Journal articles on the topic 'Cu2V2O7'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Cu2V2O7.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Suganya, P., J. Princy, N. Mathivanan, and Krishnasamy K. "One-Pot Synthesis of rGO@Cu2V2O7 Nanocomposite as High Stabled Electrode for Symmetric Electrochemical Capacitors." ECS Journal of Solid State Science and Technology 11, no. 4 (April 1, 2022): 041005. http://dx.doi.org/10.1149/2162-8777/ac62f1.
Full textShuang, Shuang, Leonardo Girardi, Gian Rizzi, Andrea Sartorel, Carla Marega, Zhengjun Zhang, and Gaetano Granozzi. "Visible Light Driven Photoanodes for Water Oxidation Based on Novel r-GO/β-Cu2V2O7/TiO2 Nanorods Composites." Nanomaterials 8, no. 7 (July 18, 2018): 544. http://dx.doi.org/10.3390/nano8070544.
Full textKrivovichev, S. V., S. K. Filatov, P. N. Cherepansky, T. Armbruster, and O. Yu Pankratova. "CRYSTAL STRUCTURE OF -Cu2V2O7 AND ITS COMPARISON TO BLOSSITE ( -Cu2V2O7) AND ZIESITE ( -Cu2V2O7)." Canadian Mineralogist 43, no. 2 (April 1, 2005): 671–77. http://dx.doi.org/10.2113/gscanmin.43.2.671.
Full textFontaine, Blandine, Youssef Benrkia, Jean-François Blach, Christian Mathieu, Pascal Roussel, Ahmad I. Ayesh, Adlane Sayede, and Sébastien Saitzek. "Photoelectrochemical properties of copper pyrovanadate (Cu2V2O7) thin films synthesized by pulsed laser deposition." RSC Advances 13, no. 18 (2023): 12161–74. http://dx.doi.org/10.1039/d3ra01509b.
Full textKrasnenko, Tatiana, Nadezhda Medvedeva, and Vitalii Bamburov. "Atomic and Electronic Structure of Zinc and Copper Pyrovanadates with Negative Thermal Expansion." Advances in Science and Technology 63 (October 2010): 358–63. http://dx.doi.org/10.4028/www.scientific.net/ast.63.358.
Full textBenko, F. A., and F. P. Koffyberg. "Semiconductivity and optical interband transitions of CuV2O6 and Cu2V2O7." Canadian Journal of Physics 70, no. 2-3 (February 1, 1992): 99–103. http://dx.doi.org/10.1139/p92-011.
Full textPonomarenko, L. A., A. N. Vasil'ev, E. V. Antipov, and Yu A. Velikodny. "Magnetic properties of Cu2V2O7." Physica B: Condensed Matter 284-288 (July 2000): 1459–60. http://dx.doi.org/10.1016/s0921-4526(99)02702-7.
Full textEGUCHI, M., I. FURUSAWA, T. MIURA, and T. KISHI. "Lithium insertion characteristics of ß-Cu2V2O7." Solid State Ionics 68, no. 1-2 (February 1994): 159–64. http://dx.doi.org/10.1016/0167-2738(94)90253-4.
Full textWang, Hui, Mengjie Yang, Mingju Chao, Juan Guo, Qilong Gao, Yajie Jiao, Xinbo Tang, and Erjun Liang. "Negative thermal expansion property of β-Cu2V2O7." Solid State Ionics 343 (December 2019): 115086. http://dx.doi.org/10.1016/j.ssi.2019.115086.
Full textДенисова, Л. Т., Н. В. Белоусова, В. М. Денисов, and Н. А. Галиахметова. "Высокотемпературная теплоемкость оксидов системы CuO-V-=SUB=-2-=/SUB=-O-=SUB=-5-=/SUB=-." Физика твердого тела 59, no. 6 (2017): 1243. http://dx.doi.org/10.21883/ftt.2017.06.44500.407.
Full textFeng, Jian, Xia Ran, Li Wang, Bo Xiao, Li Lei, Jinming Zhu, Zuoji Liu, et al. "The Synergistic Effect of Adsorption-Photocatalysis for Removal of Organic Pollutants on Mesoporous Cu2V2O7/Cu3V2O8/g-C3N4 Heterojunction." International Journal of Molecular Sciences 23, no. 22 (November 17, 2022): 14264. http://dx.doi.org/10.3390/ijms232214264.
Full textPiyawongwatthana, Pharit, Daisuke Okuyama, Kazuhiro Nawa, Kittiwit Matan, and Taku J. Sato. "Formation of Single Polar Domain in α-Cu2V2O7." Journal of the Physical Society of Japan 90, no. 2 (February 15, 2021): 025003. http://dx.doi.org/10.7566/jpsj.90.025003.
Full textRao, Martha Purnachander, A. K. Akhila, Jerry J. Wu, Abdullah M. Asiri, and Sambandam Anandan. "Synthesis, characterization and adsorption properties of Cu2V2O7 nanoparticles." Solid State Sciences 92 (June 2019): 13–23. http://dx.doi.org/10.1016/j.solidstatesciences.2019.03.021.
Full textPetrova, S. A., M. V. Rotermel, R. G. Zakharov, and T. I. Krasnenko. "High-temperature X-ray study of Zn-substituted Cu2V2O7." Acta Crystallographica Section A Foundations of Crystallography 61, a1 (August 23, 2005): c469. http://dx.doi.org/10.1107/s0108767305080463.
Full textDenisova, L. T., N. V. Belousova, N. A. Galiakhmetova, V. M. Denisov, and E. O. Golubeva. "High-Temperature Heat Capacity of Zn2V2O7–Cu2V2O7 Solid Solutions." Physics of the Solid State 60, no. 7 (July 2018): 1303–7. http://dx.doi.org/10.1134/s1063783418070090.
Full textSakurai, Yoji, Shin-ichi Tobishima, and Jun-ichi Yamaki. "Dependence of Li/Cu2V2O7 cell characteristics on electrolytic properties." Electrochimica Acta 34, no. 7 (July 1989): 981–86. http://dx.doi.org/10.1016/0013-4686(89)80024-6.
Full textZhang, Niu, Li Li, Mingyi Wu, Yuxiang Li, Dongsheng Feng, Cunyuan Liu, Yanchao Mao, Juan Guo, Mingju Chao, and Erjun Liang. "Negative thermal expansion and electrical properties of α-Cu2V2O7." Journal of the European Ceramic Society 36, no. 11 (September 2016): 2761–66. http://dx.doi.org/10.1016/j.jeurceramsoc.2016.04.030.
Full textKim, Eung Soo, Je Hun Kim, Ki Gang Lee, Seung Gu Kang, and Pyung Kyu Kim. "Microwave dielectric properties of Bi(Nb1-xTax)O4ceramics with Cu2V2O7." Ferroelectrics 262, no. 1 (January 2001): 263–68. http://dx.doi.org/10.1080/00150190108225160.
Full textStrukan, Neven, Gwilherm Nénert, Alexei Belik, and Boris V. Slobodin. "Irreversible pressure-induced phase transformation in blossite, α-Cu2V2O7, mineral." Acta Crystallographica Section A Foundations and Advances 71, a1 (August 23, 2015): s372. http://dx.doi.org/10.1107/s2053273315094450.
Full textSlobodin, B. V., and R. F. Samigullina. "Thermoanalytical study of the polymorphism and melting behavior of Cu2V2O7." Inorganic Materials 46, no. 2 (February 2010): 196–200. http://dx.doi.org/10.1134/s0020168510020196.
Full textZhang, Niu, Yanchao Mao, Xiansheng Liu, Mengjie Yang, Xuhui Kong, Mengdi Zhang, Xiaoshuai Kong, Juan Guo, Mingju Chao, and Erjun Liang. "Tailored thermal expansion and electrical properties of α-Cu2V2O7/Al." Ceramics International 42, no. 15 (November 2016): 17004–8. http://dx.doi.org/10.1016/j.ceramint.2016.07.207.
Full textSakurai, Yoji, and Jun-Ichi Yamaki. "Electrochemical reaction of α-Cu2V2O7 with lithium in organic electrolyte." Electrochimica Acta 34, no. 3 (March 1989): 355–61. http://dx.doi.org/10.1016/0013-4686(89)87011-2.
Full textWiktor, Julia, Igor Reshetnyak, Michal Strach, Mariateresa Scarongella, Raffaella Buonsanti, and Alfredo Pasquarello. "Sizable Excitonic Effects Undermining the Photocatalytic Efficiency of β-Cu2V2O7." Journal of Physical Chemistry Letters 9, no. 19 (September 7, 2018): 5698–703. http://dx.doi.org/10.1021/acs.jpclett.8b02323.
Full textSchindler, Michael, and Frank C. Hawthorne. "Structural Characterization of the β-Cu2V2O7–α-Zn2V2O7 Solid Solution." Journal of Solid State Chemistry 146, no. 1 (August 1999): 271–76. http://dx.doi.org/10.1006/jssc.1999.8371.
Full textKar, Abja Keshar, Bidisa Chattopadhyay, Ratnadwip Singha, Abhisikta Barman, Md A. Ahmed, A. Midya, S. Bandyopadhyay, Devajyoti Mukherjee, D. Jana, and Prabhat Mandal. "Effect of Co and Mg doping at Cu site on structural, magnetic and dielectric properties of α–Cu2V2O7." Journal of Physics: Condensed Matter 34, no. 7 (November 30, 2021): 075702. http://dx.doi.org/10.1088/1361-648x/ac38df.
Full textMuthamizh, S., J. Yesuraj, R. Jayavel, D. Contreras, K. Arul Varman, and R. V. Mangalaraja. "Microwave synthesis of β-Cu2V2O7 nanorods: structural, electrochemical supercapacitance, and photocatalytic properties." Journal of Materials Science: Materials in Electronics 32, no. 3 (January 24, 2021): 2744–56. http://dx.doi.org/10.1007/s10854-020-05007-w.
Full textKeerthana, S. P., R. Yuvakkumar, P. Senthil Kumar, G. Ravi, and Dhayalan Velauthapillai. "Surfactant induced copper vanadate (β-Cu2V2O7, Cu3V2O8) for different textile dyes degradation." Environmental Research 211 (August 2022): 112964. http://dx.doi.org/10.1016/j.envres.2022.112964.
Full textKulbakin, I. V., S. V. Fedorov, and V. V. Belousov. "Features of Oxygen Transfer in Cu2V2O7 – 20 wt% CuV2O6 Molten Oxide Membrane." Journal of The Electrochemical Society 165, no. 13 (2018): H861—H865. http://dx.doi.org/10.1149/2.0831813jes.
Full textRuan, M. Y., Z. W. Ouyang, Y. C. Sun, Z. C. Xia, G. H. Rao, and H. S. Chen. "Examining Magnetic Models and Anisotropies in β-Cu2V2O7 by High-Frequency ESR." Applied Magnetic Resonance 48, no. 5 (March 29, 2017): 423–33. http://dx.doi.org/10.1007/s00723-017-0871-3.
Full textKrasnenko, T. I., M. V. Rotermel’, S. A. Petrova, R. G. Zakharov, O. V. Sivtsova, and A. N. Chvanova. "Phase relations in the Zn2V2O7-Cu2V2O7 system from room temperature to melting." Russian Journal of Inorganic Chemistry 53, no. 10 (October 2008): 1641–47. http://dx.doi.org/10.1134/s0036023608100203.
Full textWang, L., J. Werner, A. Ottmann, R. Weis, M. Abdel-Hafiez, J. Sannigrahi, S. Majumdar, C. Koo, and R. Klingeler. "Magnetoelastic coupling and ferromagnetic-type in-gap spin excitations in multiferroic α-Cu2V2O7." New Journal of Physics 20, no. 6 (June 25, 2018): 063045. http://dx.doi.org/10.1088/1367-2630/aac9dc.
Full textChattopadhyay, Bidisa, Md A. Ahmed, S. Bandyopadhyay, R. Singha, and P. Mandal. "Magnetic ordering induced ferroelectricity in α-Cu2V2O7 studied through non-magnetic Zn doping." Journal of Applied Physics 121, no. 9 (March 7, 2017): 094103. http://dx.doi.org/10.1063/1.4977859.
Full textGuo, Wenlong, Xin Lian, Yao Nie, Meichen Hu, Liming Wu, Huahui Gao, and Ting Wang. "Facile growth of β-Cu2V2O7 thin films and characterization for photoelectrochemical water oxidation." Materials Letters 258 (January 2020): 126842. http://dx.doi.org/10.1016/j.matlet.2019.126842.
Full textSato, M., V. Warne-Lang, Y. Kadowaki, N. Katayama, Y. Okamoto, and K. Takenaka. "Sol–gel synthesis of doped Cu2V2O7 fine particles showing giant negative thermal expansion." AIP Advances 10, no. 7 (July 1, 2020): 075207. http://dx.doi.org/10.1063/5.0010631.
Full textVali, Abbas, and Krishnan Rajeshwar. "Β-Cu2V2O7 Thin Films By a Hybrid Electrochemical/Thermal Route: Preparation and Characterization." ECS Meeting Abstracts MA2020-02, no. 15 (November 23, 2020): 1423. http://dx.doi.org/10.1149/ma2020-02151423mtgabs.
Full textKim, Min-woo, Bhavana Joshi, Hyun Yoon, Tae Yoon Ohm, Karam Kim, Salem S. Al-Deyab, and Sam S. Yoon. "Electrosprayed copper hexaoxodivanadate (CuV2O6) and pyrovanadate (Cu2V2O7) photoanodes for efficient solar water splitting." Journal of Alloys and Compounds 708 (June 2017): 444–50. http://dx.doi.org/10.1016/j.jallcom.2017.02.302.
Full textWang, Yong, Liyun Cao, Jianfeng Huang, Lingjiang Kou, Jiayin Li, Jianpeng Wu, Yijun Liu, and Limin Pan. "Improved Li-Storage Properties of Cu2V2O7 Microflower by Constructing an in Situ CuO Coating." ACS Sustainable Chemistry & Engineering 7, no. 6 (February 17, 2019): 6267–74. http://dx.doi.org/10.1021/acssuschemeng.8b06696.
Full textSong, Angang, Abdelkrim Chemseddine, Ibbi Yilmaz Ahmet, Peter Bogdanoff, Dennis Friedrich, Fatwa F. Abdi, Sean P. Berglund, and Roel van de Krol. "Evaluation of Copper Vanadate (β-Cu2V2O7) as a Photoanode Material for Photoelectrochemical Water Oxidation." Chemistry of Materials 32, no. 6 (March 2, 2020): 2408–19. http://dx.doi.org/10.1021/acs.chemmater.9b04909.
Full textGuo, Wenlong, William D. Chemelewski, Oluwaniyi Mabayoje, Peng Xiao, Yunhuai Zhang, and C. Buddie Mullins. "Synthesis and Characterization of CuV2O6 and Cu2V2O7: Two Photoanode Candidates for Photoelectrochemical Water Oxidation." Journal of Physical Chemistry C 119, no. 49 (November 30, 2015): 27220–27. http://dx.doi.org/10.1021/acs.jpcc.5b07219.
Full textIlic, D., and D. Neumann. "Characterization of Cu2V2O7 as cathode material for lithium cells by X-ray and photoelectron spectroscopy." Journal of Power Sources 44, no. 1-3 (April 1993): 589–93. http://dx.doi.org/10.1016/0378-7753(93)80207-6.
Full textNinova, Silviya, Michal Strach, Raffaella Buonsanti, and Ulrich Aschauer. "Suitability of Cu-substituted β-Mn2V2O7 and Mn-substituted β-Cu2V2O7 for photocatalytic water-splitting." Journal of Chemical Physics 153, no. 8 (August 28, 2020): 084704. http://dx.doi.org/10.1063/5.0019306.
Full textGadiyar, Chethana, Michal Strach, Pascal Schouwink, Anna Loiudice, and Raffaella Buonsanti. "Chemical transformations at the nanoscale: nanocrystal-seeded synthesis of β-Cu2V2O7 with enhanced photoconversion efficiencies." Chemical Science 9, no. 25 (2018): 5658–65. http://dx.doi.org/10.1039/c8sc01314d.
Full textMachida, Masato, Takahiro Kawada, Hiroaki Yamashita, and Tonami Tajiri. "Role of Oxygen Vacancies in Catalytic SO3 Decomposition over Cu2V2O7 in Solar Thermochemical Water Splitting Cycles." Journal of Physical Chemistry C 117, no. 50 (December 5, 2013): 26710–15. http://dx.doi.org/10.1021/jp410431a.
Full textThanh Truc, Nguyen Thi, Nguyen Thi Hanh, Minh Viet Nguyen, Nguyen Thi Phuong Le Chi, Nguyen Van Noi, Dinh Trinh Tran, Minh Ngoc Ha, Do Quang Trung, and Thanh-Dong Pham. "Novel direct Z-scheme Cu2V2O7/g-C3N4 for visible light photocatalytic conversion of CO2 into valuable fuels." Applied Surface Science 457 (November 2018): 968–74. http://dx.doi.org/10.1016/j.apsusc.2018.07.034.
Full textKalal, Sangeeta, Arpita Pandey, Rakshit Ameta, Pinki B. Punjabi, and Alexandra Martha Zoya Slawin. "Heterogeneous photo-Fenton-like catalysts Cu2V2O7 and Cr2V4O13 for an efficient removal of azo dye in water." Cogent Chemistry 2, no. 1 (March 22, 2016): 1143344. http://dx.doi.org/10.1080/23312009.2016.1143344.
Full textGuo, Wenlong, and Xin Lian. "Kinetics mechanism insights into the oxygen evolution reaction on the (110) and (022) crystal facets of β-Cu2V2O7." Catalysis Science & Technology 10, no. 15 (2020): 5129–35. http://dx.doi.org/10.1039/d0cy00959h.
Full textScarongella, Mariateresa, Chethana Gadiyar, Michal Strach, Luca Rimoldi, Anna Loiudice, and Raffaella Buonsanti. "Assembly of β-Cu2V2O7/WO3 heterostructured nanocomposites and the impact of their composition on structure and photoelectrochemical properties." Journal of Materials Chemistry C 6, no. 44 (2018): 12062–69. http://dx.doi.org/10.1039/c8tc02888e.
Full textWang, Yong, Liyun Cao, Jianfeng Huang, Jing Lu, Boye Zhang, Guojuan Hai, and Na Jia. "Enhanced cyclic performance of Cu2V2O7/ reduced Graphene Oxide mesoporous microspheres assembled by nanoparticles as anode for Li-ion battery." Journal of Alloys and Compounds 724 (November 2017): 421–26. http://dx.doi.org/10.1016/j.jallcom.2017.07.070.
Full textPaul, Arijita, and Siddhartha Sankar Dhar. "Designing Cu2V2O7/CoFe2O4/g-C3N4 ternary nanocomposite: A high performance magnetically recyclable photocatalyst in the reduction of 4-nitrophenol to 4-aminophenol." Journal of Solid State Chemistry 290 (October 2020): 121563. http://dx.doi.org/10.1016/j.jssc.2020.121563.
Full textKumar, Amit, Sunil Kumar Sharma, Gaurav Sharma, Changsheng Guo, Dai-Viet N. Vo, Jibran Iqbal, Mu Naushad, and Florian J. Stadler. "Silicate glass matrix@Cu2O/Cu2V2O7 p-n heterojunction for enhanced visible light photo-degradation of sulfamethoxazole: High charge separation and interfacial transfer." Journal of Hazardous Materials 402 (January 2021): 123790. http://dx.doi.org/10.1016/j.jhazmat.2020.123790.
Full text