Academic literature on the topic 'CuFeS2'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'CuFeS2.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "CuFeS2"
Auernik, Kathryne S., and Robert M. Kelly. "Impact of Molecular Hydrogen on Chalcopyrite Bioleaching by the Extremely Thermoacidophilic Archaeon Metallosphaera sedula." Applied and Environmental Microbiology 76, no. 8 (February 26, 2010): 2668–72. http://dx.doi.org/10.1128/aem.02016-09.
Full textChang, Shun-An, Po-Yu Wen, Tsunghsueh Wu, and Yang-Wei Lin. "Microwave-Assisted Synthesis of Chalcopyrite/Silver Phosphate Composites with Enhanced Degradation of Rhodamine B under Photo-Fenton Process." Nanomaterials 10, no. 11 (November 20, 2020): 2300. http://dx.doi.org/10.3390/nano10112300.
Full textWen, Po-Yu, Ting-Yu Lai, Tsunghsueh Wu, and Yang-Wei Lin. "Hydrothermal and Co-Precipitated Synthesis of Chalcopyrite for Fenton-like Degradation toward Rhodamine B." Catalysts 12, no. 2 (January 26, 2022): 152. http://dx.doi.org/10.3390/catal12020152.
Full textYu, Huajian, Jianhua Xu, Yanyan Hu, Huadi Zhang, Cong Zhang, Chengcheng Qiu, Xuping Wang, Bing Liu, Lei Wei, and Jing Li. "Synthesis and characterization of CuFeS2 and Se doped CuFeS2−xSex nanoparticles." Journal of Materials Science: Materials in Electronics 30, no. 13 (May 27, 2019): 12269–74. http://dx.doi.org/10.1007/s10854-019-01586-5.
Full textHu, Junqing, Qingyi Lu, Kaibin Tang, Yitai Qian, Guien Zhou, and Xianming Liu. "A solvothermal reaction route for the synthesis of CuFeS2 ultrafine powder." Journal of Materials Research 14, no. 10 (October 1999): 3870–72. http://dx.doi.org/10.1557/jmr.1999.0523.
Full textMikhailovskii, A. P., A. M. Polubotko, V. D. Prochukhan, and Yu V. Rud. "Gapless State in CuFeS2." physica status solidi (b) 158, no. 1 (March 1, 1990): 229–38. http://dx.doi.org/10.1002/pssb.2221580122.
Full textLiu, Zezhong, Zengxu Liu, Zhen Zhao, Danxia Li, Pengfei Zhang, Yanfang Zhang, Xiangyong Liu, Xiaoteng Ding, and Yuanhong Xu. "Photothermal Regulated Nanozyme of CuFeS2 Nanoparticles for Efficiently Promoting Wound Healing Infected by Multidrug Resistant Bacteria." Nanomaterials 12, no. 14 (July 19, 2022): 2469. http://dx.doi.org/10.3390/nano12142469.
Full textKorzun, Barys, and Anatoly Pushkarev. "XRPD and Scanning Electron Microscopy of Alloys of the CuAlS2 – CuFeS2 System Prepared by Thermobaric Treatment." MRS Advances 3, no. 56 (2018): 3323–28. http://dx.doi.org/10.1557/adv.2018.558.
Full textSugathan, Anumol, Biswajit Bhattacharyya, V. V. R. Kishore, Abhinav Kumar, Guru Pratheep Rajasekar, D. D. Sarma, and Anshu Pandey. "Why Does CuFeS2 Resemble Gold?" Journal of Physical Chemistry Letters 9, no. 4 (January 30, 2018): 696–701. http://dx.doi.org/10.1021/acs.jpclett.7b03190.
Full textKorzun, B. V., A. A. Fadzeyeva, G. Kloess, and K. Bente. "Microstructure of CuFeS2-δ-CuInS2alloys." physica status solidi (c) 6, no. 5 (May 2009): 1055–58. http://dx.doi.org/10.1002/pssc.200881160.
Full textDissertations / Theses on the topic "CuFeS2"
Godfrey, Daniel. "Synthesis, analysis and characterisation of CuFeS2(s) towards superior, green Cu(aq) leaching." Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/55165.
Full textHouse, Charles Iain. "The electrogeneration of Cr(II) and V(II) solutions and the hydrometallurgical reduction of SnO2, PbS and CuFeS2." Thesis, Imperial College London, 1986. http://hdl.handle.net/10044/1/38039.
Full textOliveira, Lucas Agostinho de. "Fotoeletrodos de CuFeO2 : eletrossíntese e caracterização." Universidade Estadual de Londrina. Centro de Ciências Exatas. Programa de Pós-Graduação em Química, 2014. http://www.bibliotecadigital.uel.br/document/?code=vtls000190556.
Full textDue to environmental concerns in recent decades new sustainable energy sources are being increasingly taken into consideration for use in today's society. Accordingly, the hydrogen produced from solar radiation can be considered an alternative energy. There is great interest in the synthesis and identification at low cost/benefit of p-type semiconductor oxides-based assets in the visible range. In this context, the synthesis of thin films CuFeO2 was performed by potentiostatic electroprecipitation and pulsed electroprecipitation route nitrate reduction and CuFeO2 in the form of nanostructured powders by combustion synthesis in solution method (CSS ) using as fuel separately citric acid, alanine, glycine and urea in the presence and absence of the surfactant Tween 80®, and their physical and photocatalytic characterization. The pulsed and potentiostatic electroprecipitation showed to be effective for the electrochemical synthesis of thin films of CuFeO2 route nitrate reduction. The most suitable potential for electroprecipitation of Cu and Fe were -0.1 V and -0.9 V, respectively , and the best Cu/Fe mole ratio in the precursor solution was 1:1. The film obtained by pulsed electroprecipitation found to be more crystalline and homogeneous film obtained by the fixed potential, however, the films exhibited phases CuFeO2, CuFe2O4 and CuO. The films showed direct transition between BV and BC, with the corresponding Ebg to CuFeO2 1.70 eV and 1.52 eV for the films obtained by fixed and pulsed potential, respectively. The film obtained by pulsed electroprecipitation had photocurrent (36 μA ) 4 times higher than the obtained fixed potential film (9 μA ) . The electrochemical potential of BV and BC are 0,41 and -1,29 for the film electrodeposited at a fixed potential, respectively, and 0,41 and -1,16 for the pulsed potential electrodeposited film. The samples obtained by CSS presented in their compositions CuFeO2, CuFe2O4, CuO and Fe2O3. Both samples synthesized by CSS with a fuel/metal molar ratio of the of 1:1 and 2:1 ratios and the sample obtained by solid state synthesis calcined at 600 ° C showed almost the same photocatalytic activity while the sample synthesized by CSS with fuel/metal molar ratio of 1:1 calcined at 1000 ° C showed photocatalytic activity about 50 % higher than the other. The presence of Tween 80® increased the photocatalytic activity of the samples without surfactant, a trend also shown by XRD patterns . The sample obtained by alanine in the presence of surfactant showed the highest photocatalytic activity, whereas the sample synthesized only with alanine had the lowest photocatalytic activity among all fuels.
Forslund, Axel. "Synthesis and characterisation of delafossite CuFeO2 for solar energy applications." Thesis, Uppsala universitet, Fasta tillståndets fysik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-297710.
Full textHermans, Yannick. "Interface analysis and development of BiVO4 and CuFeO2 heterostructures for photochemical water splitting." Phd thesis, Bordeaux, 2019. http://tuprints.ulb.tu-darmstadt.de/8700/1/Complete_thesis%20-%20German.pdf.
Full textSono, Sandisiwe. "Comparing estimates of zooplankton abundance from CUFES samples with those from a vertical bongo net." Master's thesis, University of Cape Town, 2008. http://hdl.handle.net/11427/6456.
Full textThe accuracy of using CUFES (continuous underway fish egg sampler) as an alternative method to vertical bongo nets for sampling zooplankton abundance and distribution is assessed. Analysis is based on 14 taxonomic groups representing a wide variety of organism sizes. Samples were collected in March 2004 in the southern Benguela, South Africa. In total, 64 CUFES samples were collected while the ship was underway and 32 CUFES and vertical bongo net on-station samples were collected along four inshore-offshore transects. The frequencies of obtaining the taxa using the CUFES and vertical bongo net samples were the same for small copepods, amphipod adults and juveniles, and Nannocalanus.
Hermans, Yannick [Verfasser], Wolfram [Akademischer Betreuer] Jaegermann, and Thierry [Akademischer Betreuer] Toupance. "Interface analysis and development of BiVO4 and CuFeO2 heterostructures for photochemical water splitting / Yannick Hermans ; Wolfram Jaegermann, Thierry Toupance." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2019. http://d-nb.info/1188817647/34.
Full textLusa, Makeli Garibotti. "Caracterização morfoanatômica e histoquímica de Cuphea Carthagenensis (Jacq.) J.F. Macbr.(Lytraceace) e avaliação em ambientes hidrofítico e mesofítico." reponame:Repositório Institucional da UFPR, 2010. http://hdl.handle.net/1884/23385.
Full textSchuldt, Elke Zuleika. "Avaliação farmacológica do extrato bruto hidroalcóolico, frações e composto isolado de Cuphea carthagenensis Jacq McBrite (sete-sangrias) determinação da capacidade de antioxidante /." Florianópolis, SC, 1999. http://repositorio.ufsc.br/xmlui/handle/123456789/81043.
Full textMade available in DSpace on 2012-10-18T22:16:01Z (GMT). No. of bitstreams: 0Bitstream added on 2016-01-09T01:58:00Z : No. of bitstreams: 1 147104.pdf: 3557687 bytes, checksum: f8fe92b9263ee58f8393b5fffd5ec154 (MD5)
Lalanne, Maëva. "Étude de phases delafossite CuFe1-xCrxO2 : vers de nouveaux TCO de type p." Toulouse 3, 2010. http://thesesups.ups-tlse.fr/1257/.
Full textThis work concerns the development of CuFe1-xCrxO2:Mg delafossite oxide thin films deposited by RF-magnetron sputtering for the potential transparent conductor applications. Various CuFe1-xCrxO2 (0 = x = 1) powders were synthesized by a standard solid-state reaction. These oxides crystallize with the delafossite structure and a complete solid solution was obtained. Thermo-structural study has revealed the stability range of CuFe1-xCrxO2 compounds under oxidizing and reducing atmosphere. Their physical properties were also characterized. Thus, we showed that the stability range increases with the chromium quantity and chromium-rich delafossites are the most conductive and the least absorbent. Then, CuFeO2:Mg and CuCrO2:Mg delafossite thin films were prepared at room temperature by RF-magnetron sputtering from ceramic targets. After annealing under vacuum at 450°C, CuFeO2:Mg thin films have too low optoelectronic properties for p-type TCO application in the visible range; however these compounds are promising for infra-red TCO applications and/or absorber for photovoltaic application. After annealing under vacuum at 450°C, the p-type conductivity and the bandgap of CuCrO2:Mg thin films are about 0,1 S. Cm-1 and 3,13 eV respectively. These values can be increased by annealing at higher temperature than 450°C
Books on the topic "CuFeS2"
CUFFS: Cuffs / holiday hookup. [Place of publication not identified]: MILLS & BOON, 2020.
Find full textCocek, Christina. Stiff cuffs. Boston (100 Chauncy St., Boston 02111): Baker's Plays, 1994.
Find full textKnitting beyond the edge: Cuffs & collars, necklines, corners & edges, closures : the essential collection of decorative finishes. [New York]: Sixth&Spring Books, 2006.
Find full textJackie, Sheeler, and Holman Bob 1948-, eds. Off the cuffs: Poetry by and about the police. Brooklyn, NY: Soft Skull Press, 2003.
Find full textScott, Tui A. The Harris family history: (including Cuffs, Mastersons, De Witts, and others). Morrinsville: T.A. Scott, 1988.
Find full textField, Elaine. Cuddly Cuffs Clothes (Cuddly Cuffs). Tiger Tales, 2003.
Find full textField, Elaine. Cuddly Cuffs Toys (Cuddly Cuffs). Tiger Tales, 2003.
Find full textLockwood, Cara. Cuffs. Harlequin Enterprises ULC, 2020.
Find full textLockwood, Cara. Cuffs. Harlequin Mills & Boon, Limited, 2020.
Find full textFinn, Rebecca. Cuddly Cuffs (Animal Faces Cuddly Cuffs). Little Tiger Press, 2004.
Find full textBook chapters on the topic "CuFeS2"
Kobayashi, Hisao, Hideya Onodera, and Takashi Kamimura. "Electronic Properties of CuFeS2 under Pressure Studied by Mössbauer Spectroscopy." In Hyperfine Interactions (C), 165–68. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0281-3_41.
Full textMulaba-Bafubiandi, Antoine F. "Characterization of products emanating from conventional and microwave energy roasting of chalcopyrite (CuFeS2) concentrate." In ICAME 2005, 923–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-49853-7_37.
Full textVillars, P., K. Cenzual, J. Daams, R. Gladyshevskii, O. Shcherban, V. Dubenskyy, N. Melnichenko-Koblyuk, et al. "CuFeO2." In Structure Types. Part 5: Space Groups (173) P63 - (166) R-3m, 495–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-46933-9_384.
Full textKawazoe, Yoshiyuki, Takeshi Kanomata, and Ryunosuke Note. "CuFeO2." In High Pressure Materials Properties: Magnetic Properties of Oxides Under Pressure, 143–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-64593-2_29.
Full textMcConnell, Larissa. "Cuffs." In Foundations of Flat Patterning and Draping, 228–30. New York: Routledge, 2021. http://dx.doi.org/10.4324/9781003022619-14.
Full textPosypaiko, V. I., and E. A. Alekseeva. "CuF2." In Phase Equilibria in Binary Halides, 162. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-9024-4_45.
Full textNolan, Thomas. "“Taking Off the Cuffs”." In Perilous Policing, 126–42. Abingdon, Oxon ; New York, NY : Routledge, 2019. | Identifiers: LCCN 2018048190 (print) | LCCN 2018051056 (ebook) | ISBN 9780429398414 (Ebook) | ISBN 9780367026691 (hardback) | ISBN 9780367026707 (pbk.): Routledge, 2019. http://dx.doi.org/10.4324/9780429398414-9.
Full textBell, Matthew, and Gary Armstrong. "The Attraction of ‘Fisti-Cuffs’." In A Social History of Sheffield Boxing, Volume I, 51–90. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63545-9_3.
Full textSpittel, Marlene, and Thilo Spittel. "Flow stress, mechanical and physical properties of CuFe2P." In Part 3: Non-ferrous Alloys - Heavy Metals, 161–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-642-14174-4_15.
Full textHirota, E., K. Kuchitsu, T. Steimle, J. Vogt, and N. Vogt. "109 CuFN2 Copper fluoride – dinitrogen (1/1)." In Molecules Containing No Carbon Atoms and Molecules Containing One or Two Carbon Atoms, 140. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-540-70614-4_110.
Full textConference papers on the topic "CuFeS2"
Tonpe, Dipak, Ketan Gattu, Ganesh More, Deepak Upadhye, Sandip Mahajan, and Ramphal Sharma. "Synthesis of CuFeS2 thin films from acidic chemical baths." In INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2015): Proceeding of International Conference on Condensed Matter and Applied Physics. Author(s), 2016. http://dx.doi.org/10.1063/1.4946727.
Full textNawaz, Sajid, Khalid Hussain Thebo, Mohammad Azad Malik, and Abdul Qadeer Malik. "Deposition of CuFeS2 and Cu2FeSnS4 thin films and nanocrystals using diisobutyldithiophosphinato-metal precursors." In 2020 17th International Bhurban Conference on Applied Sciences and Technology (IBCAST). IEEE, 2020. http://dx.doi.org/10.1109/ibcast47879.2020.9044518.
Full textTonpe, Dipak A., Ketan P. Gattu, Vishnu V. Kutwade, Makrand E. Sonawane, and Ramphal Sharma. "Growth and optoelectronic properties of CuFeS2 thin film and effect of annealing temperature." In NATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF MATERIALS: NCPCM2020. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0061419.
Full textBellec, Jacques H., and Tahar M. Kechadi. "Cufres." In the ACM first Ph.D. workshop in CIKM. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1316874.1316884.
Full textDhruv, Preksha N., Neha P. Solanki, and Rajshree B. Jotania. "Structural properties of delafossite multiferroic CuFeO2 powder." In FUNCTIONAL OXIDES AND NANOMATERIALS: Proceedings of the International Conference on Functional Oxides and Nanomaterials. Author(s), 2017. http://dx.doi.org/10.1063/1.4982089.
Full textRuttanapun, Chesta, Yuttana Hongaromkid, Warawoot Thowladda, and Aree Wichainchai. "Alcohol sensing of p-type CuFeO2 delafossite oxide." In International Conference on Photonics Solutions 2013, edited by Prathan Buranasiri and Sarun Sumriddetchkajorn. SPIE, 2013. http://dx.doi.org/10.1117/12.2021102.
Full textSingh, Manoj K., G. L. Sharma, S. Dussan, and Ram S. Katiyar. "Structural properties of multiferroic CuFeO2 thin films prepared by RF sputtering." In 2008 17th IEEE International Symposium on the Applications of Ferroelectrics (ISAF). IEEE, 2008. http://dx.doi.org/10.1109/isaf.2008.4693787.
Full textLee, P. C., M. N. Ou, J. Y. Luo, M. K. Wu, and Y. Y. Chen. "Cross-plane Seebeck coefficient and thermal conductivity of CuFeSe2 thin film." In 9TH EUROPEAN CONFERENCE ON THERMOELECTRICS: ECT2011. AIP, 2012. http://dx.doi.org/10.1063/1.4731582.
Full textJiang, Chang-Ming, Ian Sharp, and Jason Cooper. "Electronic Structure of CuFeO2 Photocathode Studied by Resonant Inelastic X-ray Scattering." In nanoGe Fall Meeting 2018. València: Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.fallmeeting.2018.161.
Full textJiang, Chang-Ming, Ian Sharp, and Jason Cooper. "Electronic Structure of CuFeO2 Photocathode Studied by Resonant Inelastic X-ray Scattering." In nanoGe Fall Meeting 2018. València: Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.nfm.2018.161.
Full text