electronics 30, no. 13 (May 27, 2019): 12269–74. http://dx.doi.org/10.1007/s10854-019-01586-5.
Full textHu, Junqing, Qingyi Lu, Kaibin Tang, Yitai Qian, Guien Zhou, and Xianming Liu. "A solvothermal reaction route for the synthesis of CuFeS2 ultrafine powder." Journal of Materials Research 14, no. 10 (October 1999): 3870–72. http://dx.doi.org/10.1557/jmr.1999.0523.
Full textMikhailovskii, A. P., A. M. Polubotko, V. D. Prochukhan, and Yu V. Rud. "Gapless State in CuFeS2." physica status solidi (b) 158, no. 1 (March 1, 1990): 229–38. http://dx.doi.org/10.1002/pssb.2221580122.
Full textLiu, Zezhong, Zengxu Liu, Zhen Zhao, Danxia Li, Pengfei Zhang, Yanfang Zhang, Xiangyong Liu, Xiaoteng Ding, and Yuanhong Xu. "Photothermal Regulated Nanozyme of CuFeS2 Nanoparticles for Efficiently Promoting Wound Healing Infected by Multidrug Resistant Bacteria." Nanomaterials 12, no. 14 (July 19, 2022): 2469. http://dx.doi.org/10.3390/nano12142469.
Full textKorzun, Barys, and Anatoly Pushkarev. "XRPD and Scanning Electron Microscopy of Alloys of the CuAlS2 – CuFeS2 System Prepared by Thermobaric Treatment." MRS Advances 3, no. 56 (2018): 3323–28. http://dx.doi.org/10.1557/adv.2018.558.
Full textSugathan, Anumol, Biswajit Bhattacharyya, V. V. R. Kishore, Abhinav Kumar, Guru Pratheep Rajasekar, D. D. Sarma, and Anshu Pandey. "Why Does CuFeS2 Resemble Gold?" Journal of Physical Chemistry Letters 9, no. 4 (January 30, 2018): 696–701. http://dx.doi.org/10.1021/acs.jpclett.7b03190.
Full textKorzun, B. V., A. A. Fadzeyeva, G. Kloess, and K. Bente. "Microstructure of CuFeS2-δ-CuInS2alloys." physica status solidi (c) 6, no. 5 (May 2009): 1055–58. http://dx.doi.org/10.1002/pssc.200881160.
Full textDickens, Christopher, Adam O. J. Kinsella, Matt Watkins, and Matthew Booth. "The Presence of Charge Transfer Defect Complexes in Intermediate Band CuAl1-pFepS2." Crystals 12, no. 12 (December 14, 2022): 1823. http://dx.doi.org/10.3390/cryst12121823.
Full textDizer, Oleg, Kirill Karimov, Aleksei Kritskii, and Denis Rogozhnikov. "Synthetic Sulfide Concentrate Dissolution Kinetics in HNO3 Media." Materials 15, no. 22 (November 17, 2022): 8149. http://dx.doi.org/10.3390/ma15228149.
Full textUsman, Dudi Nasrudin, Sri Widayati, Sriyanti Sriyanti, and Era Setiawan. "Rock Formation Acid Mine Drainage in Epithermal Gold Mineralization, Pandeglang, Banten Province." Journal of Geoscience, Engineering, Environment, and Technology 4, no. 4 (December 30, 2019): 271–76. http://dx.doi.org/10.25299/jgeet.2019.4.4.3903.
Full textBhattacharyya, Biswajit, and Anshu Pandey. "CuFeS2 Quantum Dots and Highly Luminescent CuFeS2 Based Core/Shell Structures: Synthesis, Tunability, and Photophysics." Journal of the American Chemical Society 138, no. 32 (August 4, 2016): 10207–13. http://dx.doi.org/10.1021/jacs.6b04981.
Full textBoon, J. W. "The crystal structure of chalcopyrite (CuFeS2) and AgFeS2: The permutoidic reactions KFeS2 → CuFeS2 and KFeS2 → AgFeS2." Recueil des Travaux Chimiques des Pays-Bas 63, no. 4 (September 3, 2010): 69–80. http://dx.doi.org/10.1002/recl.19440630402.
Full textVardner, Jonathon, Elifsu Gencer, Raymond Farinato, Devarayasamudram Nagaraj, Scott Banta, and Alan West. "(Digital Presentation) Electron Mediators for the Reductive Leaching of Chalcopyrite: Replacing Smelting with Electrolysis for Copper Production." ECS Meeting Abstracts MA2022-01, no. 56 (July 7, 2022): 2359. http://dx.doi.org/10.1149/ma2022-01562359mtgabs.
Full textCheng, Zhiqiang, Xiaoyou Niu, Shenlong Jiang, and Qun Zhang. "State-selective exciton–plasmon interplay in a hybrid WSe2/CuFeS2 nanosystem." Journal of Chemical Physics 156, no. 14 (April 14, 2022): 144701. http://dx.doi.org/10.1063/5.0090467.
Full textNyembwe, Kolela J., Elvis Fosso-Kankeu, Frans Waanders, and Martin Mkandawire. "Iron-Speciation Control of Chalcopyrite Dissolution from a Carbonatite Derived Concentrate with Acidic Ferric Sulphate Media." Minerals 11, no. 9 (September 3, 2021): 963. http://dx.doi.org/10.3390/min11090963.
Full textД, Сангаа, Даваа С, Зузаан П, Отгоолой Б, Дэлгэрбат Л, Жаргалжав Г, Ням-Очир Л, and Отгонбаяр Д. "Зэсийн хүдрийн рентгенографын тоон анализ." Физик сэтгүүл 10, no. 179 (March 14, 2022): 225–33. http://dx.doi.org/10.22353/physics.v10i179.748.
Full textConejeros, Sergio, Pere Alemany, Miquel Llunell, Ibério de P. R. Moreira, Vı́ctor Sánchez, and Jaime Llanos. "Electronic Structure and Magnetic Properties of CuFeS2." Inorganic Chemistry 54, no. 10 (May 5, 2015): 4840–49. http://dx.doi.org/10.1021/acs.inorgchem.5b00399.
Full textJing, Mingxing, Jing Li, and Kegao Liu. "Research progress in photolectric materials of CuFeS2." IOP Conference Series: Earth and Environmental Science 128 (March 2018): 012087. http://dx.doi.org/10.1088/1755-1315/128/1/012087.
Full textBoekema, C., A. M. Krupski, M. Varasteh, K. Parvin, F. van Til, F. van der Woude, and G. A. Sawatzky. "Cu and Fe valence states in CuFeS2." Journal of Magnetism and Magnetic Materials 272-276 (May 2004): 559–61. http://dx.doi.org/10.1016/j.jmmm.2003.11.206.
Full textHu, Junqing, Qingyi Lu, Bin Deng, Kaibin Tang, Yitai Qian, Yuzhi Li, Guien Zhou, and Xianming Liu. "A hydrothermal reaction to synthesize CuFeS2 nanorods." Inorganic Chemistry Communications 2, no. 12 (December 1999): 569–71. http://dx.doi.org/10.1016/s1387-7003(99)00154-9.
Full textWang, Yu-Hsiang A., Ningzhong Bao, and Arunava Gupta. "Shape-controlled synthesis of semiconducting CuFeS2 nanocrystals." Solid State Sciences 12, no. 3 (March 2010): 387–90. http://dx.doi.org/10.1016/j.solidstatesciences.2009.11.019.
Full textTakaki, Hirokazu, Kazuaki Kobayashi, Masato Shimono, Nobuhiko Kobayashi, Kenji Hirose, Naohito Tsujii, and Takao Mori. "Thermoelectric properties of a magnetic semiconductor CuFeS2." Materials Today Physics 3 (December 2017): 85–92. http://dx.doi.org/10.1016/j.mtphys.2017.12.006.
Full textBarkat, L., N. Hamdadou, M. Morsli, A. Khelil, and J. C. Bernède. "Growth and characterization of CuFeS2 thin films." Journal of Crystal Growth 297, no. 2 (December 2006): 426–31. http://dx.doi.org/10.1016/j.jcrysgro.2006.10.105.
Full textSainctavit, Ph, J. Petiau, A. M. Flank, J. Ringeissen, and S. Lewonczuk. "XANES in chalcopyrites semiconductors: CuFeS2, CuGaS2, CuInSe2." Physica B: Condensed Matter 158, no. 1-3 (June 1989): 623–24. http://dx.doi.org/10.1016/0921-4526(89)90413-4.
Full textBaba-Kishi, K. Z. "Electron microscopy of the mineral chalcopyrite, CuFeS2." Journal of Applied Crystallography 25, no. 6 (December 1, 1992): 737–43. http://dx.doi.org/10.1107/s0021889892005715.
Full textHarmer, Sarah L., Allen R. Pratt, Wayne H. Nesbitt, and Michal E. Fleet. "Sulfur species at chalcopyrite (CuFeS2) fracture surfaces." American Mineralogist 89, no. 7 (July 2004): 1026–32. http://dx.doi.org/10.2138/am-2004-0713.
Full textSHABUNINA, G. G., T. G. AMINOV, and A. V. FILATOV. "ChemInform Abstract: Interaction of CuFeS2 with Cr2S3." ChemInform 29, no. 35 (June 20, 2010): no. http://dx.doi.org/10.1002/chin.199835029.
Full textPopov, V. V., P. P. Konstantinov, and Yu V. Rud’. "Kinetic phenomena in zero-gap semiconductors CuFeS2 and CuFeTe2: Effect of pressure and heat treatment." Journal of Experimental and Theoretical Physics 113, no. 4 (October 2011): 683–91. http://dx.doi.org/10.1134/s1063776111090093.
Full textOzkendir, O. M. "Influence of temperature dependence and Li substitution on the electronic structure of delafossite CuFeO2 and CuFeS2 semiconductors." Materialia 15 (March 2021): 100965. http://dx.doi.org/10.1016/j.mtla.2020.100965.
Full textTinoco, T., J. P. Itié, A. Polian, A. San Miguel, E. Moya, P. Grima, J. Gonzalez, and F. Gonzalez. "Combined x-ray absorption and x-ray diffraction studies of CuGaS2, CuGaSe2, CuFeS2 and CuFeSe2 under high pressure." Le Journal de Physique IV 04, no. C9 (November 1994): C9–151—C9–154. http://dx.doi.org/10.1051/jp4:1994923.
Full textPark, Junsoo, Yi Xia, and Vidvuds Ozoliņš. "First-principles assessment of thermoelectric properties of CuFeS2." Journal of Applied Physics 125, no. 12 (March 28, 2019): 125102. http://dx.doi.org/10.1063/1.5088165.
Full textVelásquez, P., H. Gómez, D. Leinen, and J. R. Ramos-Barrado. "Electrochemical impedance spectroscopy analysis of chalcopyrite CuFeS2 electrodes." Colloids and Surfaces A: Physicochemical and Engineering Aspects 140, no. 1-3 (September 1998): 177–82. http://dx.doi.org/10.1016/s0927-7757(97)00276-8.
Full textLovesey, S. W., K. S. Knight, C. Detlefs, S. W. Huang, V. Scagnoli, and U. Staub. "Acentric magnetic and optical properties of chalcopyrite (CuFeS2)." Journal of Physics: Condensed Matter 24, no. 21 (April 25, 2012): 216001. http://dx.doi.org/10.1088/0953-8984/24/21/216001.
Full textKlauber, Craig. "Fracture-induced reconstruction of a chalcopyrite (CuFeS2) surface." Surface and Interface Analysis 35, no. 5 (2003): 415–28. http://dx.doi.org/10.1002/sia.1539.
Full textDutkova, Erika, Matej Baláž, Nina Daneu, Batukhan Tatykayev, Yordanka Karakirova, Nikolay Velinov, Nina Kostova, Jaroslav Briančin, and Peter Baláž. "Properties of CuFeS2/TiO2 Nanocomposite Prepared by Mechanochemical Synthesis." Materials 15, no. 19 (October 5, 2022): 6913. http://dx.doi.org/10.3390/ma15196913.
Full textTsang, Jeffrey J., and David L. Parry. "Metal Mobilization from Complex Sulfide Ore Concentrate: Effect of Light and pH." Australian Journal of Chemistry 57, no. 10 (2004): 971. http://dx.doi.org/10.1071/ch04081.
Full textCouderc, Jean-Jacques, and Christa Hennig-Michaeli. "TEM study of mechanical twinning in experimentally deformed chalcopyrite (CuFeS2) single crystals." European Journal of Mineralogy 1, no. 2 (May 3, 1989): 275–94. http://dx.doi.org/10.1127/ejm/1/2/0275.
Full textHennig-Michaeli, Christa, and Jean-Jacques Couderc. "TEM study of mechanical twinning in experimentally deformed chalcopyrite (CuFeS2) single crystals." European Journal of Mineralogy 1, no. 2 (May 3, 1989): 295–314. http://dx.doi.org/10.1127/ejm/1/2/0295.
Full textVilcáez, Javier, Koichi Suto, and Chihiro Inoue. "Modeling the Auto-Thermal Performance of a Thermophilic Chalcopyrite Bioleaching Heap Employing Mesophilic and Thermophilic Microbes." Advanced Materials Research 20-21 (July 2007): 70–74. http://dx.doi.org/10.4028/www.scientific.net/amr.20-21.70.
Full textPogoreltsev, Aleksandr, Vadim Matukhin, Ekaterina Shmidt, Valery Galiakhmetov, and Yaroslav Shaikhutdinov. "The distribution of the electron density and spin density in the interplanar areas CuFeS2 by NMR 63,65Cu in a local field." E3S Web of Conferences 288 (2021): 01050. http://dx.doi.org/10.1051/e3sconf/202128801050.
Full textLiang, Da Xin, Jian Li, Lu Li, and Guang Sheng Pang. "Fenton Degradation of Methylene Blue by CuFeS2 Ultrafine Powders." Key Engineering Materials 609-610 (April 2014): 449–54. http://dx.doi.org/10.4028/www.scientific.net/kem.609-610.449.
Full textKuncaka, Agus, Eko Sugiharto, and Yasinta Endah Nastiti. "EXTRACTION OF COPPER ELECTROLYTICALLY BY USING SOLID MIXTURE OF CuFeS2 AND CaCO3 (CHALCOPYCA) AS ANODE." Indonesian Journal of Chemistry 5, no. 3 (June 15, 2010): 295–301. http://dx.doi.org/10.22146/ijc.21807.
Full textEngin, T. E., A. V. Powell, and S. Hull. "A high temperature diffraction-resistance study of chalcopyrite, CuFeS2." Journal of Solid State Chemistry 184, no. 8 (August 2011): 2272–77. http://dx.doi.org/10.1016/j.jssc.2011.06.036.
Full textSekiya, H., T. Isobe, A. Nakajima, and S. Matsushita. "Can CuFeS2 be used in a sensitized thermal cell?" Materials Today Energy 17 (September 2020): 100469. http://dx.doi.org/10.1016/j.mtener.2020.100469.
Full textWang, M. X., L. S. Wang, G. H. Yue, X. Wang, P. X. Yan, and D. L. Peng. "Single crystal of CuFeS2 nanowires synthesized through solventothermal process." Materials Chemistry and Physics 115, no. 1 (May 2009): 147–50. http://dx.doi.org/10.1016/j.matchemphys.2008.11.032.
Full textPoloko, Nenguba, Gwiranai Danha, and Tshepho Gaogane. "Processing and characterization of chalcopyrite (CuFeS2) sample from Botswana." Procedia Manufacturing 35 (2019): 488–93. http://dx.doi.org/10.1016/j.promfg.2019.05.070.
Full textVelásquez, P., H. Gómez, J. R. Ramos-Barrado, and D. Leinen. "Voltammetry and XPS analysis of a chalcopyrite CuFeS2 electrode." Colloids and Surfaces A: Physicochemical and Engineering Aspects 140, no. 1-3 (September 1998): 369–75. http://dx.doi.org/10.1016/s0927-7757(97)00293-8.
Full text