To see the other types of publications on this topic, follow the link: Cubature formulae.

Journal articles on the topic 'Cubature formulae'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Cubature formulae.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Cools, Ronald. "Constructing cubature formulae: the science behind the art." Acta Numerica 6 (January 1997): 1–54. http://dx.doi.org/10.1017/s0962492900002701.

Full text
Abstract:
In this paper we present a general, theoretical foundation for the construction of cubature formulae to approximate multivariate integrals. The focus is on cubature formulae that are exact for certain vector spaces of polynomials. Our main quality criteria are the algebraic and trigonometric degrees. The constructions using ideal theory and invariant theory are outlined. The known lower bounds for the number of points are surveyed and characterizations of minimal cubature formulae are given. We include references to all known minimal cubature formulae. Finally, some methods to construct cubature formulae illustrate the previously introduced concepts and theorems.
APA, Harvard, Vancouver, ISO, and other styles
2

Gushev, Vesselin, and Geno Nikolov. "Modified product cubature formulae." Journal of Computational and Applied Mathematics 224, no. 2 (February 2009): 465–75. http://dx.doi.org/10.1016/j.cam.2008.05.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Berens, H., H. J. Schmid, and Y. Xu. "Multivariate Gaussian cubature formulae." Archiv der Mathematik 64, no. 1 (January 1995): 26–32. http://dx.doi.org/10.1007/bf01193547.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Teichmann, Josef. "Calculating the Greeks by cubature formulae." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 462, no. 2066 (December 14, 2005): 647–70. http://dx.doi.org/10.1098/rspa.2005.1583.

Full text
Abstract:
We provide cubature formulae for the calculation of derivatives of expected values in the spirit of Terry Lyons and Nicolas Victoir. In financial mathematics derivatives of option prices with respect to initial values, so called Greeks, are of particular importance as hedging parameters. The proof of existence of cubature formulae for Greeks is based on universal formulae, which lead to the calculation of Greeks in an asymptotic sense—even without Hörmander's condition. Cubature formulae then allow to calculate these quantities very quickly. Simple examples are added to the theoretical exposition.
APA, Harvard, Vancouver, ISO, and other styles
5

Schmid, H. J., and Yuan Xu. "On bivariate Gaussian cubature formulae." Proceedings of the American Mathematical Society 122, no. 3 (March 1, 1994): 833. http://dx.doi.org/10.1090/s0002-9939-1994-1209428-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gismalla, D. A. "Schmid's approach on cubature formulae." International Journal of Computer Mathematics 32, no. 1-2 (January 1990): 75–83. http://dx.doi.org/10.1080/00207169008803816.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dubinin, V. V. "Cubature formulae for Besov classes." Izvestiya: Mathematics 61, no. 2 (April 30, 1997): 259–83. http://dx.doi.org/10.1070/im1997v061n02abeh000114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cools, R., I. P. Mysovskikh, and H. J. Schmid. "Cubature formulae and orthogonal polynomials." Journal of Computational and Applied Mathematics 127, no. 1-2 (January 2001): 121–52. http://dx.doi.org/10.1016/s0377-0427(00)00495-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Xiaoqun. "On generalized invariant cubature formulae." Journal of Computational and Applied Mathematics 130, no. 1-2 (May 2001): 271–81. http://dx.doi.org/10.1016/s0377-0427(99)00377-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Degani, Ilan, Jeremy Schiff, and David J. Tannor. "Commuting extensions and cubature formulae." Numerische Mathematik 101, no. 3 (July 18, 2005): 479–500. http://dx.doi.org/10.1007/s00211-005-0628-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Xu, Yuan. "Cubature Formulae and Polynomial Ideals." Advances in Applied Mathematics 23, no. 3 (October 1999): 211–33. http://dx.doi.org/10.1006/aama.1999.0652.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Jandrlic, Davorka, Miodrag Spalevic, and Jelena Tomanovic. "Error estimates for certain cubature formulae." Filomat 32, no. 20 (2018): 6893–902. http://dx.doi.org/10.2298/fil1820893j.

Full text
Abstract:
We estimate the errors of selected cubature formulae constructed by the product of Gauss quadrature rules. The cases of multiple and (hyper-)surface integrals over n-dimensional cube, simplex, sphere and ball are considered. The error estimates are obtained as the absolute value of the difference between cubature formula constructed by the product of Gauss quadrature rules and cubature formula constructed by the product of corresponding Gauss-Kronrod or corresponding generalized averaged Gaussian quadrature rules. Generalized averaged Gaussian quadrature rule ?2l+1 is (2l + 1)-point quadrature formula. It has 2l + 1 nodes and the nodes of the corresponding Gauss rule Gl with l nodes form a subset, similar to the situation for the (2l + 1)-point Gauss-Kronrod rule H2l+1 associated with Gl. The advantages of bG2l+1 are that it exists also when H2l+1 does not, and that the numerical construction of ?2l+1, based on recently proposed effective numerical procedure, is simpler than the construction of H2l+1.
APA, Harvard, Vancouver, ISO, and other styles
13

Cools, Ronald, and Ian H. Sloan. "Minimal cubature formulae of trigonometric degree." Mathematics of Computation 65, no. 216 (October 1, 1996): 1583–601. http://dx.doi.org/10.1090/s0025-5718-96-00767-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Guessab, A. "Numerical cubature formulae with preassigned knots." Numerische Mathematik 52, no. 4 (July 1988): 467–78. http://dx.doi.org/10.1007/bf01462240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Nozaki, Hiroshi, and Masanori Sawa. "Note on Cubature Formulae and Designs Obtained from Group Orbits." Canadian Journal of Mathematics 64, no. 6 (December 1, 2012): 1359–77. http://dx.doi.org/10.4153/cjm-2011-069-5.

Full text
Abstract:
Abstract In 1960, Sobolev proved that for a finite reflection group G, a G-invariant cubature formula is of degree t if and only if it is exact for all G-invariant polynomials of degree at most t . In this paper, we make some observations on invariant cubature formulas and Euclidean designs in connection with the Sobolev theorem. First, we give an alternative proof of theorems by Xu (1998) on necessary and sufficient conditions for the existence of cubature formulas with some strong symmetry. The new proof is shorter and simpler compared to the original one by Xu, and, moreover, gives a general interpretation of the analytically-written conditions of Xu's theorems. Second, we extend a theorem by Neumaier and Seidel (1988) on Euclidean designs to invariant Euclidean designs, and thereby classify tight Euclidean designs obtained from unions of the orbits of the corner vectors. This result generalizes a theorem of Bajnok (2007), which classifies tight Euclidean designs invariant under the Weyl group of type B, to other finite reflection groups.
APA, Harvard, Vancouver, ISO, and other styles
16

Bojanov, Borislav D., and Dimitar K. Dimitrov. "Gaussian extended cubature formulae for polyharmonic functions." Mathematics of Computation 70, no. 234 (February 23, 2000): 671–84. http://dx.doi.org/10.1090/s0025-5718-00-01206-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

MAEZTU, J. I. "On Symmetric Cubature Formulae for Planar Regions." IMA Journal of Numerical Analysis 9, no. 2 (1989): 167–83. http://dx.doi.org/10.1093/imanum/9.2.167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Luo, Zhongxuan, Zhaoliang Meng, and Fengshan Liu. "Construction of cubature formulae with preassigned nodes§." Applicable Analysis 87, no. 2 (February 2008): 233–45. http://dx.doi.org/10.1080/00036810701272254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Heo, Sangwoo, and Yuan Xu. "Constructing cubature formulae for spheres and balls." Journal of Computational and Applied Mathematics 112, no. 1-2 (November 1999): 95–119. http://dx.doi.org/10.1016/s0377-0427(99)00216-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Petrova, Guergana. "Cubature formulae for spheres, simplices and balls." Journal of Computational and Applied Mathematics 162, no. 2 (January 2004): 483–96. http://dx.doi.org/10.1016/j.cam.2003.08.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ben Salem, Néjib, and Kamel Touahri. "Cubature Formulae Associated with the Dunkl Laplacian." Results in Mathematics 58, no. 1-2 (April 14, 2010): 119–44. http://dx.doi.org/10.1007/s00025-010-0035-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Dryanov, Dimiter, and Petar Petrov. "On Trigonometric Blending Interpolation and Cubature Formulae." Results in Mathematics 62, no. 3-4 (August 18, 2012): 249–64. http://dx.doi.org/10.1007/s00025-012-0280-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Benouahmane, Brahim, Cuyt Annie, and Irem Yaman. "Near-minimal cubature formulae on the disk." IMA Journal of Numerical Analysis 39, no. 1 (December 8, 2017): 297–314. http://dx.doi.org/10.1093/imanum/drx069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Verlinden, P., and A. Haegemans. "The construction of cubature formulae by continuation." Computing 45, no. 2 (June 1990): 145–55. http://dx.doi.org/10.1007/bf02247880.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Bailey, S. B., and And Cohen. "The Construction Of Some Optimal 2D Cubature Formulae." International Journal of Computer Mathematics 79, no. 11 (January 2002): 1233–42. http://dx.doi.org/10.1080/00207160213941.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Heo, Sangwoo, and Yuan Xu. "Constructing fully symmetric cubature formulae for the sphere." Mathematics of Computation 70, no. 233 (March 3, 2000): 269–80. http://dx.doi.org/10.1090/s0025-5718-00-01198-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Bojanov, Borislav, and Guergana Petrova. "On minimal cubature formulae for product weight functions." Journal of Computational and Applied Mathematics 85, no. 1 (November 1997): 113–21. http://dx.doi.org/10.1016/s0377-0427(97)00133-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

De Marchi, Stefano, Marco Vianello, and Yuan Xu. "New cubature formulae and hyperinterpolation in three variables." BIT Numerical Mathematics 49, no. 1 (January 30, 2009): 55–73. http://dx.doi.org/10.1007/s10543-009-0210-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Guessab, Allal, and Gerhard Schmeisser. "Negative Definite Cubature Formulae, Extremality and Delaunay Triangulation." Constructive Approximation 31, no. 1 (April 3, 2009): 95–113. http://dx.doi.org/10.1007/s00365-009-9049-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Beckers, Marc, and Ann Haegemans. "The construction of three-dimensional invariant cubature formulae." Journal of Computational and Applied Mathematics 35, no. 1-3 (June 1991): 109–18. http://dx.doi.org/10.1016/0377-0427(91)90200-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Pecher, Radek. "Efficient cubature formulae for MLPG and related methods." International Journal for Numerical Methods in Engineering 65, no. 4 (2005): 566–93. http://dx.doi.org/10.1002/nme.1458.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Migliorati, Giovanni, and Fabio Nobile. "Stable high-order randomized cubature formulae in arbitrary dimension." Journal of Approximation Theory 275 (March 2022): 105706. http://dx.doi.org/10.1016/j.jat.2022.105706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Cools, Ronald, and Ann Haegemans. "On the construction of multi-dimensional embedded cubature formulae." Numerische Mathematik 55, no. 6 (November 1989): 735–45. http://dx.doi.org/10.1007/bf01389339.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Meng, Zhaoliang, and Zhongxuan Luo. "Constructing cubature formulae of degree 5 with few points." Journal of Computational and Applied Mathematics 237, no. 1 (January 2013): 354–62. http://dx.doi.org/10.1016/j.cam.2012.06.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Guessab, Allal, Otheman Nouisser, and Gerhard Schmeisser. "A Definiteness Theory for Cubature Formulae of Order Two." Constructive Approximation 24, no. 3 (March 15, 2006): 263–88. http://dx.doi.org/10.1007/s00365-005-0619-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Xu, Yuan. "Constructing cubature formulae by the method of reproducing kernel." Numerische Mathematik 85, no. 1 (March 1, 2000): 155–73. http://dx.doi.org/10.1007/s002110050481.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Chen, Chuanmiao, Michal Křížek, and Liping Liu. "Numerical Integration over Pyramids." Advances in Applied Mathematics and Mechanics 5, no. 03 (June 2013): 309–20. http://dx.doi.org/10.4208/aamm.12-m12110.

Full text
Abstract:
AbstractPyramidal elements are often used to connect tetrahedral and hexahedral elements in the finite element method. In this paper we derive three new higher order numerical cubature formulae for pyramidal elements.
APA, Harvard, Vancouver, ISO, and other styles
38

Xu, Yuan. "Orthogonal Polynomials and Cubature Formulae on Spheres and on Balls." SIAM Journal on Mathematical Analysis 29, no. 3 (July 1998): 779–93. http://dx.doi.org/10.1137/s0036141096307357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Heo, Sangwoo, and Yuan Xu. "Invariant Cubature Formulae for Spheres and Balls by Combinatorial Methods." SIAM Journal on Numerical Analysis 38, no. 2 (January 2000): 626–38. http://dx.doi.org/10.1137/s003614299935543x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Xu, Yuan. "Orthogonal polynomials and cubature formulae on balls, simplices, and spheres." Journal of Computational and Applied Mathematics 127, no. 1-2 (January 2001): 349–68. http://dx.doi.org/10.1016/s0377-0427(00)00504-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Ramazanov, M. D. "Asymptotically optimal unsaturated lattice cubature formulae with bounded boundary layer." Sbornik: Mathematics 204, no. 7 (July 31, 2013): 1003–27. http://dx.doi.org/10.1070/sm2013v204n07abeh004328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Cools, Ronald, and Ann Haegemans. "Optimal addition of knots to cubature formulae for planar regions." Numerische Mathematik 49, no. 2-3 (March 1986): 269–74. http://dx.doi.org/10.1007/bf01389629.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Bernardo, Fernando P. "Performance of cubature formulae in probabilistic model analysis and optimization." Journal of Computational and Applied Mathematics 280 (May 2015): 110–24. http://dx.doi.org/10.1016/j.cam.2014.11.053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Stoyanova, Srebra B. "Invariant cubature formulae of degree 6 for the n-simplex." Journal of Computational and Applied Mathematics 193, no. 2 (September 2006): 446–59. http://dx.doi.org/10.1016/j.cam.2005.06.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Xu, Yuan. "Orthogonal polynomials and cubature formulae on spheres and on simplices." Methods and Applications of Analysis 5, no. 2 (1998): 169–84. http://dx.doi.org/10.4310/maa.1998.v5.n2.a5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Bernardo, Fernando P. "Model analysis and optimization under uncertainty using thinned cubature formulae." Computers & Chemical Engineering 92 (September 2016): 133–42. http://dx.doi.org/10.1016/j.compchemeng.2016.05.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Orive, Ramón, Juan C. Santos-León, and Miodrag M. Spalević. "Cubature formulae for the Gaussian weight. Some old and new rules." ETNA - Electronic Transactions on Numerical Analysis 53 (2020): 426–38. http://dx.doi.org/10.1553/etna_vol53s426.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Xu, Yuan. "On Zeros of Multivariate Quasi-Orthogonal Polynomials and Gaussian Cubature Formulae." SIAM Journal on Mathematical Analysis 25, no. 3 (May 1994): 991–1001. http://dx.doi.org/10.1137/s0036141092237200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Fliege, J. "The distribution of points on the sphere and corresponding cubature formulae." IMA Journal of Numerical Analysis 19, no. 2 (April 1, 1999): 317–34. http://dx.doi.org/10.1093/imanum/19.2.317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Stoyanova, Srebra B. "Cubature formulae of the seventh degree of accuracy for the hypersphere." Journal of Computational and Applied Mathematics 84, no. 1 (October 1997): 15–21. http://dx.doi.org/10.1016/s0377-0427(97)00094-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography