To see the other types of publications on this topic, follow the link: Cu2SnS3 Thin Films.

Journal articles on the topic 'Cu2SnS3 Thin Films'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Cu2SnS3 Thin Films.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kuku, Titilayo A., and Olaosebikan A. Fakolujo. "Photovoltaic characteristics of thin films of Cu2SnS3." Solar Energy Materials 16, no. 1-3 (August 1987): 199–204. http://dx.doi.org/10.1016/0165-1633(87)90019-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Berg, Dominik M., Rabie Djemour, Levent Gütay, Susanne Siebentritt, Phillip J. Dale, Xavier Fontane, Victor Izquierdo-Roca, and Alejandro Pérez-Rodriguez. "Raman analysis of monoclinic Cu2SnS3 thin films." Applied Physics Letters 100, no. 19 (May 7, 2012): 192103. http://dx.doi.org/10.1063/1.4712623.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Reddy, Tippasani Srinivasa, and M. C. Santhosh Kumar. "Influence of Substrate Temperature on Structural and Optical Properties of Co-Evaporated Cu<sub>2</sub>SnS<sub>3</sub>/ITO Thin Films." Materials Science Forum 1048 (January 4, 2022): 189–97. http://dx.doi.org/10.4028/www.scientific.net/msf.1048.189.

Full text
Abstract:
In this study report the structural and optical properties of Copper Tin Sulfide (Cu2SnS3) thin films on indium tin oxide (ITO) substrate using co-evaporation technique. High purity of copper, tin and sulfur were taken as source materials to deposit Cu2SnS3 (CTS) thin films at different substrate temperatures (200-350 °C). Further, the effect of different substrate temperature on the crystallographic, morphological and optical properties of CTS thin films was investigated. The deposited CTS thin films shows tetragonal phase with preferential orientation along (112) plane confirmed by X-ray diffraction. Micro-Raman studies reveled the formation of CTS thin films. The surface morphology, average grain size and rms values of the deposited films are examined by Scanning electron spectroscopy (SEM) and Atomic Force Microscopy (AFM). The Energy dispersive spectroscopy (EDS) shows the presence of copper, tin and sulfur with a nearly stoichiometric ratio. The optical band gap (1.76-1.63 eV) and absorption coefficient (~105 cm-1) of the films was calculated by using UV-Vis-NIR spectroscopy. The values of refractive index, extinction coefficient and permittivity of the deposited films were calculated from the optical transmittance data.
APA, Harvard, Vancouver, ISO, and other styles
4

Bouaziz, M., M. Amlouk, and S. Belgacem. "Structural and optical properties of Cu2SnS3 sprayed thin films." Thin Solid Films 517, no. 7 (February 2009): 2527–30. http://dx.doi.org/10.1016/j.tsf.2008.11.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zaretskaya, E. P., V. F. Gremenok, V. A. Ivanov, A. V. Stanchik, O. M. Borodavchenko, D. V. Zhyhulin, S. Özçelik, and N. Akçay. "Phase Composition, Microstructure, and Optical Properties of Cu2SnS3 Thin Films." Journal of Applied Spectroscopy 87, no. 3 (July 2020): 488–94. http://dx.doi.org/10.1007/s10812-020-01028-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Naji, Iqbal S. "Impact of thickness and heat treatment on some physical properties of thin Cu2SnS3 films." Iraqi Journal of Physics (IJP) 14, no. 30 (February 3, 2019): 120–28. http://dx.doi.org/10.30723/ijp.v14i30.207.

Full text
Abstract:
Copper tin sulfide (Cu2SnS3) thin films have been grown on glasssubstrate with different thicknesses (500, 750 and 1000) nm by flashthermal evaporation method after prepare its alloy from theirelements with high purity. The as-deposited films were annealed at473 K for 1h. Compositional analysis was done using Energydispersive spectroscopy (EDS). The microstructure of CTS powderexamined by SEM and found that the large crystal grains are shownclearly in images. XRD investigation revealed that the alloy waspolycrystalline nature and has cubic structure with preferredorientation along (111) plane, while as deposited films of differentthickness have amorphous structure and converted to polycrystallinewith annealing temperature for high thickness. AFM measurementsshowed that the grain size of the films was increasing by annealing.The ultraviolet- visible absorption spectrum measurement indicatedthat the films have a direct energy band gap. Eg decrease withthickness and increase with annealing.
APA, Harvard, Vancouver, ISO, and other styles
7

Rahaman, Sabina, M. Anantha Sunil, Monoj Kumar Singha, and Kaustab Ghosh. "Studies of ultrasonically sprayed Cu2SnS3 thin films by varying Sn concentration." Materials Today: Proceedings 43 (2021): 3938–41. http://dx.doi.org/10.1016/j.matpr.2021.02.657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dias, Sandra, and S. B. Krupanidhi. "Solution processed Cu2SnS3 thin films for visible and infrared photodetector applications." AIP Advances 6, no. 2 (February 2016): 025217. http://dx.doi.org/10.1063/1.4942775.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bouaziz, M., J. Ouerfelli, S. K. Srivastava, J. C. Bernède, and M. Amlouk. "Growth of Cu2SnS3 thin films by solid reaction under sulphur atmosphere." Vacuum 85, no. 8 (February 2011): 783–86. http://dx.doi.org/10.1016/j.vacuum.2010.10.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Xu, Bin, Yun Zhao, Aimin Sun, Yan Li, Wen Li, and Xiuxun Han. "Direct solution coating of pure-phase Cu2SnS3 thin films without sulfurization." Journal of Materials Science: Materials in Electronics 28, no. 4 (November 8, 2016): 3481–86. http://dx.doi.org/10.1007/s10854-016-5946-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Bayazıt, Tuğba, Mehmet Ali Olgar, Tayfur Küçükömeroğlu, Emin Bacaksız, and Murat Tomakin. "Growth and characterization of Cu2SnS3 (CTS), Cu2SnSe3 (CTSe), and Cu2Sn(S,Se)3 (CTSSe) thin films using dip-coated Cu–Sn precursor." Journal of Materials Science: Materials in Electronics 30, no. 13 (June 3, 2019): 12612–18. http://dx.doi.org/10.1007/s10854-019-01622-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Patel, Biren, Indrajit Mukhopadhyay, and Abhijit Ray. "Inexpensive Cu2SnS3 grown by room-temperature aqueous bath electrodeposition for thin film solar cells." International Journal of Modern Physics B 32, no. 19 (July 18, 2018): 1840071. http://dx.doi.org/10.1142/s0217979218400714.

Full text
Abstract:
We report the growth of Cu2SnS3 (CTS) thin films on F-doped SnO2 (FTO) glass substrates at room-temperature by low-cost electrodeposition technique using an aqueous medium without the evolution of hydrogen. Electrolyte concentration and deposition potential were optimized under the limits of water hydrolysis. As-deposited films are post-annealed in the presence of the sulphur flakes to establish the stoichiometry. The annealed films were found to contain high phase purity and favorable optical properties to be useful for the photovoltaic applications. Optical data reveal that the CTS films have direct optical bandgap of 1.25 eV with an absorption coefficient of the order of 104 cm[Formula: see text]. A photovoltaic cell architecture of Glass/FTO (back contact)/CTS/CdS/Al:ZnO/Al (front contact) exhibited an open circuit voltage of 28 mV, a short circuit current density of 8.4 [Formula: see text]A/cm2 and the fill factor of 25%. The absorber thickness optimization and the use of Mo-coated glass as a back contact improve the solar cell parameters. A further study in this aspect is under way.
APA, Harvard, Vancouver, ISO, and other styles
13

Chalapathi, U., B. Poornaprakash, and Si-Hyun Park. "Antimony induced crystal growth for large-grained Cu2SnS3 thin films for photovoltaics." Journal of Power Sources 426 (June 2019): 84–92. http://dx.doi.org/10.1016/j.jpowsour.2019.04.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Hadi, Zaid L., Mohammed Sh Essa, and Bahaa T. Chiad. "Ternary Cu2SnS3 Thin Films Deposited by Fully Controlled System of Spray Pyrolysis." Journal of Physics: Conference Series 1234 (July 2019): 012041. http://dx.doi.org/10.1088/1742-6596/1234/1/012041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Minnam Reddy, Vasudeva Reddy, Mohan Reddy Pallavolu, Phaneendra Reddy Guddeti, Sreedevi Gedi, Kishore Kumar Yarragudi Bathal Reddy, Babu Pejjai, Woo Kyoung Kim, Thulasi Ramakrishna Reddy Kotte, and Chinho Park. "Review on Cu2SnS3, Cu3SnS4, and Cu4SnS4 thin films and their photovoltaic performance." Journal of Industrial and Engineering Chemistry 76 (August 2019): 39–74. http://dx.doi.org/10.1016/j.jiec.2019.03.035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Puzer, D. B., I. Nkrumah, F. K. Ampong, M. Paal, E. A. Botchway, R. K. Nkum, and F. Boakye. "Copper-tin-sulphide (CTS) thin films, obtained by a two-electrode electrochemical deposition of metal precursors, followed by soft annealing and sulfurization." Chalcogenide Letters 18, no. 8 (August 2021): 481–91. http://dx.doi.org/10.15251/cl.2021.188.481.

Full text
Abstract:
CTS thin films have been prepared by soft annealing and sulfurization of electrodeposited Cu-Sn precursors. The stacked elemental layer approach was used to deposit the elemental precursors on an ITO substrate using a two-electrode electrochemical cell, with graphite plate as the counter electrode. The stacked metallic layer was then soft annealed in an Argon atmosphere at 350 °C and subsequently, sulfurized at different temperatures of 500 0C and 550 0C for one hour to form CTS films. The films have been characterized by a variety of techniques. From the XRD analysis, the CTS thin films obtained at a sulfurization temperature of 500 oC showed the coexistence of SnS, Cubic-Cu2Sn3S7 and hexagonal-Cu4S16Sn7 phases. The majority phase was clearly identified as cubic-Cu2SnS3, with (111) preferential orientation. For the films sulfurized at 550 oC, the pattern of prominent peaks showed the presence of the Hexagonal-Cu4S16Sn7 phase of CTS with preferred orientation along the (202) plane. There were relatively fewer low intensity peaks assigned to the secondary phases, indicating an improvement in CTS purity at the higher sulfurization temperature. SEM images of the CTS films show a compact, homogenous morphology, with densely packed grains. The films sulfurized at 550 oC, showed better homogeneity. EDAX spectra of the sulfurized alloy precursors were consistent with the formation of CTS. The film obtained at the lower sulfurization temperature had two band gaps as a consequence of the mixture of phases present in the sample. The film obtained at the higher sulfurization temperature had an energy band gap of 1.5 eV, which falls within the range of values reported in literature. The present work provides a new synthesis route for the electrodeposition of CTS thin film for device applications.
APA, Harvard, Vancouver, ISO, and other styles
17

Olgar, M. A., B. M. Başol, M. Tomakin, and E. Bacaksız. "Phase transformation in Cu2SnS3 (CTS) thin films through pre-treatment in sulfur atmosphere." Journal of Materials Science: Materials in Electronics 32, no. 8 (March 15, 2021): 10018–27. http://dx.doi.org/10.1007/s10854-021-05660-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Raadik, T., M. Grossberg, J. Krustok, M. Kauk-Kuusik, A. Crovetto, R. Bolt Ettlinger, O. Hansen, and J. Schou. "Temperature dependent photoreflectance study of Cu2SnS3 thin films produced by pulsed laser deposition." Applied Physics Letters 110, no. 26 (June 26, 2017): 261105. http://dx.doi.org/10.1063/1.4990657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Chalapathi, U., B. Poornaprakash, and Si-Hyun Park. "Growth and properties of co-evaporated Cu2SnS3 thin films for solar cell applications." Vacuum 131 (September 2016): 22–27. http://dx.doi.org/10.1016/j.vacuum.2016.05.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Srinivasa Reddy, T., R. Amiruddin, and M. C. Santhosh Kumar. "Deposition and characterization of Cu2SnS3 thin films by co-evaporation for photovoltaic application." Solar Energy Materials and Solar Cells 143 (December 2015): 128–34. http://dx.doi.org/10.1016/j.solmat.2015.06.049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ashebir, Getinet Y., Chao Dong, Junwei Chen, Wangwei Chen, Rong Liu, Qiuyuan Zhao, Zhiyang Wan, and Mingtai Wang. "Solution-processed extremely thin films of Cu2SnS3 nanoparticles for planar heterojunction solar cells." Journal of Physics D: Applied Physics 53, no. 11 (January 2, 2020): 115101. http://dx.doi.org/10.1088/1361-6463/ab5ee5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Magdy, Wafaa, Ayaka Kanai, F. A. Mahmoud, E. T. El Shenawy, S. A. Khairy, H. H. Hassan, and Mutsumi Sugiyama. "Effect of rapid thermal annealing on sprayed Cu2SnS3 thin films for solar-cell application." Japanese Journal of Applied Physics 59, no. 10 (September 25, 2020): 105503. http://dx.doi.org/10.35848/1347-4065/abb7f1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Kanai, Ayaka, and Mutsumi Sugiyama. "Emission properties of intrinsic and extrinsic defects in Cu2SnS3 thin films and solar cells." Japanese Journal of Applied Physics 60, no. 1 (December 18, 2020): 015504. http://dx.doi.org/10.35848/1347-4065/abcf06.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Orletskii, I. G., M. N. Solovan, F. Pinna, G. Cicero, P. D. Mar’yanchuk, E. V. Maistruk, and E. Tresso. "Structural, optical, and electrical properties of Cu2SnS3 thin films produced by sol gel method." Physics of the Solid State 59, no. 4 (April 2017): 801–7. http://dx.doi.org/10.1134/s1063783417040163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Tanaka, Kunihiko, Mao Kowata, Fumitaka Yoshihisa, Shinya Imai, and Wataru Yamazaki. "Preparation of monoclinic Cu2SnS3 thin films by fine channel mist chemical vapor deposition method." Thin Solid Films 697 (March 2020): 137820. http://dx.doi.org/10.1016/j.tsf.2020.137820.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Shelke, Harshad D., Abhishek C. Lokhande, Vanita S. Raut, Amar M. Patil, Jin H. Kim, and Chandrakant D. Lokhande. "Facile synthesis of Cu2SnS3 thin films grown by SILAR method: effect of film thickness." Journal of Materials Science: Materials in Electronics 28, no. 11 (March 19, 2017): 7912–21. http://dx.doi.org/10.1007/s10854-017-6492-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Wang, Yaguang, Jianmin Li, Cong Xue, Yan Zhang, Guoshun Jiang, Weifeng Liu, and Changfei Zhu. "Fabrication of Cu2SnS3 thin films by ethanol-ammonium solution process by doctor-blade technique." Electronic Materials Letters 13, no. 6 (June 24, 2017): 478–82. http://dx.doi.org/10.1007/s13391-017-6244-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Zhang, Haitao, Meng Xie, Shu Zhang, and Yong Xiang. "Fabrication of highly crystallized Cu2SnS3 thin films through sulfurization of Sn-rich metallic precursors." Journal of Alloys and Compounds 602 (July 2014): 199–203. http://dx.doi.org/10.1016/j.jallcom.2014.03.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

XU Xin, 徐. 信., 王书荣 WANG Shu-rong, 陆熠磊 LU Yi-lei, 杨. 帅. YANG Shuai, 李耀斌 LI Yao-bin, 唐. 臻. TANG Zhen, and 杨洪斌 YANG Hong-bin. "Fabrication of Cu2SnS3 Thin Films Solar Cells by Magnetron Sputtering Sn and CuS Targets." Chinese Journal of Luminescence 39, no. 11 (2018): 1557–64. http://dx.doi.org/10.3788/fgxb20183911.1557.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Shelke, H. D., A. C. Lokhande, J. H. Kim, and C. D. Lokhande. "Photoelectrochemical (PEC) studies on Cu2SnS3 (CTS) thin films deposited by chemical bath deposition method." Journal of Colloid and Interface Science 506 (November 2017): 144–53. http://dx.doi.org/10.1016/j.jcis.2017.07.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Ruan, Chengzhi, Jiahua Tao, Chengyun Zhu, and Chen Chen. "Effect of potassium doping for ultrasonic sprayed Cu2SnS3 thin films for solar cell application." Journal of Materials Science: Materials in Electronics 29, no. 15 (June 6, 2018): 12824–29. http://dx.doi.org/10.1007/s10854-018-9401-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Kahraman, Süleyman, Mateja Podlogar, Slavko Bernik, and Hüsnü Salih Güder. "Facile Synthesis of Cu2ZnSnS4 Photovoltaic Absorber Thin Films via Sulfurization of Cu2SnS3/ZnS Layers." Metallurgical and Materials Transactions A 45, no. 4 (January 14, 2014): 2326–34. http://dx.doi.org/10.1007/s11661-013-2164-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Kim, Yongshin, and In-Hwan Choi. "Characterization of a co-evaporated Cu2SnS3 thin-film solar cell." Thin Solid Films 669 (January 2019): 351–54. http://dx.doi.org/10.1016/j.tsf.2018.11.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Igarashi, Yuki, Takuya Tomono, Kunihiko Tanaka, and Katsuhiko Moriya. "Preparation of Cu2SnS3 thin film by sol-gel dip coating." Japanese Journal of Applied Physics 61, SB (January 17, 2022): SB1002. http://dx.doi.org/10.35848/1347-4065/ac2e7b.

Full text
Abstract:
Abstract Cu2SnS3 (CTS), an environmentally friendly semiconductor material that has little impact on the human body, was developed as an alternative material to silicon-based solar cells, which are currently the mainstream product in the solar cell market. In this study, by adopting the sol-gel dip coating method, a CTS thin film was produced at low cost without using a vacuum process for use as a solar cell light absorption layer. CTS thin films were prepared while varying the annealing temperature and the amount of α-cyclodextrin added, and the results were compared by different evaluation methods. In addition, the samples to which α-cyclodextrin was added showed peaks due to CTS at (112) and (220) in all the samples. The crystallinity was not found to depend on the amount of α-cyclodextrin added.
APA, Harvard, Vancouver, ISO, and other styles
35

Kim, Yongshin, In-Hwan Choi, and Soon Yong Park. "Characterization of Cu2SnS3 thin films prepared by sulfurization of co-evaporated Cu–SnS precursor layers." Thin Solid Films 666 (November 2018): 61–65. http://dx.doi.org/10.1016/j.tsf.2018.09.035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Jayasree, Y., U. Chalapathi, and V. Sundara Raja. "Growth of Cu2SnS3 thin films by a two-stage process: structural, microstructural and optical properties." Journal of Materials Science: Materials in Electronics 26, no. 8 (May 19, 2015): 5946–51. http://dx.doi.org/10.1007/s10854-015-3166-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Mohamed, A. M. A., Rasha Afify, Walaa A. E. Omar, Paul C. Okonkwo, and M. Boshta. "Influence of deposition temperature and time on the optical behavior of sprayed Cu2SnS3 thin films." Emergent Materials 3, no. 1 (February 2020): 15–24. http://dx.doi.org/10.1007/s42247-020-00075-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Wang, Weihuang, Huiling Cai, Guilin Chen, Binwen Chen, Liquan Yao, Jiabin Dong, Xuxi Yu, Shuiyuan Chen, and Zhigao Huang. "Preparation of Sn loss-free Cu2SnS3 thin films by an oxide route for solar cell." Journal of Alloys and Compounds 742 (April 2018): 860–67. http://dx.doi.org/10.1016/j.jallcom.2018.01.391.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Heidariramsheh, Maryam, Sevan Gharabeiki, Seyed Mohammad Mahdavi, and Nima Taghavinia. "Optoelectrical and structural characterization of Cu2SnS3 thin films grown via spray pyrolysis using stable molecular ink." Solar Energy 224 (August 2021): 218–29. http://dx.doi.org/10.1016/j.solener.2021.05.088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Patel, Biren, Ranjan K. Pati, Indrajit Mukhopadhyay, and Abhijit Ray. "Effect of vacuum and sulphur annealing on the structural properties of spray deposited Cu2SnS3 thin films." Vacuum 158 (December 2018): 263–70. http://dx.doi.org/10.1016/j.vacuum.2018.10.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Chalapathi, U., Y. Jayasree, S. Uthanna, and V. Sundara Raja. "Effect of annealing on the structural, microstructural and optical properties of co-evaporated Cu2SnS3 thin films." Vacuum 117 (July 2015): 121–26. http://dx.doi.org/10.1016/j.vacuum.2015.04.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Olgar, M. A. "Improvement in the structural and optical properties of Cu2SnS3 (CTS) thin films through soft-annealing treatment." Superlattices and Microstructures 138 (February 2020): 106366. http://dx.doi.org/10.1016/j.spmi.2019.106366.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Jiang, Yuhong, Bin Yao, Yongfeng Li, Zhanhui Ding, Zhenyu Xiao, Gang Yang, Ruijian Liu, Kaisi Liu, and Yaming Sun. "Effect of Cd content and sulfurization on structures and properties of Cd doped Cu2SnS3 thin films." Journal of Alloys and Compounds 721 (October 2017): 92–99. http://dx.doi.org/10.1016/j.jallcom.2017.05.291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Patel, Biren, Manmohansingh Waldiya, and Abhijit Ray. "Highly phase-pure spray-pyrolysed Cu2SnS3 thin films prepared by hybrid thermal treatment for photovoltaic applications." Journal of Alloys and Compounds 745 (May 2018): 347–54. http://dx.doi.org/10.1016/j.jallcom.2018.02.220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Dong, Yuchen, Jun He, Xinran Li, Ye Chen, Lin Sun, Pingxiong Yang, and Junhao Chu. "Study on the preheating duration of Cu2SnS3 thin films using RF magnetron sputtering technique for photovoltaics." Journal of Alloys and Compounds 665 (April 2016): 69–75. http://dx.doi.org/10.1016/j.jallcom.2016.01.078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Xu, Xin, Shurong Wang, Xun Ma, Min Yang, Yilei Lu, Shuai Yang, and Zhen Tang. "Effects of different precursors on Cu2SnS3 thin film solar cells prepared by sputtering method." Vacuum 157 (November 2018): 223–28. http://dx.doi.org/10.1016/j.vacuum.2018.08.045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Dahman, H., S. Rabaoui, A. Alyamani, and L. El Mir. "Structural, morphological and optical properties of Cu2SnS3 thin film synthesized by spin coating technique." Vacuum 101 (March 2014): 208–11. http://dx.doi.org/10.1016/j.vacuum.2013.08.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Joshi, Monika P., and Popatrao N. Bhosale. "Probing the role of deposition time in tuning the physico-chemical, optoelectronic performance of Cu2SnS3 thin films." Materials Letters 255 (November 2019): 126526. http://dx.doi.org/10.1016/j.matlet.2019.126526.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Wang, Chi-Jie, Shih-Chang Shei, Shih-Chang Chang, and Shoou-Jinn Chang. "Fabrication and sulfurization of Cu2SnS3 thin films with tuning the concentration of Cu-Sn-S precursor ink." Applied Surface Science 388 (December 2016): 71–76. http://dx.doi.org/10.1016/j.apsusc.2016.03.154.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Pallavolu, Mohan Reddy, Vasudeva Reddy Minnam Reddy, Babu Pejjai, Dong-seob Jeong, and Chinho Park. "Effect of sulfurization temperature on the phase purity of Cu2SnS3 thin films deposited via high vacuum sulfurization." Applied Surface Science 462 (December 2018): 641–48. http://dx.doi.org/10.1016/j.apsusc.2018.08.112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography