Dissertations / Theses on the topic 'Crystallisation;Hard Sphere Systems'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 16 dissertations / theses for your research on the topic 'Crystallisation;Hard Sphere Systems.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Wild, Robert John. "Theoretical Studies of Crystallisation in Hard Sphere Systems." Thesis, The University of Sydney, 2004. http://hdl.handle.net/2123/646.
Full textWild, Robert John. "Theoretical Studies of Crystallisation in Hard Sphere Systems." University of Sydney. Chemistry, 2004. http://hdl.handle.net/2123/646.
Full textFrancis, Philip Sydney, and phil francis@rmit edu au. "Crystallisation spectrometer." RMIT University. SET, 2002. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20050617.121435.
Full textHeni, Martin. "Surface induced effects in hard sphere systems." [S.l. : s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=962680818.
Full textFairhurst, D. J. "Colloidal size polydispersity in hard-sphere and depletion systems." Thesis, University of Edinburgh, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.650453.
Full textVoisey, Jeremy Paul. "Cell theory of binary and polydisperse hard sphere systems." Thesis, University of Bath, 2001. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.760779.
Full textWatanabe, Hiroshi, Satoshi Yukawa, M. A. Novotny, and Nobuyasu Ito. "Efficiency of rejection-free dynamic Monte Carlo methods for homogeneous spin models, hard disk systems, and hard sphere systems." The American Physical Society, 2006. http://hdl.handle.net/2237/7148.
Full textMandal, Suvendu Verfasser], Dierk [Akademischer Betreuer] [Raabe, Fathollah Akademischer Betreuer] Varnik, and Robert [Akademischer Betreuer] [Svendsen. "Dynamic correlations and confinement effects in glass forming hard sphere systems / Suvendu Mandal ; Dierk Raabe, Fathollah Varnik, Bob Svendsen." Aachen : Universitätsbibliothek der RWTH Aachen, 2015. http://d-nb.info/1128231638/34.
Full textSrinivasan, Vivek. "CFD – DEM Modeling and Parallel Implementation of Three Dimensional Non- Spherical Particulate Systems." Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/91889.
Full textMaster of Science
CFD – DEM (Discrete Element Method) is a technique of coupling fluid flow solvers with granular solid particles. CFD – DEM simulations are beneficial in recreating pragmatic applications such as blood cellular flows, fluidized beds and pharmaceutics. Up until recently, particles in these flows have been modeled as spheres as the generation of particle geometry and collision detection algorithms are straightforward. However, in real – life occurrences, most particles are irregular in shape, and approximating them as spheres in computational works leads to a substantial loss of accuracy. On the other hand, non – spherical particles are more complex to generate. When these particles are in motion, they collide and exhibit complex trajectories. Majority of the wall clock time is spent in resolving collisions between these non – spherical particles. Hence, generic algorithms to detect and resolve collisions have to be incorporated. This primary focus of this research work is to develop collision detection and resolution algorithms for non – spherical particles. Collisions are detected using inherent geometrical properties of the class of particles used. Two popular models (event-driven and time-driven) are implemented and utilized to update the trajectories of particles. These models are coupled with an in – house fluid solver (GenIDLEST) and the functioning of the DEM model is validated with experimental results from previous research works. Also, since the computational effort required is higher in the case of non – spherical particulate simulations, an estimate of the scalability of the problem and factors influencing time to simulations are presented.
Kapfunde, Goodwell. "Near-capacity sphere decoder based detection schemes for MIMO wireless communication systems." Thesis, University of Hertfordshire, 2013. http://hdl.handle.net/2299/11350.
Full textElghannay, Husam A. "Methods Development and Validation for Large Scale Simulations of Dense Particulate Flow systems in CFD-DEM Framework." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/94133.
Full textPHD
Hossain, Mohammad Zahid. "A new lattice fluid equation of state for associated CO₂ + polymer and CO₂ + ionic liquid systems." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53475.
Full textMickel, Walter. "Geometry controlled phase behavior in nanowetting and jamming." Phd thesis, Université Claude Bernard - Lyon I, 2011. http://tel.archives-ouvertes.fr/tel-00868861.
Full text"The Packing Landscapes of Quasi-One Dimensional Hard Sphere Systems." Thesis, 2014. http://hdl.handle.net/10388/ETD-2014-09-1640.
Full textRao, G. Srinivasa. "Crystal Nucleation in Binary Hard Sphere Mixtures." Thesis, 2012. http://hdl.handle.net/2005/3239.
Full textHeni, Martin [Verfasser]. "Surface induced effects in hard sphere systems / vorgelegt von Martin Heni." 2001. http://d-nb.info/962680818/34.
Full text