Academic literature on the topic 'Cu mineralisation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cu mineralisation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Cu mineralisation"

1

Sproule, Rebecca, Steve Beresford, and Reid Keays. "Ni–Cu–PGE magmatic mineralisation." Applied Earth Science 116, no. 4 (December 2007): 151. http://dx.doi.org/10.1179/174327507x272012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

MELFOS, V., M. VAVELIDIS, and K. ARIKAS. "A new occurrence of argentopentlandite and gold from the Au-Ag-rich copper mineralisation in the Paliomylos area, Serbomacedonian massif, Central Macedonia, Greece." Bulletin of the Geological Society of Greece 34, no. 3 (January 1, 2001): 1065. http://dx.doi.org/10.12681/bgsg.17154.

Full text
Abstract:
The Au-Ag-Cu mineralisation in the Paliomylos area is associated with quartz segregations and pegmatoids in the form of boudinaged bodies. The Au, Ag and Cu contents in the ore bodies reach 6.8 ppm, 765 ppm and 0.80 wt%. The ore minerals consist of pyrite, chalcopyrite, sphalerite, pyrrhotite, galena, bismuthinite, argentopentlandite, gersdorffite, cobaltite, aikinite, hessite, native bismuth and gold. Pentlandite contains significant amounts in Ag (13.15 wt%), Au (1.59 wt%) and PGM, demonstrating a formula of Fe5.37 Ni2.56 Ag1.03 Ir0.03 S8.01. On the basis of geological, textural and chemical data, the mineralisation in the studied area was formed under high temperatures.
APA, Harvard, Vancouver, ISO, and other styles
3

Ciurej, Agnieszka, Monika Struska, Anna Wolska, Marek Szczerba, and Janusz Olszak. "Copper-Bearing Mineralisation in the Upper Devonian Limestones: A Case Study from the Historical Teresa Adit in the Świętokrzyskie Mountains, Poland." Minerals 13, no. 1 (December 28, 2022): 54. http://dx.doi.org/10.3390/min13010054.

Full text
Abstract:
The studied copper ore deposit is located in Miedzianka Mountain (Świętokrzyskie Mountains, central Poland). This deposit was exploited from the 13th century to the 1950s; therefore numerous historical adits are currently present. One of these is Teresa adit (established in 1805), consisting of underground mining corridors and natural cave developed in the Upper Devonian limestones, partially transformed by mining works. Samples of copper- and rock-forming minerals in limestones collected at seven sites within the richest copper-bearing mineralisation in this adit were studied with petrographic investigation of thin sections, micro-area chemical analysis (EDS), and XRD. This study shows the presence of various minerals: (a) Cu-Fe sulphides (relics of chalcopyrite) and Cu sulphides (covellite, chalcocite), (b) Cu-Fe oxides (cuprite and hematite), (c) Ca and Cu carbonates (calcite, azurite, and malachite), (d) clay minerals (Fe-Mg illite), and (e) micro-crystalline silica (quartz). For the first time in the studied deposit, we described chalcopyrite relics in cuprite pseudomorphosis, hematite with admixture of vanadium in pinkish-creme veins in limestones, and the presence of an admixture of Fe-Mg illite and microcystaline silica within cracks of limestones. In addition, for the first time, unit cell parameters of malachite and azurite from Miedzianka Mountain were determined, indicating very low substitutions of atoms other than Cu in their structures. We suppose that the minerals studied were formed during three types of copper mineralisation processes: (a) hydrothermal (relics of chalcopyrite), (b) secondary weathering (chalcocite, covellite, cuprite, hematite), and (c) adsorptive mineralisation (azurite, malachite). The latter stage is related to residuum, which consists of a mixture of Fe-Mg illite and micro-crystalline quartz, which was formed during the dissolution of limestones in karst processes in some crevices. We proposed a model of the formation of copper carbonates in the adsorption stage of the copper-bearing mineralisation in Miedzianka Mountain deposits. Two generations of calcite veins (older—red calcite and younger—crème-pinkish calcite) were also detected. Mineralogical–petrographical studies of samples revealed a high scientific and educational value. Due to the fact that the Teresa adit is planned to be made available to geotourists, this work is worth presenting to the public either in the adit and/or in a local museum in Miedzianka village.
APA, Harvard, Vancouver, ISO, and other styles
4

Jowitt, S. M., and R. R. Keays. "Shale-hosted Ni–(Cu–PGE) mineralisation: a global overview." Applied Earth Science 120, no. 4 (December 2011): 187–97. http://dx.doi.org/10.1179/1743275812z.00000000026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Radmard, Kaikhosrov, Hassan Zamanian, Mohamad Reza Hosseinzadeh, and Ahmad Ahmadi Khalaji. "Geochemistry and statistical analyses of porphyry system and epithermal veins at Hizehjan in northwestern Iran." Geologos 23, no. 3 (December 20, 2017): 183–200. http://dx.doi.org/10.1515/logos-2017-0020.

Full text
Abstract:
Abstract Situated about 130 km northeast of Tabriz (northwest Iran), the Mazra’eh Shadi deposit is in the Arasbaran metallogenic belt (AAB). Intrusion of subvolcanic rocks, such as quartz monzodiorite-diorite porphyry, into Eocene volcanic and volcano-sedimentary units led to mineralisation and alteration. Mineralisation can be subdivided into a porphyry system and Au-bearing quartz veins within andesite and trachyandesite which is controlled by fault distribution. Rock samples from quartz veins show maximum values of Au (17100 ppb), Pb (21100 ppm), Ag (9.43ppm), Cu (611ppm) and Zn (333 ppm). Au is strongly correlated with Ag, Zn and Pb. In the Au-bearing quartz veins, factor group 1 indicates a strong correlation between Au, Pb, Ag, Zn and W. Factor group 2 indicates a correlation between Cu, Te, Sb and Zn, while factor group 3 comprises Mo and As. Based on Spearman correlation coefficients, Sb and Te can be very good indicator minerals for Au, Ag and Pb epithermal mineralisation in the study area. The zoning pattern shows clearly that base metals, such as Cu, Pb, Zn and Mo, occur at the deepest levels, whereas Au and Ag are found at higher elevations than base metals in boreholes in northern Mazra’eh Shadi. This observation contrasts with the typical zoning pattern caused by boiling in epithermal veins. At Mazra’eh Shadi, quartz veins containing co-existing liquid-rich and vapour-rich inclusions, as strong evidence of boiling during hydrothermal evolution, have relatively high Au grades (up to 813 ppb). In the quartz veins, Au is strongly correlated with Ag, and these elements are in the same group with Fe and S. Mineralisation of Au and Ag is a result of pyrite precipitation, boiling of hydrothermal fluids and a pH decrease.
APA, Harvard, Vancouver, ISO, and other styles
6

Verdiansyah, Okki, Damas Muharif, and I. Gde Sukadana. "Indikasi Mineralisasi Tipe Porfiri di Daerah Sumbersari, Kompleks Pengunungan Kulon Progo, Purworejo, Indonesia." EKSPLORIUM 41, no. 2 (November 30, 2020): 115. http://dx.doi.org/10.17146/eksplorium.2020.41.2.5959.

Full text
Abstract:
ABSTRAK Pegunungan Kulon Progo merupakan produk magmatisme Busur Sunda-Banda tersusun atas formasi andesit tua. Daerah Sumbersari merupakan bagian dari gunung api Gajah, batuan gunung api tertua Kulon Progo. Indikasi mineralisasi tipe porfiri ditemukan di daerah ini sehingga menarik untuk diteliti lebih lanjut. Penelitian ini bertujuan untuk mengetahui potensi keterdapatan mineral logam berharga (Cu-Au). Metode penelitian yang digunakan adalah pemetaan geologi, analisis petrografi dan mikroskopi bijih, serta analisis geokimia menggunakan XRF dan ICP-MS. Geologi daerah penelitian terletak pada fasies sentral-proksimal Khuluk Gajah, terususun atas intrusi mikrodiorit, mikrodiorit kuarsa, andesit, andesit basaltik-diorit, dan batugamping. Alterasi hidrotermal berkembang pada batuan beku diorit, mikrodiorit, dan sebagian pada andesit. Alterasi hidrotermal dibagi menjadi beberapa kelompok, yaitu ilit-serisit±biotit sekunder, epidot-aktinolit-kalsit±ilit, epidot-kalsit±ilit, dan ilit-serisit±kuarsa. Beberapa fase mineralisasi berkembang, antara lain fase epidot-aktinolit yang diikuti mineralisasi magnetit-kalkopirit, fase biotit-magnetit-kalkopirit-bornit, dan fase akhir serisit-mineral lempung-pirit menggantikan keseluruhan sistem. Analisis geokimia pada batuan teralterasi menunjukan indikasi mineralisasi Cu-Au dengan kadar 491–1447 ppm (0,14%) Cu dan 0,02–0,3 ppm Au dengan rasio elemen Cu:Au adalah 1,01. Karakter geokimia menunjukkan adanya korelasi kuat Cu terhadap Au.ABSTRACT Kulon Progo Mountain is Sunda-Banda Arc magmatism product composed of an old andesite formation. Sumbersari Area is part of the Gajah volcanic, which is the oldest rock of Kulon Progo volcanics. Indication of porphyry type mineralisation has been found in the area which makes the area interested for further research. The research methodologies are geological mapping, petrography and ore microscopy, and geochemical analysis using XRF and ICP-MS. Geology of the area located in central-proximal facies of Khuluk Gajah, consist of microdiorite, quartz-microdiorite, andesite, basaltic-dioritic andesite intrusions, and limestone. Hydrotermal alteration is developing into certain groups like illite-sericite ± secondary biotite, epidote-actinolite-calcite ± illite, epidot-calcite ± illite, and illite-sericite ± quartz. Some mineralisation phases are developed like epidote-actinolite followed by magnetite-chalcopyrite mineralisation, biotite-magnetite-chalcopyrite-bornite phase and the late phase of sericite-clay-pyrite replacing the entire system. Geochemical analysis on altered rocks show Cu-Au mineralisation indication ranging from 491-1,447 ppm (0.14%) and 0.02-0.3 ppm respectively, with Cu:Au ratio is 1.01. Geochemical characteristic shows strong correlation of Cu to Au.
APA, Harvard, Vancouver, ISO, and other styles
7

Blevin, Phillip L., Bruce W. Chappell, and Charlotte M. Allen. "Intrusive metallogenic provinces in eastern Australia based on granite source and composition." Earth and Environmental Science Transactions of the Royal Society of Edinburgh 87, no. 1-2 (1996): 281–90. http://dx.doi.org/10.1017/s0263593300006684.

Full text
Abstract:
ABSTRACT:Ore element ratios in intrusion-related mineralisation are in part a function of the relative oxidation state and degree of fractionation of the associated granite suite. A continuum from Cu-Au through W to Mo dominated mineralisation related to progressively more fractionated, oxidised I-type magmas can be traced within single suites and supersuites. Such systematic relationships provide strong evidence for the magmatic source of ore elements in granite-related mineral deposits and for the production of the observed ore element ratios dominantly through magmatic processes. The distribution of mineralised intrusive suites can be used to define a series of igneous metallogenic provinces in eastern Australia. In general, there is a correlated evolution in the observed metallogeny (as modelled based on the compatibility of ore elements during fractionation) with increasing degree of chemical evolution of the associated magmatic suite. This is from Cu-Au associated with chemically relatively unevolved magmas, through to Sn and Mo-rich mineralisation associated with highly evolved magmas that had undergone fractional crystallisation. Provinces recognised in that way do not necessarily correlate with the tectonostratigraphic boundaries defined by the near-surface geology, indicating that the areal distribution of some granite source regions in the deep crust is unrelated to upper crustal geology.
APA, Harvard, Vancouver, ISO, and other styles
8

Zamanian, Hassan, and Behrooz Asadollahi. "Geochemistry and ore potential of the Almoughlagh batholith, western Iran." Geologos 19, no. 3 (September 1, 2013): 229–42. http://dx.doi.org/10.2478/logos-2013-0014.

Full text
Abstract:
Abstract The Almoughlagh batholith intruded the dioritic Baba Ali pluton during the Oligo-Miocene; the pluton and is now exposed as a big enclave within the batholith. The pluton intruded the Songhor Series during the Late Kimmeridgian (~136 Ma) orogeny. The intrusion by the batholith transformed the diorite to metadiorite and the impure carbonate units of the Songhor Series. The batholith consists of rock types such as quartz syenite and syenogranite, which have a low average quartz content, and which are metaluminous to peraluminous and calc-alkaline in composition. Comparison of the compositions of the Almoughlagh batholith and the pluton with its Cu, Mo, Fe, Sn, W, Au, and Zn skarn deposits, indicates that the Baba Ali diorite geochemically shows much resemblance with those which could bring about Fe-Cu skarn mineralization, whereas the compositions of the Almoughlagh granitoids resembles those of the plutons associated with Mo and Zn skarn deposits. The associated hydrothermal activity related to the Almoughlagh batholith culminated in magnetite mineralisation in the Baba Ali and the Chenar mines in which copper mineralisation also is considerable.
APA, Harvard, Vancouver, ISO, and other styles
9

Sproule, R. A., R. Sutcliffe, H. Tracanelli, and C. M. Lesher. "Palaeoproterozoic Ni–Cu–PGE mineralisation in the Shakespeare intrusion, Ontario, Canada: a new style of Nipissing gabbro-hosted mineralisation." Applied Earth Science 116, no. 4 (December 2007): 188–200. http://dx.doi.org/10.1179/174327507x207492.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Idrus, Arifudin, Aji Syailendra Ubaidillah, I. Wayan Warmada, and Syafruddin Maula. "Geology, Rock Geochemistry and Ore Fluid Characteristics of the Brambang Copper-Gold Porphyry Prospect, Lombok Island, Indonesia." Journal of Geoscience, Engineering, Environment, and Technology 6, no. 1 (March 29, 2021): 67–73. http://dx.doi.org/10.25299/jgeet.2021.6.1.6145.

Full text
Abstract:
Brambang is one of the porphyry copper-gold prospects/deposits situated along eastern Sunda arc. This study is aimed to understand geological framework, alteration geochemistry and ore fluid characteristics of the prospect. Fieldworks and various laboratory analyses were performed including petrography, ore microscopy, rock geochemistry, chlorite chemistry and fluid inclusion microthermometry. The prospect is composed of andesitic tuff and diorite which are intruded by tonalite porphyries. Tonalite porphyries are interpreted as ore mineralisation-bearing intrusion. Various hydrothermal alterations are identified including potassic, phyllic, propylitic, advanced argillic and argillic types. Ore mineralisation is characterized by magnetite and copper sulfides such as bornite and chalcopyrite. Potassic alteration is typified by secondary biotite, and associated with ore mineralisation. Mass balance calculation indicates SiO2, Fe2O3, K2O, Cu and Au are added during potassic alteration process. Ore forming fluid is dominated by magmatic fluid at high temperature (450-600ºC) and high salinity (60-70 wt. % NaCl eq.). Hydrothermal fluid was diluted by meteoric water incursion at low-moderate temperature of 150-400ºC and salinity of 0.5-7 wt. % NaCl eq.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Cu mineralisation"

1

Naylor, Patricia H. "Genetic studies of Cu-Pb-Zn mineralisation in Triassic red beds of Western Europe." Thesis, Aston University, 1988. http://publications.aston.ac.uk/14389/.

Full text
Abstract:
Continental red bed sequences are host, on a worldwide scale, to a characteristic style of mineralisation which is dominated by copper, lead, zinc, uranium and vanadium. This study examines the features of sediment-hosted ore deposits in the Permo-Triassic basins of Western Europe, with particular reference to the Cu-Pb-Zn-Ba mineralisation in the Cheshire Basin, northwest England, the Pb-Ba-F deposits of the Inner Moray Firth Basin, northeast Scotland, and the Pb-rich deposits of the Eifel and Oberpfalz regions, West Germany. The deposits occur primarily but not exclusively in fluvial and aeolian sandstones on the margins of deep, avolcanic sedimentary basins containing red beds, evaporites and occasionally hydrocarbons. The host sediments range in age from Permian to Rhaetian and often contain (or can be inferred to have originally contained) organic matter. Textural studies have shown that early diagenetic quartz overgrowths precede the main episode of sulphide deposition. Fluid inclusion and sulphur isotope data have significantly constrained the genetic hypotheses for the mineralisation and a model involving the expulsion of diagenetic fluids and basinal brines up the faulted margins of sedimentary basins is favoured. Consideration of the development of these sedimentary basins suggests that ore emplacement occurred during the tectonic stage of basin evolution or during basin inversion in the Tertiary. 34S values for barite in the Cheshire Basin range from 13.8% to 19.3% and support the theory that the Upper Triassic evaporites were the principal sulphur source for the mineralisation and provided the means by which mineralising fluids became saline. In contrast, 34S values for barite in the Inner Moray Firth Basin (mean 34S = + 29%) are not consistent with simple derivation of sulphur from the evaporite horizons in the basin and it is likely that sulphur-rich Jurassic shales supplied the sulphur for the mineralisation at Elgin. Possible sources of sulphur for the mineralisation in West Germany include hydrothermal vein sulphides in the underlying Devonian sediments and evaporites in the overlying Muschelkalk. Textural studies of the deeply buried sandstones in the Cheshire Basin reveal widespread dissolution and replacement of detrital phases and support the theory that red bed diagenetic processes are responsible for the release of metals into pore fluids. The ore solutions are envisaged as being warm (60-150%C), saline (9-22 wt % equiv NaCl) fluids in which metals were transported as chloride complexes. The distribution of 34S values for sulphides in the Cheshire Basin (-1.8% to + 16%), the Moray Firth Basin (-4.8% to + 27%) and the German Permo-Triassic Basins (-22.2% to -12.2%) preclude a magmatic source for the sulphides and support the contention that sulphide precipitation is thought to result principally from sulphate reduction processes, although a decrease in temperature of the ore fluid or reaction with carbonates may also be important. Methane is invoked as the principal reducing agent in the Cheshire Basin, whilst terrestrial organic debris and bacterial reduction processes are thought to have played a major part in the genesis of the German ore deposits.
APA, Harvard, Vancouver, ISO, and other styles
2

Johannesen, A. (Anne). "Orthomagmatic Ni-Cu mineralisation in the Palaeoproterozoic Johan Petersen Intrusive Centre, Ammassalik Intrusive Complex, South-East Greenland." Master's thesis, University of Oulu, 2016. http://urn.fi/URN:NBN:fi:oulu-201604191511.

Full text
Abstract:
The Palaeoproterozoic Johan Petersen Intrusive Centre (JPIC) formed as a continental arc at the North Atlantic Craton margin during the formation of the ca. 1.9 Ga Nagssugtoqidian Orogen (NO) in SE Greenland. Magmatic Ni-Cu deposits in the coeval Trans-Hudson and Svecofennian Orogens (THO and SFO) make the NO the primary target for Ni-Cu deposits in Greenland. Using mapping, petrography, geochemistry, and multiple sulphur isotope geochemistry, this thesis deals with the formation of the JPIC and related mineralisation, and compares it with previously discovered Ni-Cu mineralisation in the NO and Trans-Hudson and Svecofennian Orogens. The JPIC formed from an early series of dioritic to granitic magmas intruding into paragneiss under granulite facies conditions. A mafic series of gabbroic rocks intruded into both the paragneiss and the earlier felsic series rocks. Late mafic-ultramafic sheets and magmatic breccias intruded predominantly into the mafic series rocks. Two episodes of intrusion by mafic-ultramafic stringers happened when the felsic and mafic series rocks were semi-solid. Late granite likely formed from back-veining of residual melts. Uplift during orogenesis caused retrograde amphibolite facies metamorphism, and late hydrothermal alteration of both intrusive rocks and their mineralisation took place under temperature conditions corresponding to amphibolite- to mid greenschist facies. The mineralised rocks in the JPIC occur as contact mineralisation between the intrusive rocks and the adjacent paragneiss, as mineralisation in the stringers mingling with the mafic series rocks, and as accumulated sulphide liquids in the later sheets and breccias. In the contact style mineralisation, sulphides are disseminated, network-like or semi- massive and show S isotopic compositions indicating a Palaeoproterozoic sedimentary sulphur source. Ni and Cu contents in the sulphide phase are low. Sulphides in the mineralised stringers and mafic-ultramafic sheets and breccias are disseminated to network-like, and have mantle-like isotopic compositions of sulphur. The ultramafic sheets and breccias have higher Ni-Cu contents and tenors and currently form the primary targets. The JPIC mineralisation is similar to that in the Kotalahti-Vammala belt of the SFO, and although sub-economic at the moment, possible existence of deeper-seated sulphides would give the area an upside potential for more discoveries.
APA, Harvard, Vancouver, ISO, and other styles
3

Chinyuku, Donald Tichaona. "The Kansanshi Cu-Au deposit, Domes region, Zambia : geology, mineralisation and alteration characteristics in the main pit." Thesis, Rhodes University, 2014. http://hdl.handle.net/10962/d1011758.

Full text
Abstract:
The Kansanshi Cu-Au deposit located in the Domes region of the North West province of Zambia is characterised by structurally controlled high angle veins and associated alteration halos. The northwest trending Kansanshi antiform flanks the Solwezi syncline to the north and hosts the Kansanshi deposit and consists of tillites and metasedimentary rocks. Mineralisation is associated with Neoproterozoic Pan African deformation events experienced during the formation of the Lufilian fold belt; however recent findings confirm that structures in the form of reverse and normal faults and drag folds are critical controls on mineralisation within the deposit, Main pit in particular. Low angle faults occurring below the current pit are believed to have served as major fluid pathways during mineralisation. Age dating data from the Kansanshi deposit suggest that mineralisation took place between 512 and 503 Ma indicating that the event was associated with metamorphism. Two types of alteration are dominant within the Main pit (Kansanshi deposit) with the type and intensity of alteration being largely controlled by lithological units. Albite alteration occurs dominantly in phyllites and schists whereas dolomitisation is prevalent in calcareous units. Alteration is associated with mineralisation, and therefore is used as a condition for predicting vein or disseminated mineralisation. The high Au tenor at Kansanshi can be attributed to gold grains occurring in association with melonite (NiTe₂) and microfractured pyrite intergrown with chalcopyrite in sulphide and quartz dominated veins and veinlets. Analysis of gold grade distribution within the Main pit shows a clear concentration of the element along the major north-south trending structures like the 4800 and 5400 zones, possibly through supergene enrichment in the oxide-transition-sulphide zones. It is imperative that exploration for Kansanshi-type deposits will require geochemical and geophysical studies, understanding of the geology of an area to identify the three lithostratigraphic units (red beds, evaporites and reducing strata).
APA, Harvard, Vancouver, ISO, and other styles
4

Fletcher, Timothy Andrew. "The geology, mineralisation (Ni-Cu-PGE) and isotope systematics of Caledonian mafic intrusions near Huntly, NE Scotland." Thesis, University of Aberdeen, 1989. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=88127.

Full text
Abstract:
The Caledonian mafic and ultramafic intrusions of the Grampian region of N.E. Scotland are a suite of synorogenic tholeiitic plutons of mid-Ordovician Age. They include layered cumulates, granular gabbronorites, quartz biotite norites and xenolithic contact facies lithologies. They postdate two regional deformation events in the enclosing Late Precambrian Dalradian metasediments, but are themselves locally deformed by a major regional ductile shear zone system. A detailed study of the Huntly-Knock area was undertaken combining geological mapping, petrological, geochemical and stable isotope techniques. In the study area, layered peridotitic to gabbroic cumulates, transitional cumulate types, granular gabbronorites quartz biotite norites and complex xenolithic contact facies rock types are present as a series of disrupted bodies formed by multiple intrusive events and subsequent deformation of a laccolithic and sheeted intrusive complex. Progressive cryptic fractionation trends are observed from basal peridotites to quartz biotite norites in the 'roof' of the intrusion. The chemistry and mineralogy of the rocks places them in the Lower and Middle Zone of the regional Younger Basic 'stratigraphy', although isolated pockets of Upper Zone may occur. Fine grained disseminated Fe-Ni-Cu sulphides are widespread throughout the mafic and ultramafic rock types. Richer sulphide concentrations locally occur as: gabbronorite hosted disseminated to massive bodies in the structurally complex, Littlemill-Auchencrieve contact zone; disseminated horizons within cumulates; disseminated to submassive graphite-rich pods in pyroxenitic pegmatites. The sulphide assemblage is dominated by pyrrhotite with minor pentlandite and chalcopyrite. Sulphide textures are attributed to magmatic processes with local modification by ductile deformation and hydrothermal reworking. Field, textural and Cu/Cu+Ni relations of certain submassive-massive sulphides is consistent with their derivation from an ultramafic parent. Maximum Ni and Cu levels are 3.02% and 6.46% respectively. The highest combined Pt+Pd+Au values occur in remobilised net sulphide (574ppb) and graphitic pyroxenite (700ppb). These metal values are generally low and comparable to other orogenic Caledonian intrusions. Sulphide immiscibility occurred many times during cooling of the tholeiitic parent magma(s), however early sulphide melts are generally of most economic importance. While there is abundant evidence for magma/country rock interaction, only locally is there evidence for involvement of metasediment sulphur, the system being dominated by a magmatic signature. In the Littlemill-Auchencrieve contact zone, crustal involvement may have been the principal factor controlling sulphide immiscibility. Subsequent hydrothermal reworking within ductile shear zones under amphibolite facies metamorphic conditions modified metal values. Depletion, especially of Au, Pt and Pd was mainly observed but local significant zones of enrichment may also be present.
APA, Harvard, Vancouver, ISO, and other styles
5

Dyriw, Nicholas J. "Tectono-magmatic setting of Seafloor massive Sulfide systems: Investigating Solwara 1 Cu-Au deposit." Thesis, Queensland University of Technology, 2021. https://eprints.qut.edu.au/207956/2/Nicholas_Dyriw_Thesis.pdf.

Full text
Abstract:
This thesis investigates the tectonic and magmatic setting of a Copper-rich seafloor massive sulfide deposit. Integrated multi-scale data analysis produced a regional to deposit-scale framework to constrain how, why and where these types of mineral deposits form. Outcomes from this research advance our understanding of 1) regional tectonic evolution of the East Manus Basin, and 2) volcanic and magmatic processes conducive to seafloor massive sulfide deposit formation.
APA, Harvard, Vancouver, ISO, and other styles
6

Hughes, Hannah. "Temporal, lithospheric and magmatic process controls on Ni, Cu and platinum-group element (PGE) mineralisation : a case study from Scotland." Thesis, Cardiff University, 2015. http://orca.cf.ac.uk/71624/.

Full text
Abstract:
A temporal and spatial relationship between plume magmatism, cratonic lithosphere and the occurrences of orthomagmatic Ni-Cu and platinum-group element (PGE) sulphide mineralisation has been documented in the literature. However the underlying causes for this correlation have yet to be resolved – is there an inherent feature of the cratonic lithosphere and its mantle ‘keel’ that controls mineralisation? Or is this correlation purely a preservational bias in the geological record? Scotland has experienced multiple tectono-magmatic events and provides an ideal testing ground, or ‘framework’, in which to assess the role of lithospheric mantle on chalcophile element (Ni and Cu) and precious metal (PGE and Au) abundances through time. Given the well-documented geological history of the region (including several suites of mantle xenoliths), coupled with exploration campaigns in Greenland (with which Scotland has comparable geology), this thesis aims to assess the contributions and influences of lithospheric mantle vs. asthenospheric mantle during melting and mineralisation. It also evaluates the Ni-Cu-PGE mineralisation potential for Scotland, particularly in a Noril’sk-type conduit-hosted setting within the British Palaeogene Igneous Province (BPIP). The earliest major tectono-magmatic event following cratonisation of the North Atlantic Craton (NAC) occurred c. 2.4 Ga during Palaeoproterozoic extension, forming the maficultramafic Scourie Dyke Swarm. Despite evidence for lithospheric mantle melting at this time, the subcontinental lithospheric mantle (SCLM) below the Scottish portion of the NAC did not become severely depleted in sulphides or PGE. Instead, spinel lherzolite mantle xenoliths from this region (e.g., Loch Roag) record an influx of carbonatite-associated sulphides at this time, enriched in PGE, and providing a deeper indication of continental extension that may be correlated to carbonatitic intrusions in Greenland. Subsequent collision and orogenesis of the NAC in the late Palaeoproterozoic (c. 1.9 to 1.7 Ga) represents a second significant tectonomagmatic event, recorded in the Scottish SCLM as sulphide (re-)melting and formation of discrete Pt-sulphide minerals (cooperite). Hence the lithospheric mantle here became appreciably enriched in precious metals during the Palaeoproterozoic, but crucially this preserved multiple co-existing populations of sulphides, distinct in their petrographic setting and geochemistry. Cratonic basement and associated mantle lithosphere are absent in the southern terranes of Scotland. This provides a direct comparison between lithospheric mantle geochemistry for Archaean-Palaeoproterozoic terranes north of the Great Glen Fault vs. Palaeozoic terranes south of the Great Glen Fault. Rifting of Rodinia and opening of the Iapetus Ocean in the late Neoproterozoic thus marks a significant change in geodynamic setting. This is especially apparent in the concentration of cobalt in lithospheric mantle sulphides, which appears to be inherently linked with the formation and/or later destruction (subduction) of oceanic crust during the Grampian event of the Caledonian orogeny. The impingement of the proto-Icelandic mantle plume initiated in the Palaeogene at the base of the NAC lithospheric mantle keel of Scotland and Greenland. The earliest Palaeogene magmas are enriched in Pt (i.e., have a high Pt/Pd ratio), whilst subsequent magmas associated with the opening of the Atlantic Ocean have successively lower Pt/Pd ratios. High Pt/Pd ratios are therefore coincident with magmas that have intruded through cratonic lithosphere. The SCLM at the margin of this region is known to be Pt-enriched (with cooperite) and therefore the changing Pt/Pd ratio of North Atlantic Igneous Province magmas suggests a fundamental interaction between the mantle plume and pre-enriched SCLM. Thus, whilst the concentration of metals, particularly Ni and Cu, is largely based on the high degree of asthenospheric mantle melting associated with the plume itself, the ratio of precious metals, such as Pt/Pd, can be strongly influenced by SCLM geochemistry. Overall, the intricate subtleties of metasomatic signatures recorded by mantle xenolith sulphides (or populations of sulphides) could allow for metallogenic ‘mapping’ of the upper mantle. This may identify areas of geochemical and mineralogical ‘preconditioning’, and together with geophysical constraints such as major lithospheric lineaments, it may be possible to establish the craton-specific fertility of a region. Finally, in order for orthomagmatic sulphide mineralisation to occur, magmas must achieve sulphur saturation in the upper crust, forming an immiscible sulphide liquid and thereby collecting PGE and chalcophile elements, possibly to economic grades. Thus a crucial part of assessing the mineralisation potential of a region must entail an investigation into the causes and locations of S-saturation. Given that crustal sulphur contamination is a common trigger for magmatic S-saturation, this thesis establishes the first S-isotopic (δ34S) framework for western Scotland in order to identify areas of sulphur contamination in the BPIP. In Scotland, the most readily available and S-rich rocks occur in the Mesozoic Hebrides Basin. Sulphur contamination of BPIP rocks is widespread and both S-saturation and S-undersaturation can be observed, suggesting that the region may be extremely fertile for orthomagmatic Ni-Cu-PGE mineralisation. By reconstructing the Hebrides Basin stratigraphy we can assess locations of contamination, even if these are above the current level of exposure (and since removed by erosion), and in some situations sulphide liquid sinking may be demonstrated, suggesting further possibilities for mineralisation present ‘up-stream’ in magmatic conduits. In conclusion, the Scottish BPIP represents a new exploration frontier not yet identified by industry for orthomagmatic Ni-Cu-PGE mineralisation. The conclusions are based on approximately 500 rock samples from across Scotland, which have been analysed for major elements and over thirty trace elements (including PGE) and S-isotopes. All data are available on an accompanying CD.
APA, Harvard, Vancouver, ISO, and other styles
7

Hood, Shawn Bruce. "Mid-crustal Cu-Au mineralisation during episodic pluton emplacement, hydrothermal fluid flow, and ductile deformation at the Minto deposit, YT, Canada." Thesis, University of British Columbia, 2012. http://hdl.handle.net/2429/42818.

Full text
Abstract:
The genesis of the Minto copper-gold deposit, YT, Canada, has been variously interpreted since its discovery although no existing model accounts for ductile deformation as a control on mineralization. Results from this study show that Minto ore is hosted within ductiley deformed granitoid host rocks emplaced as multiple intrusions into an actively deforming environment, with the variably sheared host rocks separated by incipiently deformed granodiorites essentially barren of mineralisation. Contacts between deformed/mineralized rock and incipiently deformed/barren rock range from abrupt to gradational, and are the product of pre-existing igneous contacts, variably partitioned deformation, or a combination of these. Deformation of granitoids is interpreted to have controlled fluid flow, with associated alteration promoting further deformation and fluid flow. Potassic alteration, in the form of biotite-magnetite, is the dominant alteration associated with mineralisation, and analysis of alteration using isocon diagrams indicates that K, Fe, Si, Cu, Au, and Ag have been added during alteration, although mass has been lost overall due to a relative reduction in Na and Ca. Host rock intrusion, mineralization, and deformation are interpreted via geochronology and crosscutting relationships as ongoing over at least 5 m.a., from about 202 Ma until about 197 Ma, based on U-Pb SHRIMP geochronology of zircons in granitoids and Re-Os ICP-MS geochronology of molybdenite. The trend of mineralisation is now coincident with the strike of foliation on short steep limbs and of axial planes of folded foliation. This geometry may not be representative of original processes, but of remobilization of ore during continued deformation. The above observations, coupled with data from existing studies, strongly suggest Minto is representative of deposit generation within an arc subduction environment at depths not typically considered for copper-gold deposit formation.
APA, Harvard, Vancouver, ISO, and other styles
8

Salimo, Luckmore. "Gold mineralisation at Masumbi Au-Cu Prospect, west Kenya : implication for gold exploration in the Archaean Ndori Greenstone Belt of Kenya." Thesis, Rhodes University, 2014. http://hdl.handle.net/10962/d1020961.

Full text
Abstract:
The Masumbi Au-Cu deposit in the Ndori Greenstone Belt of western Kenya is hosted in dacitic volcanics of the Nyanzian Group (2710 ± 340 Ma) and dioritic to granodioritic felsic intrusives (2504 ± 48 Ma). The deposit is characterised by gold and copper mineralisation that is associated with quartz-sulphide veins and veinlets. The copper mineralisation typically occurs as chalcopyrite. Gold is closely associated with pyrite in mineralogy and its pathfinder elements silver, bismuth, tellurium and selenium in geochemistry. The gold occurs in two forms that may indicate two generations of precipitation: the equant and the elongate forms. Based on Au/Ag ratios, the equant gold grains can be classified as native gold as their gold content is greater than 90 wt%. The elongate gold grains can be classified as electrums as their silver content is greater than 38 wt%. While there is a strong Au-Ag association within individual gold grains supporting an orogenic model for the gold mineralisation, mineralisation at the Masumbi Prospect appears atypical of Archaean orogenic gold deposits because of the abundance of copper (up to 0.43%). The enrichment of silver, copper, bismuth and tellurium in ore assemblages is common in porphyry, VMS and epithermal systems, but their presence at Masumbi does not preclude the formation as an orogenic deposit. Assay results from three Masumbi diamond drill-holes show an apparent correlation between gold and copper. However, petrography and electron probe microanalyses results from this study indicate that chalcopyrite is an earlier phase than pyrite as it occasionally occurs as inclusions in pyrite. This petrogenetic relationship between pyrite and chalcopyrite suggests that there is no temporal relationship between gold and copper mineralisation. Statistical analysis of the assays shows no linear correlation between gold and copper thereby supporting the above findings. The gold and copper mineralisation have been interpreted as forming as two separate events with copper forming first followed by gold. These events are both related to the intrusion of the felsic rocks that are associated with the Aruan metamorphic event that has been responsible for the bulk of the gold mineralisation on the Tanzanian Craton. The common alteration assemblage in the Masumbi rocks comprises chlorite and epidote. This alteration assemblage is typical of regional greenschist metamorphic facies grading into amphibolite metamorphic facies in the Nyanzian Group of Kenya. However, these alteration minerals could possibly be products of propylitic alteration in the rock groundmass. Other alteration mineral assemblages, possibly of hydrothermal origin, comprise muscovite, sericite, quartz, carbonate, associated with the sulphides pyrite and chalcopyrite. Although the occurrence of gold appears to be controlled by the presence of pyrite, it is also associated with silicification. Exploration methods have been proposed to target undiscovered gold deposits in the Ndori Greenstone Belt that are similar to the Masumbi deposit. These methods could probably be applied to vein-type gold deposits in other granite-greenstone terranes in the Lake Victoria Goldfields.
APA, Harvard, Vancouver, ISO, and other styles
9

Seat, Zoran. "Geology, petrology, mineral and whole-rock chemistry, stable and radiogenic isotope systematics and Ni-Cu-PGE mineralisation of the Nebo-Babel intrusion, West Musgrave, Western Australia." University of Western Australia. School of Earth and Geographical Sciences, 2008. http://theses.library.uwa.edu.au/adt-WU2008.0202.

Full text
Abstract:
The Nebo-Babel Ni-Cu-platinum-group element (PGE) magmatic sulphide deposit, a world-class ore body, is hosted in low-MgO, tube-like (chonolithic) gabbronorite intrusion in the West Musgrave Block, Western Australia. The Nebo-Babel deposit is the first significant discovery of a nickel sulphide deposit associated with the ca. 1078 Ma Giles Complex, which is part of the Warakurna large igneous province (LIP), now making the Musgrave Block a prime target for nickel sulphide exploration. The Musgrave Block is a Mesoproterozoic, east-west trending, orogenic belt in central Australia consisting of amphibolite and granulite facies basement gneisses with predominantly igneous protoliths. The basement lithologies have been intruded by mafic-ultramafic and felsic rocks; multiply deformed and metamorphosed between 1600 Ma and 500 Ma. The Giles Complex, which is part of the Warakurna LIP, was emplaced at ca. 1078 Ma and consists of a suite of layered mafic-ultramafic intrusions, mafic and felsic dykes and temporally associated volcanic rocks and granites. The Giles Complex intrusions are interpreted to have crystallised at crustal depths between 15km and 30km and are generally undeformed and unmetamorphosed.
APA, Harvard, Vancouver, ISO, and other styles
10

Wurst, Andrew T. "Analyses of late stage Mesoprotenozoic, syn and post tectonic, magmatic events in the Moonta Sub-domain : implications for Cu-Au mineralisation in the "Cooper Triangle" of South Australia /." Title page, contents and abstract only, 1994. http://web4.library.adelaide.edu.au/theses/09SB/09sbw968.pdf.

Full text
Abstract:
Thesis (B. Sc.(Hons.))--University of Adelaide, Dept. of Geology and Geophysics, 1995?
National Grid Reference Maitland Sheet I-553/12 (1:250 000) Whyalla I-53/8 (1:250 000). Three folded maps in pocket inside back cover. Includes bibliographical references (leaves 74-78).
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Cu mineralisation"

1

Naylor, Patricia Helen. Genetic studies of Cu-Pb-Zn mineralisation in Triassic red beds of Western Europe. Birmingham: Aston University. Department of Geological Sciences, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Cu mineralisation"

1

Fanger, L., T. Driesner, C. A. Heinrich, A. Von Quadt, and Irena Peycheva. "Elatsite porphyry Cu deposit, Bulgaria: mineralisation, alteration, and structures." In Mineral Deposits at the Beginning of the 21st Century, 527–29. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003077503-134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Carrillo Rosúa, F. J., S. Morales Ruano, and P. Fenoll Hach-Alí. "Mineralogy and mineral chemistry of precious metals of the Cu-Au mineralisation at the Palai-Islica deposit, Almeria, SE Spain." In Mineral Deposits at the Beginning of the 21st Century, 715–18. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003077503-182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mashale, Nthabiseng. "Prospectivity Mapping Using Stream Sediment Geochemistry Along the Orange River Catchment for Base Metal, Prieska, Northern Cape, South Africa." In Geochemistry [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.101785.

Full text
Abstract:
The Areachap Terrane, which is part of the Namaqua Sector of the Namaqua-Natal Belt in the Northern Cape Province, host volcanic-hosted Zn-Cu deposits at volcanic centres. The primary objective was to map Volcanogenic Massive Sulphide (VMS) mineralisation, determine the heavy metal contents of sediments, locate the source of anomalies and delineate targets for follow-up studies. Nine thousand three hundred and fourteen stream sediments samples collected were analysed using XRF. The element associated with their respective lithostratigraphy was calculated using spatial joint analysis tool. ArcGIS was used to display uni-elements maps and relevant multi-element maps. The delineated potential VMS mineralisation target is considered for further follow-up study. The M23 and M24 anomalies are delineated for Cu_Ni mineralisation. M23 and M24 anomalies are sourced from ultramafic debris transported from the Ghaap Group; however, this potential target will require follow-up studies for verification. The correlation between the Cu-Pb-Zn anomaly with alkali elements (Nb, Zr, Th, and U) and REEs (in Table 9) suggests there is a possibility that the M26–M29 anomaly is alkali-granitic genetic origin. The As, Ba, Ce, Cr, Cu, Hf, Nd, Ni, Rb, Sr., S, V, Zr and Zn contents showed a heterogeneous spatial distribution, reflected by high coefficient of variation and large standard deviation.
APA, Harvard, Vancouver, ISO, and other styles
4

El-Haddad, A., A. El-Hodairi, and M. El-Chair. "Sedimentology and Cu-U mineralisation of the Upper Cretaceous Bin Affin Member, Dur Waddan, Southwestern El Haruj, Murzuq Basin, Libya." In Geological Exploration in Murzuq Basin, 369–78. Elsevier, 2000. http://dx.doi.org/10.1016/b978-044450611-5/50019-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Cu mineralisation"

1

Turner, Elizabeth C., Quinn Dabros, and David W. Broughton. "ORE-HOSTING KAMOA-KAKULA DIAMICTITE MATRIX (DEMOCRATIC REPUBLIC OF CONGO) EXHIBITS TWO-STAGE CU MINERALISATION." In GSA 2020 Connects Online. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020am-359100.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Cu mineralisation"

1

Bleeker, W., and D. E. Ames. System scale and deposit scale controls on Ni-Cu-PGE mineralisation in cratonic areas and their margins. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2017. http://dx.doi.org/10.4095/299588.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lightfoot, P. C., and D. M. Evans-Lamwood. Near surface manifestations of the controls on Ni-Cu-Co-PGE sulphide mineralisation in the structural roots of large igneous provinces. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2015. http://dx.doi.org/10.4095/296576.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography