To see the other types of publications on this topic, follow the link: CuAlS2.

Journal articles on the topic 'CuAlS2'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'CuAlS2.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Azuhata, T., T. Terasako, K. Yoshida, T. Sota, K. Suzuki, and S. Chichibu. "Lattice dynamics of CuAlS2 and CuAlSe2." Physica B: Condensed Matter 219-220 (April 1996): 496–98. http://dx.doi.org/10.1016/0921-4526(95)00790-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Roa, L., J. C. Chervin, J. P. Iti�, A. Polian, M. Gauthier, and A. Chevy. "High-Pressure Structural Study of CuAlS2 and CuAlSe2." physica status solidi (b) 211, no. 1 (January 1999): 455–59. http://dx.doi.org/10.1002/(sici)1521-3951(199901)211:1<455::aid-pssb455>3.0.co;2-o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kumar, Ravhi S., A. Sekar, N. Victor Jaya, S. Natarajan, and S. Chichibu. "Structural studies of CuAlSe2 and CuAlS2 chalcopyrites at high pressures." Journal of Alloys and Compounds 312, no. 1-2 (November 2000): 4–8. http://dx.doi.org/10.1016/s0925-8388(00)00909-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kumar, Ravhi S., A. Sekar, N. Victor Jaya, S. Natarajan, and S. Chichibu. "ChemInform Abstract: Structural Studies of CuAlSe2 and CuAlS2 Chalcopyrites at High Pressures." ChemInform 32, no. 15 (April 10, 2001): no. http://dx.doi.org/10.1002/chin.200115007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Harichandran, G., and N. P. Lalla. "Facile synthesis of CuAlS2 nanorods." Materials Letters 62, no. 8-9 (March 2008): 1267–69. http://dx.doi.org/10.1016/j.matlet.2007.08.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Abaab, M., A. S. Bouazzi, and B. Rezig. "Competitive CuAlS2 oxygen gas sensor." Microelectronic Engineering 51-52 (May 2000): 343–48. http://dx.doi.org/10.1016/s0167-9317(99)00495-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Aksenov, Igor, Takashi Yasuda, Tetsuya Kai, Nobuyuki Nishikawa, Tsuyoshi Ohgoh, and Katsuaki Sato. "Photoluminescence of Cd-Doped CuAlS2." Japanese Journal of Applied Physics 32, Part 1, No. 3A (March 15, 1993): 1068–69. http://dx.doi.org/10.1143/jjap.32.1068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Aksenov, Igor, Masahiro Matsui, Tetsuya Kai, and Katsuaki Sato. "Photoluminescence Studies in CuAlS2:Zn." Japanese Journal of Applied Physics 32, Part 1, No. 10 (October 15, 1993): 4542–49. http://dx.doi.org/10.1143/jjap.32.4542.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kuroki, Yuichiro, Ariyuki Kato, Tomoichiro Okamoto, and Masasuke Takata. "Excitonic photoluminescence in CuAlS2 powders." Journal of Electroceramics 21, no. 1-4 (September 1, 2007): 378–80. http://dx.doi.org/10.1007/s10832-007-9200-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sugan, S., K. Baskar, and R. Dhanasekaran. "Structural, morphological and optical studies on CuAlS2 and CuAlSe2 nanorods prepared by hydrothermal method." Journal of Alloys and Compounds 645 (October 2015): 85–89. http://dx.doi.org/10.1016/j.jallcom.2015.04.129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Aksenov, Igor, Takashi Yasuda, Yusaburo Segawa, and Katsuaki Sato. "Violet photoluminescence in Zn‐doped CuAlS2." Journal of Applied Physics 74, no. 3 (August 1993): 2106–8. http://dx.doi.org/10.1063/1.354732.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Aksenov, Igor, and Katsuaki Sato. "Visible photoluminescence of Zn‐doped CuAlS2." Applied Physics Letters 61, no. 9 (August 31, 1992): 1063–65. http://dx.doi.org/10.1063/1.107717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Aksenov, Igor, Tetsuya Kai, Nobuyuki Nishikawa, and Katsuaki Sato. "Optical Absorption of Co2+in CuAlS2." Japanese Journal of Applied Physics 32, Part 2, No. 4A (April 1, 1993): L516—L519. http://dx.doi.org/10.1143/jjap.32.l516.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Aksenov, Igor, Yuki Kudo, and Katsuaki Sato. "ESR of Tb3+Ion in CuAlS2." Japanese Journal of Applied Physics 31, Part 2, No. 8A (August 1, 1992): L1009—L1011. http://dx.doi.org/10.1143/jjap.31.l1009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Kimura, Yasukazu, Tsuyoshi Ohgoh, Igor Aksenov, and Katsuaki Sato. "Optical Properties of Er-Doped CuAlS2." Japanese Journal of Applied Physics 35, Part 1, No. 7 (July 15, 1996): 3904–8. http://dx.doi.org/10.1143/jjap.35.3904.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Aksenov, I. A., I. R. Gulakov, V. I. Lipnitskii, A. I. Lukomskii, and L. A. Makovetskaya. "Cathodoluminescence and electrical properties of CuAlS2." Physica Status Solidi (a) 115, no. 1 (September 16, 1989): K113—K116. http://dx.doi.org/10.1002/pssa.2211150166.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Andriesh, A. M., N. N. Syrbu, M. S. Iovu, and V. E. Tazlavan. "Infrared Vibrational Modes and Anisotropy of the Effective Ionic Charge in CuAlSe2, CuAlS2, and CuGaSe2 Crystals." physica status solidi (b) 187, no. 1 (January 1, 1995): 83–92. http://dx.doi.org/10.1002/pssb.2221870107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Masnic, Alisa, Victor Zalamai, and Veaceslav Ursaki. "OPTICAL ANISOTROPY AND BIREFRINGENCE OF CuAlS2 CRYSTALS." Journal of Engineering Science XXVIII, no. 2 (June 2021): 25–33. http://dx.doi.org/10.52326/jes.utm.2021.28(2).01.

Full text
Abstract:
Optical spectra were investigated in a spectral range of (300 - 700) nm for CuAlS2 single crystals. Transmission and wavelength modulated transmission spectra demonstrated presence of some impurity absorption bands in the region of optical transparency of crystals. Optical functions (real and imaginary components of the dielectric function, refractive index and extinction coefficient) have been calculated from the optical reflection spectra by means of the Kramers-Kronig relations. A strong anisotropy and birefringence have been revealed for CuAlS2 crystals. Two isotropic points have been found in (100) oriented platelets around 380 nm and 530 nm. The position of the isotropic point around 530 nm was found to be strongly influenced by the technological conditions of crystal growth and platelet thickness, it being situated at 535 nm for a platelet with thickness of 223 µm. An optical band-pass filter was constructed with such a platelet placed between two Gran-Thompson prism crossed polarizers.
APA, Harvard, Vancouver, ISO, and other styles
19

Liu, Min-Ling, Fu-Qiang Huang, Li-Dong Chen, Yao-Ming Wang, Ying-Hua Wang, Gui-Feng Li, and Qun Zhang. "p-type transparent conductor: Zn-doped CuAlS2." Applied Physics Letters 90, no. 7 (February 12, 2007): 072109. http://dx.doi.org/10.1063/1.2591415.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Nakahara, J., K. Itoh, K. Sato, and S. Yamamoto. "Photoluminescence spectra of CuAlS2 doped with Er." Journal of Luminescence 87-89 (May 2000): 1112–14. http://dx.doi.org/10.1016/s0022-2313(99)00560-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Roa, L., J. Gonz�lez, J. C. Chervin, and A. Chevy. "High Pressure Raman Scattering Study of CuAlS2." physica status solidi (b) 211, no. 1 (January 1999): 429–34. http://dx.doi.org/10.1002/(sici)1521-3951(199901)211:1<429::aid-pssb429>3.0.co;2-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Aksenov, Igor, Tetsuya Kai, Nobuyuki Nishikawa, and Katsuaki Sato. "Visible Photoluminescence in Undoped and Zn-doped CuAlS2." Japanese Journal of Applied Physics 32, S3 (January 1, 1993): 153. http://dx.doi.org/10.7567/jjaps.32s3.153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Aksenov, Igor, Nobuyuki Nishikawa, and Katsuaki Sato. "Electron spin resonance of copper vacancy in CuAlS2." Journal of Applied Physics 74, no. 6 (September 15, 1993): 3811–14. http://dx.doi.org/10.1063/1.354473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Aksenov, I. A., L. A. Makovetskaya, and V. A. Savchuk. "Electrical properties of cadmium and Zinc doped CuAlS2." Physica Status Solidi (a) 108, no. 1 (July 16, 1988): K63—K65. http://dx.doi.org/10.1002/pssa.2211080164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Geng, J., and J. Wu. "Effects of pressure on structural, mechanical, and electronic properties of chalcopyrite compound CuAlS2." Chalcogenide Letters 20, no. 3 (March 2023): 215–25. http://dx.doi.org/10.15251/cl.2023.203.215.

Full text
Abstract:
First-principles method is performed to investigate the structural, electronic, elastic and mechanical characteristics of the tetragonal CuAlS2 in the pressure range from 0 to 10 GPa. The results indicated that both the lattice constant and cell volume decrease with the increase of pressure, which are matched well with available previous values. The pressure has a more significant influence on the c direction than the a and b direction. The obtained elastic constants reveal the tetragonal CuAlS2 is mechanically stable between 0 and 10 GPa. The bulk, shear, and Young’s modulus are evaluated by Voigt-Reuss-Hill approximation. All these elastic moduli exhibit a monotonic feature as a function of pressure. The Poisson’s ratio, Pugh’s criterion, and Cauchy pressure indicate that ternary chalcopyrite semiconductor CuAlS2 is ductile against pressure. Meanwhile, the analysis of the electronic structures reveals that the states near the valence band top are derived from Cu 3d and S 3p orbitals, and the lowest conduction band is composed of Al 3p and S 3p orbitals. We expect that the findings predicted the physical properties of this compound will promote future experimental studies on CuAlS2.
APA, Harvard, Vancouver, ISO, and other styles
26

Ho, Ching Hwa, Sheng Feng Lo, Ping Chen Chi, Ching Cherng Wu, Ying Sheng Huang, and Kwong Kau Tiong. "Optical Characterization of Electronic Structure of CuInS2 and CuAlS2 Chalcopyrite Crystals." Solid State Phenomena 170 (April 2011): 21–24. http://dx.doi.org/10.4028/www.scientific.net/ssp.170.21.

Full text
Abstract:
Electronic structure of solar-energy related crystals of CuInS2 and CuAlS2 has been characterized using thermoreflectance (TR) measurement in the energy range between 1.25 and 6 eV. The TR measurements were carried out at room (~300 K, RT) and low (~30 K, LT) temperatures. A lot of interband transition features including band-edge excitons and higher-lying interband transitions were simultaneously detected in the low-temperature TR spectra of CuInS2 and CuAlS2. The energies of band-edge excitonic transitions at LT (RT) were analysed and determined to be =1.545 (1.535) and =1.554 eV (1.545 eV) for CuInS2, and =3.514 (3.486), =3.549 (3.522), and =3.666 eV (3.64 eV) for CuAlS2, respectively. The band-edge transitions of the and excitons are originated from the sulfur pp transitions in CuInS2 and CuAlS2 separated by crystal-field splitting. Several high-lying interband transitions were detected in the TR spectra of CuInS2 and CuAlS2 at LT and RT. Transition origins for the high-lying interband transitions are evaluated. The dependence of electronic band structure in between the CuInS2 and CuAlS2 is analysed and discussed.
APA, Harvard, Vancouver, ISO, and other styles
27

Shojaei, Maryam, Ali Shokuhfar, and Ashkan Zolriasatein. "Synthesis and characterization of CuAlS2 nanoparticles by mechanical milling." Materials Today Communications 27 (June 2021): 102243. http://dx.doi.org/10.1016/j.mtcomm.2021.102243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Sato, Katsuaki, Igor Aksenov, Nobuyuki Nishikawa, and Tetsuya Kai. "Optical and ESR Characterization of Transition Atoms in CuAlS2." Japanese Journal of Applied Physics 32, S3 (January 1, 1993): 481. http://dx.doi.org/10.7567/jjaps.32s3.481.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Lipnitskii, V. I., V. A. Savchuk, B. V. Korzun, G. I. Makovetskii, and G. P. Popelnjuk. "The Recombination in Zn, Cd and Hg-Doped CuAlS2." Japanese Journal of Applied Physics 32, S3 (January 1, 1993): 635. http://dx.doi.org/10.7567/jjaps.32s3.635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Kuroki, Yuichiro, Tomoichiro Okamoto, Masasuke Takata, and Minoru Osada. "Impacts of intrinsic defects on luminescence properties of CuAlS2." Applied Physics Letters 89, no. 22 (November 27, 2006): 221117. http://dx.doi.org/10.1063/1.2400101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Bairamov, B. H., A. Aydinli, I. V. Bodnar’, Yu V. Rud’, V. K. Nogoduyko, and V. V. Toporov. "High power gain for stimulated Raman amplification in CuAlS2." Journal of Applied Physics 80, no. 10 (November 15, 1996): 5564–69. http://dx.doi.org/10.1063/1.363820.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

TSUJI, Kazuaki, and Koutoku OHMI. "Si Codoped CuAlS2:Mn Red Phosphor for White LEDs." Journal of Light & Visual Environment 32, no. 2 (2008): 135–38. http://dx.doi.org/10.2150/jlve.32.135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Nishi, Takao, Yasukazu Kimura, and Katsuaki Sato. "Photoluminescence studies of rare-earth-doped CuAlS2 single crystals." Journal of Luminescence 87-89 (May 2000): 1105–7. http://dx.doi.org/10.1016/s0022-2313(99)00558-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Syrbu, N. N., B. V. Korzun, A. A. Fadzeyeva, R. R. Mianzelen, V. V. Ursaki, and I. Galbic. "Exciton spectra and energy band structure of CuAlS2 crystals." Physica B: Condensed Matter 405, no. 16 (August 2010): 3243–47. http://dx.doi.org/10.1016/j.physb.2010.04.052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Morita, Yoshio, and Tadashi Narusawa. "Characterization of CuAlS2 Films Grown by Molecular Beam Epitaxy." Japanese Journal of Applied Physics 31, Part 2, No. 10A (October 1, 1992): L1396—L1398. http://dx.doi.org/10.1143/jjap.31.l1396.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Aksenov, Igor, Tetsuya Kai, Nobuyuki Nishikawa, and Katsuaki Sato. "Optical Absorption and Electron Spin Resonance in CuAlS2:Ni." Japanese Journal of Applied Physics 32, Part 1, No. 8 (August 15, 1993): 3391–95. http://dx.doi.org/10.1143/jjap.32.3391.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Wan Wen-Jian, Yao Ruo-He, and Geng Kui-Wei. "Electronic structure of CuAlS2 doped with Mg and Zn." Acta Physica Sinica 60, no. 6 (2011): 067103. http://dx.doi.org/10.7498/aps.60.067103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Sato, Katsuaki, Koki Ishii, Kunio Watanabe, and Kensei Ohe. "Time-Resolved Photoluminescence Spectra in Single Crystals of CuAlS2:Mn." Japanese Journal of Applied Physics 30, Part 1, No. 2 (February 15, 1991): 307–13. http://dx.doi.org/10.1143/jjap.30.307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Korzun, B. V., V. A. Virchenko, and V. N. Yakimovich. "57Fe and 119Sn Mössbauer spectroscopy of the CuAlS2 chalcopyrite semiconductor." Journal of Crystal Growth 198-199 (March 1999): 821–24. http://dx.doi.org/10.1016/s0022-0248(98)01048-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

He, X.-C., H.-S. Shen, P. Wu, K. Dwight, and A. Wold. "Growth and characterization of CuGaS2, CuAlS2 and CuGa0.9Al0.1S2 single crystals." Materials Research Bulletin 23, no. 6 (June 1988): 799–803. http://dx.doi.org/10.1016/0025-5408(88)90072-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Nishi, Takao, Naohiro Ishibashi, Yuji Katsumata, and Katsuaki Sato. "Near-Infrared Photoluminescence in Mo-Doped Single Crystals of CuAlS2." Japanese Journal of Applied Physics 38, Part 1, No. 2A (February 15, 1999): 683–84. http://dx.doi.org/10.1143/jjap.38.683.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Itoh, K., S. Yamamoto, K. Sato, and J. Nakahara. "Pressure Dependence of Photoluminescence Spectra in CuAlS2 Doped with Lanthanide." REVIEW OF HIGH PRESSURE SCIENCE AND TECHNOLOGY 7 (1998): 769–71. http://dx.doi.org/10.4131/jshpreview.7.769.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Korzun, Barys, and Anatoly Pushkarev. "XRPD and Scanning Electron Microscopy of Alloys of the CuAlS2 – CuFeS2 System Prepared by Thermobaric Treatment." MRS Advances 3, no. 56 (2018): 3323–28. http://dx.doi.org/10.1557/adv.2018.558.

Full text
Abstract:
ABSTRACTAlloys of the CuAlS2 – CuFeS2 system were prepared by thermobaric treatment at high pressure of 5.5 GPa and temperatures ranging from 573 to 1573 K and phase formation in the system was investigated using X-ray powder diffraction, optical microscopy and scanning electron microscopy equipped with energy dispersive spectroscopy. The unit-cell parameters (the lattice constants and the unit-cell volume) were computed as a function of the composition. Absence of complete solubility in the (CuAlS2)1-x-(CuFeS2)x system was established. Formation of solid solutions with the tetragonal structure of chalcopyrite was detected for compositions with the molar part of CuFeS2 x not exceeding 0.10.
APA, Harvard, Vancouver, ISO, and other styles
44

Kuroki, Yuichiro, Tomoichiro Okamoto, and Masasuke Takata. "Synthesis and Luminescence Properties of Chalcopyrite-Type CuAlS2." Key Engineering Materials 301 (January 2006): 177–80. http://dx.doi.org/10.4028/www.scientific.net/kem.301.177.

Full text
Abstract:
Copper aluminum disulfide (CuAlS2) powders were synthesized in an evacuated ampoule at elevated temperatures. X-ray diffraction analysis revealed that the powders heated at temperatures higher than 800oC were single-phase CuAlS2. In the cathodoluminescence (CL) spectra measured at room temperature, the powders heated at temperatures higher than 600oC exhibited a visible emission peak at approximately 1.8 eV and a distinct ultraviolet emission peak at 3.45 eV. The powder heated at 700oC showed the maximum intensity of ultraviolet emission which is considered to be associated with excitons.
APA, Harvard, Vancouver, ISO, and other styles
45

Kuroki, Yuichiro, Minoru Osada, Ariyuki Kato, Tomoichiro Okamoto, and Masasuke Takata. "Exciton-Phonon Interaction in CuAlS2 Powders." Advanced Materials Research 11-12 (February 2006): 175–78. http://dx.doi.org/10.4028/www.scientific.net/amr.11-12.175.

Full text
Abstract:
High-resolution photoluminescence (PL) measurement was carried out for copper aluminum disulfide (CuAlS2) powder at 12 K. Several sharp PL lines were observed in the range from 3.580 to 3.320 eV. The emission peaks at photon energies from 3.566 to 3.459 eV were attributed to free-exciton (FE) and bound-excitons (BE). The several weak emissions at below 3.476 eV were clarified to be phonon replicas (PR) by Raman scattering and in the viewpoint of exciton-phonon interaction. We observed the one, two and three-phonon replicas related to E(LO, TO) and B2(LO, TO) vibrational modes in chalcopyrite structure. It was suggested that the strong interaction between excitons and optical phonons took place in obtained CuAlS2 powder.
APA, Harvard, Vancouver, ISO, and other styles
46

Shojaei, Maryam, Ali Shokuhfar, Ashkan Zolriasatein, and Ahmad Ostovari Moghaddam. "Enhanced thermoelectric performance of CuAlS2 by adding multi-walled carbon nanotubes." Advanced Powder Technology 33, no. 2 (February 2022): 103445. http://dx.doi.org/10.1016/j.apt.2022.103445.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Liborio, Leandro M., Christine L. Bailey, Giuseppe Mallia, Stanko Tomić, and Nicholas M. Harrison. "Chemistry of defect induced photoluminescence in chalcopyrites: The case of CuAlS2." Journal of Applied Physics 109, no. 2 (January 15, 2011): 023519. http://dx.doi.org/10.1063/1.3544206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Zheng, Wen-Chen, Hui-Ning Dong, Sheng Tang, and Jian Zi. "Zero-field Splitting and Local Lattice Distortions for Fe3+ Ions in Some Ib-IIIb-VI2 Semiconductors." Zeitschrift für Naturforschung A 59, no. 1-2 (February 1, 2004): 100–102. http://dx.doi.org/10.1515/zna-2004-1-215.

Full text
Abstract:
The EPR zero-field splitting D for Fe3+ ions in some Ib-IIIb-VI2 semiconductors is calculated with the superposition model. The calculated D values, when using the local rotation angles τ (Fe3+) for Fe3+ in CuGaS2 and AgGaS2 crystals, are consistent with the observed values, whereas for Fe3+ in CuAlS2 crystal they are not. The calculated results are discussed. The local lattice distortions except the local rotation angles τ for Fe3+ in CuAlS2 are suggested.
APA, Harvard, Vancouver, ISO, and other styles
49

Moreh, A. U. "The Effect of Sulfurisation Temperature on Structural Properties of CuAlS2 Thin Films." IOSR Journal of Applied Physics 3, no. 1 (2013): 12–17. http://dx.doi.org/10.9790/4861-0311217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Miyamoto, Yoshinobu, Tetsuo Honma, and Koutoku Ohmi. "Photoluminescent Characteristics of Mn2+Centers Selectively Substituted for Different Cations in CuAlS2." Japanese Journal of Applied Physics 50, no. 10R (October 1, 2011): 102401. http://dx.doi.org/10.7567/jjap.50.102401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography