Journal articles on the topic 'Cu2SnS3'

To see the other types of publications on this topic, follow the link: Cu2SnS3.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Cu2SnS3.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Budanov, Alexander V., Yury N. Vlasov, Gennady I. Kotov, Evgeniy V. Rudnev, and Pavel I. Podprugin. "Формирование тонких пленок соединений Cu2SnS3 и Cu2SnSe3." Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 21, no. 1 (March 5, 2019): 24–29. http://dx.doi.org/10.17308/kcmf.2019.21/713.

Full text
Abstract:
Показана возможность синтеза соединений Cu2SnS3 и Cu2SnSe3 на стеклянных подложках путём отжига в парах халькогена тонкой металлической плёнки сплава Cu:Sn = 2:1 в вакуумной графитовой камере типа квазизамкнутого объёма. Методом рентгеновской дифракции установлено, что полученные плёнки халькогенидов имеют подобную сфалериту кристаллическую структуру. Для кубической модификации Cu2SnS3 и Cu2SnSe3 преимущественными плоскостями отражений являются (111), (220) и (311). Элементный состав плёнок соответствует стехиометрии соединений Cu2SnS3 и Cu2SnSe3. Методом ИК-спектроскопии определены энергии активации прямозонных переходов для Cu2SnS3 – 0.96 eV, а для Cu2SnSe3 – 0.70 eV. ИСТОЧНИК ФИНАНСИРОВАНИЯ Работа выполнена при финансовой поддержке гранта РФФИ № 18-32-00971 – мол_а. ЛИТЕРАТУРА Milichko V. A., Shalin A. S., Mukhin I. S., et al. Usp., 2016, vol. 59, pp. 727–772. https://doi.org/10.3367/ufne.2016.02.037703 Wesley Herche. Renewable and Sustainable Energy Reviews, 2017, vol. 77, pp. 590-595. https://doi.org/10.1016/j.rser.2017.04.028 Rujun Suna, Daming Zhuang, Ming Zhao, et al. Solar Energy Materials and Solar Cells, 2018, vol. 174, pp. 42–49. https://doi.org/10.1016/j.solmat.2017.08.011 Orletskii I. G., Mar’yanchuk P. D., Solovan M. N., et al. Physics of the Solid State, 2016. vol. 58, no. 5, pp. 1058-1064. https://doi.org/10.1134/s1063783416050188 Ren Y. Acta Universitatis Upsaliensis, Uppsala, 2017, 85 p. URL: https://uu.diva-portal.org/smash/get/diva2:1072439/FULLTEXT01.pdf Lokhande A. C. Solar Energy Materials and Solar Cells, August 2016, vol. 153, pp. 84-107. https://doi.org/10.1016/j.solmat.2016.04.003 Shelke H. D., Lokhande A. C., Patil A. M., et al. Surfaces and Interfaces, 2017, vol. 9, pp. 238-244. https://doi.org/10.1016/j.surfin.2017.08.006 Orletskii I. G., Solovan M. N., Pinna F., et al. Physics of the Solid State. 2017, vol. 59, no. 4, pp. 801-807. https://doi.org/10.1134/s1063783417040163 Mingrui He. Journal of Alloys and Compounds, April 2017, vol. 701, pp. 901-908. https://doi.org/10.1016/j.jallcom.2017.01.191 Pin-Wen, GuanShun-Li Shang, Greta Lindwall. Solar Energy, 2017, vol. 155, pp. 745-757. https://doi.org/10.1016/j.solener.2017.07.017 Ju Yeon Lee. Solar Energy, 2017, vol. 145, pp. 27-32. https://doi.org/10.1016/j.solener.2016.09.041 Subbotina, O. Y., Kishkoparov N. V., Frishberg I. V. High Temperature, 1999, vol. 37, no. 2, pp. 198–203. URL: http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=tvt&paperid=2266&option_lang=rus (in Russ.) Budanov A. V., Vlasov Yu. N., Grechkina M. V., et al. Condensed Matter and Interphases, 2016, vol. 18, no. 4, pp. 481–486. URL: http://www.kcmf.vsu.ru/resources/t_18_4_2016_004.pdf (in Russ.) Zhang, Huang L. L., Zhu X. G., et al. Scripta Materialia, 2019, vol. 159, pp. 46–50. https://doi.org/10.1016/j.scriptamat.2018.09.010 Lukashev P., Lambrecht W. R. L., Kotani T., Schilfgaarde M. Rev. B: Condens. Matter Mater. Phys., 2007, vol. 76, p. 195202. https://doi.org/10.1103/physrevb.76.195202
APA, Harvard, Vancouver, ISO, and other styles
2

Ahamed, M. I., M. Ahamed, A. Sivaranjani, and S. Chockalingam. "Energy bandgap studies on copper chalcogenide semiconductor nanostructures using cohesive energy." Chalcogenide Letters 18, no. 5 (May 2021): 245–53. http://dx.doi.org/10.15251/cl.2021.185.245.

Full text
Abstract:
Investigating the properties of semiconductor nanomaterials to understand the specific behavior of nano-scale materials and predicts novel advancement of functionalized semiconductor materials that are influenced by cohesive energy. Cohesive energy is strongly associated with semiconductor nanomaterials as the energy increment by the arrangement of atoms in a crystal which is one of the most fundamental properties. In this communication, the shape and size dependence over the energy bandgap of copper chalcogenide semiconductor nanomaterials is investigated. The theoretical model is derived on cohesive energy of semiconductor nanomaterials was equated with the bulk materials. For this research, we considered Cu2SnS3, Cu2SnSe3, Cu2SnTe3, Cu3SbSe4, and CuSbS2 chalcogenide matters to the study of shape and size dependent-energy bandgap. The model forecasts that the energy bandgap is inversely proportional to the size of the semiconductor. The present modeling results are correlated with established experimental data and underpin the model reported.
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Cai Xia, Jun Guo, Danyu Jiang, and Qiang Li. "Synthesis and Characterization of Graphene/Cu2SnS3 Quantum Dots Composites." Advanced Materials Research 624 (December 2012): 59–62. http://dx.doi.org/10.4028/www.scientific.net/amr.624.59.

Full text
Abstract:
In this paper, employing Cu(AC)2•H2O, SnCl2•2H2O and thiourea as raw materials, the composites of graphene/Cu2SnS3 quantum dots (QDs) were prepared simply and quickly using the hydrothermal method. Meanwhile, the separate Cu2SnS3 QDs were also synthesized in the same way. The as-obtained Cu2SnS3 QDs and composites’ phase structures were analyzed and characterized by powder X-ray diffraction (XRD), and the results indicated that the size of the Cu2SnS3 QDs in the composites were less than that of the separate Cu2SnS3 QDs. At the same time, their morphologies were also observed and cross-confirmed by Transmission Electron Microscopy (TEM), and the measurements manifested that Cu2SnS3 QDs were uniformly dispersed on the surface of the graphene, while the separate Cu2SnS3 QDs have obvious glomeration. In addition to this, elemental analysis was also made to verify the existence of Cu2SnS3 on the surface of graphene.
APA, Harvard, Vancouver, ISO, and other styles
4

Rzaguliyev, Vidadi A., Oruj S. Kerimli, Dilbar S. Ajdarova, Sharafat H. Mammadov, and Ozbek M. Aliev. "Фазовые равновесия в системах Ag8SnS6–Cu2SnS3 и Ag2SnS3–Cu2Sn4S9." Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 21, no. 4 (December 19, 2019): 544–51. http://dx.doi.org/10.17308/kcmf.2019.21/2365.

Full text
Abstract:
Комплексными методами физико-химического анализа (дифференциально-термический, рентгенофазовый, микроструктурный, измерение микротвердости и определение плотности) изучены фазовые равновесия и построены Т–х фазовые диаграммыв системах Ag8SnS6–Cu2SnS3 и Ag2SnS3–Cu2Sn4S9. Показано, что система Ag8SnS6–Cu2SnS3является квазибинарным сечением квазитройной системы Ag2S-SnS2-Cu2S и относится кпростому эвтектическому типу с ограниченными областями растворимости на основеисходных сульфидов. Координаты эвтектической точки: 50 mol % Ag2SnS3 И Т = 900 К.Растворимость на основе Ag8SnS6 и Cu2SnS3 при эвтектической температуре простираетсядо 20 и 28 mol % соответственно. С уменьшением температуры твердые растворы распадаются и при 300 К составляют 5 и 10 mol %. Установлено, что с увеличением концентрацииAg8SnS6 в твердых растворах (Cu2SnS3)1-х (Ag8SnS6)х параметр кубической решетки увеличивается от а = 0.5445 nm (для чистого Cu2SnS3) до а = 0.725 nm (для состава х = 0.1) т. е. концентрационная зависимость параметра решетки имеет линейный характер.Система Ag2SnS3–Cu2Sn4S9 из-за перитектического плавления Cu2Sn4S9 имеет сложный характер и является частично квазибинарным сечением. Квазибинарность нарушается вобласти концентрации 65-100 mol % Cu2Sn4S9 и выше температуры 900 К. Твердые растворына основе Ag2SnS3 и Cu2Sn4S9 узкие и при 300 К составляют 10; 2.5 mol % соответственно ЛИТЕРАТУРА1. Wang N., Fan A. K. An experimental study of the Ag2S-SnS2 pseudobinary join // Neues Jahrb. Mineral.-Abh, 1989, v. 160, pp. 33–36.2. Wang N. New data for Ag8SnS6 (canfeildite) and Ag8GeS6 (argyrodite) // Neues Jahrb. Mineral. Monatsh.,1978, pp. 269–272.3. Бабанлы М. Б., Юсибов Ю. А., Абишев В. Т. Трехкомпонентные халькогениды на основе медии серебра. Баку: Изд-во БГУ, 1993, 342 с.4. Parasyuk O. V., Chykhrij S. I., Bozhko V. V., Piskach L. V., Bogdanyuk M. S., Olekseyuk I. D.,Bulatetska L. V., Pekhnyo. Phase diagramm of the Ag2S–HgS–SnS2 system and single crystal prepartion,crystal structure and properties of Ag2HgSnS4 // J. Alloys and Compounds, 2005, v. 399, pp. 32–37. DOI: https://doi.org/10.1016/j.jallcom.2005.03.0085. Olekseyuk I. D., Dudchak I. B., Piskach L. V. Phase equilibria in the Cu2S–ZnSe–SnS2 // J. Alloys andCompounds, 2004, v. 368, pp. 135–143. https:doi.org/10.1016/j.jallcom.2003.08.0846. Ollitrault-Fitchet R., Rivet J., Flahaut J., et.al. Description du systeme ternaire Ag–Sn–Se // J. Less-Common. Met., 1988, v. 138(2), pp. 241–261. DOI:https://doi.org/10.1016/0022-5088(88)90113-07. Delgado C. E., Mora A. J., Marcano E. Crystal structure refi nement of the semiconducting compoundCu2SnSe3 from X-ray powder difraction data // Mater. Res. Bull., 2003, v. 38, pp. 1949–1955. DOI: https://doi.org/10.1016/j.materresbull.2003.09.0178. Parasyuk O. V., Olekseyuk I. D., Marchuk O. V. The Cu2Se–HgSe–SnSe2 // J. Alloys and Compounds.,1999, v. 287, pp. 197–205. DOI: https//doi.org/10.1016/S0925-8388(99)00047-X9. Parasyuk O. V., Gulay L. D., Piskach L. V., Kumanska Yu. O. The Ag2Se–HgSe–SnSe2 system and thecrystal structure of the Ag2HgSnSe4 // J. Alloys and Сompounds, 2002, v. 339, pp.1 40–143. DOI: https//doi.org/10.1016/S0925-8388(01)01985-510. Babanly M. B., Yusibov Y. A., Babanly N. B. Electromotive force and measucement in several systema.Ed. by S. Kara, Intechneb. Org., 2011, pp. 57–58.11. Gulay L. D., Olekseyuk I. D., Parasyuk O. V. Crystal structure of b-Ag8SnSe6 // J. Alloys and compounds,2002, v. 339, pp. 113–117. DOI: https//doi.org/10.1016/S0925-8388(01)01970-312. Гусейнов Г. М. Получение соединения Ag8SnS6 в среде диметилформамида // Вестн. Томского гос. ун-та. Химия, 2016, № 1(3), c. 24–34. Режим доступа: fi le:///C:/Users/Lab351/Downloads/sub_%20%20in%20dimethylformamide%20medium.pdf (дата обращения: 19.09.2019)13. Gorchov O. Les composes Ag8MX6 (M = Si, Ge, Sn et X = S, Se, Te) // Bull. Soc. Chim. Fr., 1968, № 6.pp. 2263–2275.14. Kokhan O. P. The Interactions in Ag2X–BIVX2 (BIV – Si, Ge, Sn; X – S, Se) systems and the propertiesof compounds. Doctoral Thesis, Uzhgorod, Uzhgorod State Univ., 1996.15. Onoda U., Chen X. A., Sato A., Wada H. Crystal structure and twinning of monoclinic Cu2SnS3 // Mater.Res. Bull., 2000, v. 35, № 8, pp. 1563–1570. DOI: https//doi.org/10.1016/S0025-5408(00)00347-016. Рзагулиев В. А., Керимли О. Ш., Мамедов Ш. Г. Изучение квазитройной системы Ag2S–SnS2–Cu2S по разрезу Ag8SnS6–Cu2SnS3. Труды Международ. научно–практич. конф., Россия, Белгород,2019, c. 18.17. Рзагулиев В. А., Керимли О. Ш., Маме дов Ш. Г. Исследование квазибинарного разреза Cu2SnS3–Ag2SnS3 в квазитройной системеAg2S–Cu2S–SnS2 . Труды XXI Междун. конф., Санкт-Петербург, 2019,c. 20–21.18. Цигика В. В., Переш Е. Ю., Лазарев В. В. и др. Получение и свойства мнонокристаллов соединений/TlPbJ3, Tl3PbJ5, TlSnJ3, TlSn2J5 and Tl3PbBr5 Изв. АН СССР. Неорган. материалы, 1981, т. 17(6), c. 970–974.
APA, Harvard, Vancouver, ISO, and other styles
5

Pogue, Elizabeth A., Melissa Goetter, and Angus Rockett. "Reaction kinetics of Cu2-xS, ZnS, and SnS2 to form Cu2ZnSnS4 and Cu2SnS3 studied using differential scanning calorimetry." MRS Advances 2, no. 53 (2017): 3181–86. http://dx.doi.org/10.1557/adv.2017.384.

Full text
Abstract:
ABSTRACTDifferential scanning calorimetry experiments on mixed Cu2-xS, ZnS, and SnS2 precursors were conducted to better understand how Cu2ZnSnS4 (CZTS) and Cu2SnS3 form. The onset temperatures of Cu2SnS3 reactions and CZTS suggest that the ZnS phase may mediate Cu2SnS3 formation at lower temperatures before a final CZTS phase forms. We also found no evidence of a stable Cu2ZnSn3S8 phase. The major diffraction peaks associated with Cu2ZnSnS4, and Cu2SnS3 (overlaps with ZnS, as well) began to grow around 380 °C, although the final reaction to form Cu2ZnSnS4 probably did not occur until higher temperatures were reached. An exothermic reaction was observed corresponding to formation of this phase. There was some variability in the onset temperature for reactions to form Cu2SnS3. At least 5 steps are involved in this reaction and several segments of the reaction had relatively reproducible energies.
APA, Harvard, Vancouver, ISO, and other styles
6

Irshad Ahamed, M., and K. Sathish Kumar. "Studies on Cu2SnS3 quantum dots for O-band wavelength detection." Materials Science-Poland 37, no. 2 (June 1, 2019): 225–29. http://dx.doi.org/10.2478/msp-2019-0022.

Full text
Abstract:
AbstractIn this communication, we report on Cu2SnS3 quantum dots synthesized by the solvothermal process using different solvents. The optical properties of the quantum dots are analyzed by UV-Vis-NIR and photoluminescence spectroscopy. The results suggest that Cu2SnS3 material has tunable energy bandgap and appropriate wavelength for fabrication of light emitting diodes and laser diodes as sources for fiber optic communication. They exhibit wide absorption in the near infrared range. Further morphological studies with the use of atomic force microscope confirm the surface topography and the existence of quantum dots. The observed characteristics prove the efficiency of Cu2SnS3 quantum dots for O-band wavelength detection used in fiber optic communication and solar cell applications.
APA, Harvard, Vancouver, ISO, and other styles
7

BUDANOV, A. V., YU N. VLASOV, G. I. KOTOV, YU V. SYNOROV, S. YU PANKOV, E. V. RUDNEV, V. E. TERNOVAYA, and S. A. IVKOV. "HETEROJUNCTION p-Cu2SnS3/n-ZnO." Chalcogenide Letters 17, no. 9 (September 2020): 457–59. http://dx.doi.org/10.15251/cl.2020.179.457.

Full text
Abstract:
Conditions for the formation of a Cu2SnS3 film uniform in phase composition upon annealing of a metal layer of copper and tin in sulfur vapor in a quasi-closed volume chamber using the methods of X-ray spectral microanalysis and X-ray phase analysis are presented. The rectifying heterojunction p-Cu2SnS3/n-ZnO was fabricated. PACS numbers: 81.20.−n, 61.10.Nz, 84.60.Jt
APA, Harvard, Vancouver, ISO, and other styles
8

Mammadov, Sharafat Gadzhiaga. "Phase formation in the Cu2SnS3-Sb2S3 system." Vestnik Тomskogo gosudarstvennogo universiteta. Khimiya, no. 18 (June 1, 2020): 18–26. http://dx.doi.org/10.17223/24135542/18/2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mammadov, Sharafat G. "Phase equilibrium in Cu2SnS3-Cu3SbS3 system." Vestnik Тomskogo gosudarstvennogo universiteta. Khimiya, no. 15 (December 1, 2019): 26–35. http://dx.doi.org/10.17223/24135542/15/3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

de Wild, Jessica, Erika V. C. Robert, Brahime El Adib, and Phillip J. Dale. "Optical characterization of solution prepared Cu2SnS3 for photovoltaic applications." MRS Proceedings 1771 (2015): 151–56. http://dx.doi.org/10.1557/opl.2015.624.

Full text
Abstract:
ABSTRACTMonoclinic Cu2SnS3 was made by solution based processing of the precursor metals after which the samples are annealed in a sulphur environment. XRD and Raman spectra shows that the monoclinic phase was synthesised. One sample was further etched in KCN and HCl to remove possible secondary phases. Transmission spectra show that the material has two optical transitions and in conjunction with reflection data absorption spectra were calculated. The two optical transitions are determined to be 0.91 and 0.98 for the unetched sample and 0.90 and 0.95 eV for the etched sample. The values of the optical transitions are within the error the same and thus etching does not affect the values of these optical transitions. Photoluminescence spectra map show only one luminescence peak with a maximum at 0.95 eV, which is consistent with the values found by absorption spectra. This in combination with the Raman spectra and XRD indicates that the sample contains only one polymorph of Cu2SnS3, which is monoclinic. Therefore the two optical transitions are intrinsic to monoclinic Cu2SnS3.
APA, Harvard, Vancouver, ISO, and other styles
11

Ahamed, M. Irshad, and K. Sathish Kumar. "Modelling of electronic and optical properties of Cu2SnS3 quantum dots for optoelectronics applications." Materials Science-Poland 37, no. 1 (March 1, 2019): 108–15. http://dx.doi.org/10.2478/msp-2018-0103.

Full text
Abstract:
AbstractCopper tin sulfide (Cu2SnS3) is a unique semiconductor, whose nanocrystals have attracted researchers’ attention for its tunable energy bandgap and wavelength in visible and near infrared range. Quantum dots which are fabricated from this material are highly suitable for optoelectronics and solar cell applications. This paper discusses the tunable energy bandgap, exciton Bohr radius and wavelength range of wurtzite structure of Cu2SnS3 quantum dots to assess the opportunity to use them in optoelectronics applications. The considerations show that the mole fraction of copper increases as energy bandgap decreases and tunable energy bandgap of this quantum dot material is inversely proportional to the wavelength.
APA, Harvard, Vancouver, ISO, and other styles
12

Gurbanov, G. R., V. A. Rzaguluev, O. Sh Kerimli, Sh H. Mamedov, О. М. Аliev, and V. M. Ragimova. "PHASE DIAGRAMS OF AG2S-CU2SNS3 (CU4SNS4) SYSTEM." International Journal of Applied and Fundamental Research (Международный журнал прикладных и фундаментальных исследований), no. 2 2020 (2020): 131–36. http://dx.doi.org/10.17513/mjpfi.13024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

БЕРЕЗНЮК, Орися, Мохамед АЛРІКІК, Юрій КОГУТ, and Людмила ПІСКАЧ. "ФАЗОВІ РІВНОВАГИ В СИСТЕМАХ Cu(Ag)2S – Sb2S3 – SnS2." Проблеми хімії та сталого розвитку, no. 4 (February 28, 2023): 17–30. http://dx.doi.org/10.32782/pcsd-2022-4-2.

Full text
Abstract:
Встановлено фазові рівноваги в квазіпотрійних системах Cu(Ag)2S – Sb2S3 – SnS2. Отримані зразки досліджу- вали рентгенофазовим, мікроструктурним та диференційно-термічним методами аналізу. За результатами дослідження побудовано ізотермічні за температури 500 К та ключові політермічні перерізи цих систем. Встановлено, що в купрумовмісній системі при температурі відпалу є шість двофазних рівноваг між бінар- ними та тернарними сполуками обмежуючих перерізів з твердими розчинами до 5-10 мол. %. Три політер- мічні перерізи є квазібінарними системами евтектичного типу: Cu3SbS3 – Cu2SnS3, CuSbS2 – Cu2SnS3, Sb2S3 – Cu2SnS3 з координатами: 20, 7 та 13 мол. % Cu2SnS3 при 866 К, 796 К, 765 К відповідно та три – неквазібінарні: Sb2S3 – Cu4Sn7S16, Cu3SbS3 – Cu4SnS4, Sb2SnS5 – Cu4Sn7S16, оскільки Cu4Sn7S16 та Cu4SnS4 утворюються твердофазно, а Sb2SnS5 – інконґруентно. В системі Ag2S – Sb2S3 – SnS2 при 500 К на перетині AgSbS2 – Ag8SnS6 та Ag3SbS3 – Ag2SnS3 вперше встановле- но існування нової тетрарної сполуки складу Ag11SnSb3S12; присутні девʼять двофазних рівноваг між десятьма сполуками; розчинність по перерізах складає 5-15 мол. %. Квазібінарними системами є пʼять (Ag3SbS3 – Ag8SnS6, Ag3SbS3 – Ag2SnS3, AgSbS2 – Ag8SnS6, AgSbS2 – Ag2SnS3, AgSbS2 – SnS2) із семи перерізів (AgSbS2 – Ag4Sn3S8 і AgSbS2 – Sb2SnS5 є неквазібінарними через перитектичне утворення Ag4Sn3S8 та Sb2SnS5). Представлені діаграми стану арґентумовмісної системи Ag3SbS3 – Ag8SnS6, AgSbS2 – Ag8SnS6, AgSbS2 – Ag2SnS3 та AgSbS2 – SnS2 евтектичного типу з координатами: 10 мол. % Ag8SnS6 при 738 К, 12 і 30 мол. % Ag8SnS6 при 747 і 742 К, 30 мол. % Ag2SnS3 при 750 К і 25 мол. % SnS2 при 741 К. Тетрарна сполука Ag11SnSb3S12 плавиться конґруентно при 920 К та володіє поліморфізмом при 649 К і є фазою змінного складу, її область гомогенності простягається по перетину Ag3SbS3 – Ag8SnS6 від 16 до 27 мол. % Ag8SnS6 в межах нонваріантних евтектичних процесів і від 20 до 22 мол. % Ag8SnS6 при 500 К. Нонваріантні процеси, що повʼязані з фазовими переходами на основі Cu3SbS3, AgSbS2 та Ag11SnSb3S12, мають евтектоїдний характер.
APA, Harvard, Vancouver, ISO, and other styles
14

Bayazıt, Tuğba, Mehmet Ali Olgar, Tayfur Küçükömeroğlu, Emin Bacaksız, and Murat Tomakin. "Growth and characterization of Cu2SnS3 (CTS), Cu2SnSe3 (CTSe), and Cu2Sn(S,Se)3 (CTSSe) thin films using dip-coated Cu–Sn precursor." Journal of Materials Science: Materials in Electronics 30, no. 13 (June 3, 2019): 12612–18. http://dx.doi.org/10.1007/s10854-019-01622-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Aihara, Naoya, Yusuke Matsumoto, and Kunihiko Tanaka. "Exciton luminescence from Cu2SnS3 bulk crystals." Applied Physics Letters 108, no. 9 (February 29, 2016): 092107. http://dx.doi.org/10.1063/1.4943229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Marushko, L. P., L. V. Piskach, O. V. Parasyuk, I. A. Ivashchenko, and I. D. Olekseyuk. "Quasi-ternary system Cu2GeS3–Cu2SnS3–CdS." Journal of Alloys and Compounds 484, no. 1-2 (September 2009): 147–53. http://dx.doi.org/10.1016/j.jallcom.2009.04.128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Dias, Sandra, and S. B. Krupanidhi. "Temperature dependent electrical behaviour of Cu2SnS3 films." AIP Advances 4, no. 3 (March 2014): 037121. http://dx.doi.org/10.1063/1.4869639.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Onoda, Mitsuko, Xue-an Chen, Akira Sato, and Hiroaki Wada. "Crystal structure and twinning of monoclinic Cu2SnS3." Materials Research Bulletin 35, no. 9 (July 2000): 1563–70. http://dx.doi.org/10.1016/s0025-5408(00)00347-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Kuku, Titilayo A., and Olaosebikan A. Fakolujo. "Photovoltaic characteristics of thin films of Cu2SnS3." Solar Energy Materials 16, no. 1-3 (August 1987): 199–204. http://dx.doi.org/10.1016/0165-1633(87)90019-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Berg, Dominik M., Rabie Djemour, Levent Gütay, Susanne Siebentritt, Phillip J. Dale, Xavier Fontane, Victor Izquierdo-Roca, and Alejandro Pérez-Rodriguez. "Raman analysis of monoclinic Cu2SnS3 thin films." Applied Physics Letters 100, no. 19 (May 7, 2012): 192103. http://dx.doi.org/10.1063/1.4712623.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Li, Jianmin, Jianliu Huang, Yan Zhang, Yaguang Wang, Cong Xue, Guoshun Jiang, Weifeng Liu, and Changfei Zhu. "Solution-processed Cu2SnS3 thin film solar cells." RSC Advances 6, no. 63 (2016): 58786–95. http://dx.doi.org/10.1039/c6ra09389b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Li, Bin, Yi Xie, Jiaxing Huang, and Yitai Qian. "Synthesis, Characterization, and Properties of Nanocrystalline Cu2SnS3." Journal of Solid State Chemistry 153, no. 1 (August 2000): 170–73. http://dx.doi.org/10.1006/jssc.2000.8772.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Shi, Dong-Liang, and Kwok-Ho Lam. "Enhancement of Thermoelectric Performance for CuCl Doped P-Type Cu2Sn0.7Co0.3S3." Materials 16, no. 6 (March 16, 2023): 2395. http://dx.doi.org/10.3390/ma16062395.

Full text
Abstract:
Cu2SnS3 (CSS) has gained great attraction due to its constitutive earth-abundant elements and intrinsic low lattice thermal conductivity, κl, potentially providing high quality factor, B, and high zT value. However, the lack of band convergence is the bottleneck to enhancing the thermoelectric performance of Cu2SnS3 when performing the band engineering. To study the doping effect on the band structure and the thermoelectric performance, the composite Cu2Sn0.7Co0.3S3-xCuCl (x = 0, 0.1, 0.2, 0.3) (CSCS-xCuCl) has been investigated for the first time. The samples showed excellent data repeatability at high temperatures of up to 700 K. It was found that CuCl could compensate the Cu loss, enhance the phonon scattering and minimize the adverse effect on the power factor, PF. The ultralow lattice thermal conductivity could reach 0.38 W m−1 K−1 for the nominal composition of CSCS-0.3CuCl at 700 K. A peak zT of 0.56 (evaluated with no cold finger effect) was realized at 700 K when x = 0.3, which is almost double the performance of pristine samples.
APA, Harvard, Vancouver, ISO, and other styles
24

Liu, Qinghui, Zechen Zhao, Yuhan Lin, Peng Guo, Shenjie Li, Daocheng Pan, and Xiangling Ji. "Alloyed (ZnS)x(Cu2SnS3)1−xand (CuInS2)x(Cu2SnS3)1−xnanocrystals with arbitrary composition and broad tunable band gaps." Chem. Commun. 47, no. 3 (2011): 964–66. http://dx.doi.org/10.1039/c0cc03560b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Dias, Sandra. "Temperature Dependent Photoluminescence Studies Of Cu2SnS3/AZnO Heterostructure." Advanced Materials Letters 8, no. 5 (May 1, 2017): 629–34. http://dx.doi.org/10.5185/amlett.2017.7091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Lokhande, A. C., A. Shelke, P. T. Babar, Jihun Kim, Dong Ju Lee, Il-Chul Kim, C. D. Lokhande, and Jin Hyeok Kim. "Novel antibacterial application of photovoltaic Cu2SnS3 (CTS) nanoparticles." RSC Advances 7, no. 54 (2017): 33737–44. http://dx.doi.org/10.1039/c7ra05194h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Lahlali, S., L. Essaleh, M. Belaqziz, H. Chehouani, A. Alimoussa, K. Djessas, B. Viallet, J. L. Gauffier, and S. Cayez. "Dielectric and modulus analysis of the photoabsorber Cu2SnS3." Physica B: Condensed Matter 526 (December 2017): 54–58. http://dx.doi.org/10.1016/j.physb.2017.09.069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Ghediya, Prashant R., Tapas K. Chaudhuri, Vidur Raj, Dhaval Vankhade, Hark Hoe Tan, and Chennupati Jagadish. "Electrical Properties of Compact Drop-Casted Cu2SnS3 Films." Journal of Electronic Materials 49, no. 11 (August 14, 2020): 6403–9. http://dx.doi.org/10.1007/s11664-020-08380-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Rabaoui, S., H. Dahman, K. Omri, S. Dekhil, L. El Mir, C. Vázquez-Vázquez, and M. A. López-Quintela. "Controlled solvothermal synthesis and properties of Cu2SnS3 nanoparticles." Journal of Materials Science: Materials in Electronics 28, no. 3 (October 22, 2016): 3090–97. http://dx.doi.org/10.1007/s10854-016-5897-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Stolyarova, T. A., E. A. Brichkina, and E. G. Osadchii. "Standard Enthalpy of Cu2SnS3 (Mohite) Formation from Sulfides." Russian Journal of Inorganic Chemistry 65, no. 5 (May 2020): 636–39. http://dx.doi.org/10.1134/s003602362005023x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Kim, Yongshin, and In-Hwan Choi. "Pressure-dependent Raman spectra of Cu2GeS3 and Cu2SnS3." Journal of Alloys and Compounds 770 (January 2019): 959–63. http://dx.doi.org/10.1016/j.jallcom.2018.08.206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Baláž, Matej, Nina Daneu, Michal Rajňák, Juraj Kurimský, Michal Hegedüs, Erika Dutková, Martin Fabián, Mária Kaňuchová, and Peter Baláž. "Rapid mechanochemical synthesis of nanostructured mohite Cu2SnS3 (CTS)." Journal of Materials Science 53, no. 19 (June 4, 2018): 13631–42. http://dx.doi.org/10.1007/s10853-018-2499-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Reddy, Tippasani Srinivasa, and M. C. Santhosh Kumar. "Influence of Substrate Temperature on Structural and Optical Properties of Co-Evaporated Cu<sub>2</sub>SnS<sub>3</sub>/ITO Thin Films." Materials Science Forum 1048 (January 4, 2022): 189–97. http://dx.doi.org/10.4028/www.scientific.net/msf.1048.189.

Full text
Abstract:
In this study report the structural and optical properties of Copper Tin Sulfide (Cu2SnS3) thin films on indium tin oxide (ITO) substrate using co-evaporation technique. High purity of copper, tin and sulfur were taken as source materials to deposit Cu2SnS3 (CTS) thin films at different substrate temperatures (200-350 °C). Further, the effect of different substrate temperature on the crystallographic, morphological and optical properties of CTS thin films was investigated. The deposited CTS thin films shows tetragonal phase with preferential orientation along (112) plane confirmed by X-ray diffraction. Micro-Raman studies reveled the formation of CTS thin films. The surface morphology, average grain size and rms values of the deposited films are examined by Scanning electron spectroscopy (SEM) and Atomic Force Microscopy (AFM). The Energy dispersive spectroscopy (EDS) shows the presence of copper, tin and sulfur with a nearly stoichiometric ratio. The optical band gap (1.76-1.63 eV) and absorption coefficient (~105 cm-1) of the films was calculated by using UV-Vis-NIR spectroscopy. The values of refractive index, extinction coefficient and permittivity of the deposited films were calculated from the optical transmittance data.
APA, Harvard, Vancouver, ISO, and other styles
34

Nguyen, Hong T. T., V. S. Zakhvalinskii, Thao T. Pham, N. T. Dang, Tuan V. Vu, E. A. Pilyuk, and G. V. Rodriguez. "Structural properties and variable-range hopping conductivity of Cu2SnS3." Materials Research Express 6, no. 5 (February 27, 2019): 055915. http://dx.doi.org/10.1088/2053-1591/ab0775.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Lokhande, A. C., S. A. Pawar, Eunjin Jo, Mingrui He, A. Shelke, C. D. Lokhande, and Jin Hyeok Kim. "Amines free environmentally friendly rapid synthesis of Cu2SnS3 nanoparticles." Optical Materials 58 (August 2016): 268–78. http://dx.doi.org/10.1016/j.optmat.2016.03.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Shelke, H. D., A. C. Lokhande, A. M. Patil, J. H. Kim, and C. D. Lokhande. "Cu2SnS3 thin film: Structural, morphological, optical and photoelectrochemical studies." Surfaces and Interfaces 9 (December 2017): 238–44. http://dx.doi.org/10.1016/j.surfin.2017.08.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Bouaziz, M., M. Amlouk, and S. Belgacem. "Structural and optical properties of Cu2SnS3 sprayed thin films." Thin Solid Films 517, no. 7 (February 2009): 2527–30. http://dx.doi.org/10.1016/j.tsf.2008.11.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Baranowski, Lauryn L., Pawel Zawadzki, Steven Christensen, Dennis Nordlund, Stephan Lany, Adele C. Tamboli, Lynn Gedvilas, et al. "Control of Doping in Cu2SnS3 through Defects and Alloying." Chemistry of Materials 26, no. 17 (August 19, 2014): 4951–59. http://dx.doi.org/10.1021/cm501339v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Helan, Paul Nesamony Prathiba Jeya, Kannusamy Mohanraj, Sethuramachandran Thanikaikarasan, Thaiyan Mahalingam, Ganesan Sivakumar, and P. J. Sebastian. "Ethylenediamine Processed Cu2SnS3 Nano Particles via Mild Solution Route." Journal of New Materials for Electrochemical Systems 19, no. 1 (January 25, 2016): 001–5. http://dx.doi.org/10.14447/jnmes.v19i1.339.

Full text
Abstract:
Copper tin sulphide nanoparticles have been prepared by solution growth technique at various ethylenediamine concentrations. Prepared samples have been characterized using x-ray diffraction, fourier transform infrared, Raman and scanning electron microscopy techniques. x-ray diffraction results revealed that the prepared samples are nanocrystalline in nature with tetragonal structure. Fourier transform infrared spectroscopy analysis results showed the presence of Cu-O, Sn-O and Sn-S vibrations in the wavenumber range between 450 and 620 cm-1. Vibrational symmetry of prepared samples have been analyzed using Raman spectroscopy. Scanning electron microscopy analysis indicated the formation of flower like nanocrystals for samples prepared at various Ethylenediamine concentrations.
APA, Harvard, Vancouver, ISO, and other styles
40

Ettlinger, Rebecca Bolt, Andrea Cazzaniga, Stela Canulescu, Nini Pryds, and Jørgen Schou. "Pulsed laser deposition from ZnS and Cu2SnS3 multicomponent targets." Applied Surface Science 336 (May 2015): 385–90. http://dx.doi.org/10.1016/j.apsusc.2014.12.165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Blöß, Stephan, and Martin Jansen. "Synthesis of Microscale Particles of Ternary Sulphides via an Adjusted Polyol-Route." Zeitschrift für Naturforschung B 58, no. 11 (November 1, 2003): 1075–78. http://dx.doi.org/10.1515/znb-2003-1107.

Full text
Abstract:
Abstract The chalcocuprites Roquesite (CuInS2), Mohite (Cu2SnS3) and Famatinite (Cu3SbS4) have been synthesised from metal chlorides and thiourea in form of microscale particles via an adjusted polyolroute. The samples were characterised by means of SEM/EDX and XRD. The as prepared chalcocuprites were found to crystallise in metastable, cation disordered cubic structures. The particle sizes vary in the range of 0.2 to 3 micrometers. Thermal annealing transforms the samples into the thermodynamically stable polymorphs with ordered cationic substructures.
APA, Harvard, Vancouver, ISO, and other styles
42

Liu, Qinghui, Zechen Zhao, Yuhan Lin, Peng Guo, Shenjie Li, Daocheng Pan, and Xiangling Ji. "ChemInform Abstract: Alloyed (ZnS)x(Cu2SnS3)1-x and (CuInS2)x(Cu2SnS3)1-x Nanocrystals with Arbitrary Composition and Broad Tunable Band Gaps." ChemInform 42, no. 14 (March 14, 2011): no. http://dx.doi.org/10.1002/chin.201114018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Tiwari, Devendra, Tristan Koehler, Reiner Klenk, and David J. Fermin. "Solution processed single-phase Cu2SnS3 films: structure and photovoltaic performance." Sustainable Energy & Fuels 1, no. 4 (2017): 899–906. http://dx.doi.org/10.1039/c7se00150a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Oliva, Florian, Laia Arqués, Laura Acebo, Maxim Guc, Yudania Sánchez, Xavier Alcobé, Alejandro Pérez-Rodríguez, Edgardo Saucedo, and Victor Izquierdo-Roca. "Characterization of Cu2SnS3 polymorphism and its impact on optoelectronic properties." Journal of Materials Chemistry A 5, no. 45 (2017): 23863–71. http://dx.doi.org/10.1039/c7ta08705e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Wu, Changzheng, Zhenpeng Hu, Chengle Wang, Hua Sheng, Jinlong Yang, and Yi Xie. "Hexagonal Cu2SnS3 with metallic character: Another category of conducting sulfides." Applied Physics Letters 91, no. 14 (October 2007): 143104. http://dx.doi.org/10.1063/1.2790491.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Aihara, Naoya, Kunihiko Tanaka, Hisao Uchiki, Ayaka Kanai, and Hideaki Araki. "Donor-acceptor pair recombination luminescence from monoclinic Cu2SnS3 thin film." Applied Physics Letters 107, no. 3 (July 20, 2015): 032101. http://dx.doi.org/10.1063/1.4927203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Sayed, Mohamed H., Erika V. C. Robert, Phillip J. Dale, and Levent Gütay. "Cu2SnS3 based thin film solar cells from chemical spray pyrolysis." Thin Solid Films 669 (January 2019): 436–39. http://dx.doi.org/10.1016/j.tsf.2018.11.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Kim, Yongshin, and In-Hwan Choi. "Characterization of a co-evaporated Cu2SnS3 thin-film solar cell." Thin Solid Films 669 (January 2019): 351–54. http://dx.doi.org/10.1016/j.tsf.2018.11.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Tiwari, Devendra, Tapas K. Chaudhuri, T. Shripathi, and U. Deshpande. "Synthesis of earth-abundant Cu2SnS3 powder using solid state reaction." Journal of Physics and Chemistry of Solids 75, no. 3 (March 2014): 410–15. http://dx.doi.org/10.1016/j.jpcs.2013.11.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Berg, Dominik M., Rabie Djemour, Levent Gütay, Guillaume Zoppi, Susanne Siebentritt, and Phillip J. Dale. "Thin film solar cells based on the ternary compound Cu2SnS3." Thin Solid Films 520, no. 19 (July 2012): 6291–94. http://dx.doi.org/10.1016/j.tsf.2012.05.085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography