Dissertations / Theses on the topic 'Crystal Structure - Transition Metal Oxides'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Crystal Structure - Transition Metal Oxides.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Eng, Hank W. "The crystal and electronic structures of oxides containing d0 transition metals in octahedral coordination." Connect to this title online, 2003. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1070570079.
Full textTitle from first page of PDF file. Document formatted into pages; contains xx, 180 p.; also includes graphics. Includes bibliographical references (p. 139-145).
Thanaweera, Achchige Dumindu P. "Design and characterisation of layered transition metal oxide cathode materials for Na-ion batteries." Thesis, Queensland University of Technology, 2022. https://eprints.qut.edu.au/228445/1/Dumindu_Thanaweera%20Achchige_Thesis.pdf.
Full textSpence, Stephanie L. "Tuning the Morphology and Electronic Properties of Single-Crystal LiNi0.5Mn1.5O4-δ." Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/100790.
Full textM.S.
The development of lithium-ion batteries has been fundamental to the expansion and prevalence of consumer electronics and electric vehicles in the twenty-first century. Despite their ubiquity, there is an ongoing drive by researchers to address the limitations and improve the quality and performance of lithium ion batteries. Much research has focused on altering the composition, structure, or properties of electrodes at the materials level to design higher achieving batteries. A fundamental understanding of how composition and structure effect battery performance is necessary to progress toward better materials. This thesis focuses on investigating the properties of LiNi0.5Mn1.5O4-δ (LNMO). LNMO material is considered a promising cathode material to meet the increasing consumer demands for improved battery performance. Through the synthesis methods, the shape of individual particles and the global electronic properties of LNMO can be tuned. In this work, specific synthesis parameters are systematically tuned and the properties of the resultant LNMO materials are explored. Electrochemical testing also evaluates the performance of the materials and offers insights into how they may fair in real battery systems. In an effort to potentially recycle spent battery materials, LNMO is also utilized as a catalyst support. Alteration of shape and electronic properties of the LNMO support can influence the catalytic properties, or the ability of the material to enhance the rate of a chemical reaction. Overall, this thesis explores how LNMO can be tuned and utilized for different applications. This work provides insights for understanding LNMO properties and direction for the development of future battery materials.
Hossain, A. "Synthesis, crystal structure and properties of complex oxides with the perovskite structure based on neodymium, alkaline earth and 3d-transition metals : dissertation for the degree of candidate of chemical sciences : 02.00.04." Thesis, б. и, 2019. http://hdl.handle.net/10995/82032.
Full textŞahin, Aytaç Eanes Mehtap. "Hydrothermal Synthesis and Characterization of Transition Metal Oxides/." [s.l.]: [s.n.], 2004. http://library.iyte.edu.tr/tezler/master/malzemebilimivemuh/T000435.doc.
Full textFanchon, Eric. "Etude structurale de conducteurs ioniques unidimensionnels de type hollandite." Grenoble 2 : ANRT, 1987. http://catalogue.bnf.fr/ark:/12148/cb37604938h.
Full textMann, Peter David Alexander. "Electronic structure of layered transition metal oxides." Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612888.
Full textGuo, Yuzheng. "Electronic structures of transition metal oxides." Thesis, University of Cambridge, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648465.
Full textGibbs, Alexandra S. "Emergent states in transition metal oxides." Thesis, University of St Andrews, 2013. http://hdl.handle.net/10023/3557.
Full textPayne, David J. "The Electronic Structure of Post Transition Metal Oxides." Thesis, University of Oxford, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.491678.
Full textCharenton, Jean-Claude. "Synthèse et caractérisation structurale et physico-chimique de quelques variétés non-stoechiométriques de bioxyde de manganèse." Grenoble 1, 1987. http://www.theses.fr/1987GRE10089.
Full textLyle, Matthew John. "Crystal structure prediction and its application to novel metal oxides." Thesis, University of Cambridge, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708224.
Full textKnee, Christopher Sebastian. "Synthesis, structure and magnetic properties of complex metal oxides." Thesis, University of Southampton, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299519.
Full textDavidson, Isobel Jean. "Synthesis, structure and properties of selected lithiated transition metal oxides." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape16/PQDD_0018/NQ30131.pdf.
Full textDavidson, Isobel Jean. "Synthesis, structure and properties of selected lithiated transition metal oxides /." *McMaster only, 1996.
Find full textTaylor, J. M. C. "The structure and properties of some mixed transition metal oxides." Thesis, University of Oxford, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.382735.
Full textWaldron, Joanna Elizabeth Leah. "Synthesis, structure and physical properties of selected transition metal oxides." Thesis, University College London (University of London), 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368892.
Full textWest, B. C. "Structure and dynamics in transition metal oxides and insertion compounds." Thesis, University of Exeter, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.379466.
Full textMcGrellis, Siobhan Ann. "Structure and chemistry of some low valent transition metal oxides containing metal-metal bonds." Thesis, University of Reading, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.384902.
Full textKimber, Simon A. J. "Spin and orbital ordering in ternary transition metal oxides." Thesis, University of Edinburgh, 2008. http://hdl.handle.net/1842/3487.
Full textSenn, Mark Stephen. "Charge, orbital and magnetic ordering in transition metal oxides." Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/7828.
Full textKemp, Jeremy. "Electron spectroscopy and electronic structure of first row transition metal oxides." Thesis, University of Oxford, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.257736.
Full textBaskar, Dinesh. "High temperature magnetic properties of transition metal oxides with perovskite structure /." Thesis, Connect to this title online; UW restricted, 2008. http://hdl.handle.net/1773/9812.
Full textChen, Han. "Experimental Adsorption and Reaction Studies on Transition Metal Oxides Compared to DFT Simulations." Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/103814.
Full textDoctor of Philosophy
Nowadays, density functional theory (DFT), a computational approach to chemistry has become increasingly more popular due to it being less computationally expensive than other traditional computational approaches. One major shortcoming of DFT is its inability to explain the electronic interactions within transition metal oxides, where the electronic configuration within one cation is intimately linked to those on adjacent cations. To address this, DFT+U, a variant of DFT, has been developed to better account for these special electronic interactions. However, not enough experimental comparisons have been established to verify the accuracy of DFT and DFT+U. Our lab focuses on providing high quality experimental benchmarks that can be readily compared to by the DFT community. To establish the experimental benchmarks, we use a technique called temperature-programmed desorption (TPD), which focuses on measuring the rate at which gas molecules leave a sample surface populated with a pre-determined amount of gas molecules as the temperature of the surface is raised at constant but slow temperature ramp rate. Through analysis of the results, the adsorption energy can be obtained for a desorption process, or an activation barrier if the desorption is the result of a surface reaction. Some simple calculations involving PBE, a popular functional used in the DFT community, and its variant PBE+U were conducted for comparison purposes. The transition metal oxide surfaces chosen in this study is MnO(100) and of α-Cr2O3(101̅2), because they both possess the special electronic interactions between their own cations. For adsorption studies, we determined adsorption energies of carbon monoxide (CO), and ammonia (NH3) on MnO(100) single crystal surface. For CO, TPD study revealed that CO undergoes weak adsorption on the surface, with no dissociation of CO detected. PBE predicts an unreasonable surface adsorption geometry while PBE+U predicts a reasonable one. When coupled with a particular dispersion correction method named DFT-D3 Becke-Johnson, PBE+U predicts a very accurate adsorption energy of CO on MnO(100). TPD shows that NH3 undergoes a stronger adsorption on MnO(100) with no dissociation of NH3. Similarly, PBE+U predicted a more reasonable adsorption geometry while PBE did not. Coupled with a dispersion correction named Tkatchenko-Scheffler method with iterative Hirshfeld partitioning (TSHP), PBE+U provides an accurate prediction of adsorption energy. In comparison to previous experimental works based on TPD results, the simple decomposition reactions of an ethyl group and a methyl group were also studied on α-Cr2O3(101̅2) surface using DFT. Overall, PBE gave better prediction on the activation barrier than PBE+U did in comparison to experimentally observed barriers.
Liu, Hui-Ping. "Magnetic ordering and crystal structure in selected transition-metal compounds /." Uppsala : Acta Universitatis Upsaliensis, 1999. http://catalogue.bnf.fr/ark:/12148/cb402057270.
Full textAwin, Labib Ali Mohamed. "Structural, Magnetic And Electrical Studies On Some Mixed Metal Perovskite Oxides." Thesis, The University of Sydney, 2013. http://hdl.handle.net/2123/9531.
Full textHopper, Harriet A. "An investigation of the structure and properties of 4d transition metal perovskite oxides." Thesis, University of Aberdeen, 2017. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=232235.
Full textButrouna, Kamal H. "A Systematic Transport and Thermodynamic Study of Heavy Transition Metal Oxides with Hexagonal Structure." UKnowledge, 2014. http://uknowledge.uky.edu/physastron_etds/24.
Full textCho, Suyeon. "Synthesis and characterization of refractory oxides doped with transition metal ions." Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00856580.
Full textBruneel, Pierre. "Electronic and spintronic properties of the interfaces between transition metal oxides." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASP047.
Full textThe anomalous transport properties of transition metal oxides, in particular the surface of SrTiO₃ or at the interface between SrTiO₃ and LaAlO₃ is investigated in this thesis. These systems host two-dimensional electron gases. Nonlinear Hall Effect measurements suggest that several species of carriers are present in these systems, and that their population is varying on a nontrivial manner upon electrostatic doping. The role of the electrostatics properties of the electron gas and of the electronic correlations are discussed in this light. Next we discuss the spin to charge conversion of these systems thanks to tight-binding modeling and linear response theory. The complex interplay between atomic spin-orbit coupling and the inversion symmetry breaking at the interface leads to a complex spin-orbital-momentum locking of the electrons, inducing spin textures. These spin textures are responsible for the appearance of the Edelstein and Spin Hall Effect in these heterostructures and are characteristic of the multi-orbital character of these electronic systems. Finally an ab initio study of STO/LAO/STO heterostructures is performed to explain experimental evidence of new ways to produce an electron gas at this interface. The respective roles of the chemistry, electrostatics and defects are discussed
Markkula, Mikael. "Synthesis, structure and properties of high pressure and ambient pressure ternary vanadium oxides." Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/8061.
Full textFugate, Elizabeth Anne. "Investigation of Electronic Structure Effects of Transition Metal Oxides toward Water Oxidation and CO2 Reduction Catalysis." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1462868623.
Full textShang, Hongyu SHANG. "Investigating Electronic Structure Effects in Transition Metal Oxides Used as Catalysts for Water Oxidation and CO2 Reduction." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1525451894252362.
Full textCapogrosso, Valentina. "Dimensionality and ordering effects on the electronic structure of low dimensional strongly correlated electron transition metal oxides." Doctoral thesis, Università degli studi di Trieste, 2013. http://hdl.handle.net/10077/8587.
Full textNel vasto scenario dei materiali fortemente correlati gli ossidi dei metalli di transizione hanno attratto enorme interesse a causa delle loro interessanti proprietà fisiche, come ad esempio, la superconduttività nei cuprati e la magnetoresistenza gigante nelle manganiti. In particolare, il mio interesse è stato rivolto ad una specifica classe di materiali, per i quali la dimensionalità è il parametro più importante. Le attività sperimentali sono state focalizzate verso due sistemi: la manganite Pr0.5Ca1.5MnO4 dopata a metà e a strato singolo (hd-PCMO) e la famiglia dei rutenati Srn+1RunO3n+1 (n=1,2,3). Entrambi questi sistemi esibiscono fenomeni affascinanti strettamente legati ad una complicata interazione tra i gradi di libertà del reticolo cristallino, di spin, di carica, ed orbitale, dove la dimensionalità cristallina gioca un ruolo cruciale. Con il mio progetto di dottorato ho studiato alcune proprietà dei materiali sopracitati per mezzo di spettroscopie con raggi X, come l’emissione risonante di raggi X (RXES) e l’assorbimento di raggi X (XAS) statico e risolto in tempo. Tutte le misure sono state condotte utilizzando la linea di luce BACH (linea di luce per dicroismo avanzato) dell’anello di accumulazione Elettra della Elettra-Sincrotrone Trieste. Il sistema hd-PCMO presenta una transizione di ordinamento di carica ed orbitale (CO-O) ad una temperatura TCO relativamente elevate, i.e. 340 K, accompagnata da una distorsione strutturale ortorombica, dove i portatori di carica fortemente correlati eg del Mn si ordinano in sotto-reticoli cristallografici separati (stato di carica ordinato) con un carattere orbitale specifico (stato di ordinamento orbitale). Inoltre, hd-PCMO presenta anche una risposta reticolare anomala ad una temperatura 20 K sopra la temperatura di Neél TN, che è associata ad un inatteso accoppiamento spin-reticolo. Poiché mancava uno studio degli stati elettronici non occupati del PCMO, misure dipendenti dalla temperatura per mezzo del dicroismo lineare (XLD) sono state realizzate alle soglie K dell’ossigeno e L3 del Mn al fine di spiegare il ruolo della topologia orbitale dei Mn 3d – O 2p. I dati sperimentali, supportati da calcoli ab-initio LDA+U, ci danno informazioni sulla ridistribuzione di carica e sui cambiamenti delle p-DOS alla transizione CO-O e a quella antiferromagnetica (AFM). I risultati ottenuti mostrano che l’interazione competitiva tra la distorsione locale atomica, necessaria per permettere l’ordinamento CO, e le dinamiche di carica del meccanismo di hopping regolano lo stato orbitale dei portatori di carica. Inoltre, sulla base di studi teorici che predicono la formazione di fasi orbitali e strutturali transienti “nascoste” per mezzo della stimolazione ottica, abbiamo studiato le DOS non occupate dello stato metastabile indotto otticamente nel PCMO per mezzo della XAS risolta in tempo, che offre uno strumento unico per misurare le DOS proiettate in sito ed in simmetria degli stati metastabili della materia. Le misure XAS risolte in tempo alla soglia K dell’ossigeno sono state realizzate per mezzo di un nuovo apparato sperimentale disponibile a BACH, che si basa su un laser Ti:zaffiro (impulsi di pompa) con tasso di ripetizione variabile sincronizzato con gli impulsi a 500 MHz dei raggi X (impulsi di sonda). L’evoluzione temporale degli spettri XAS attraverso la transizione CO-O fotoindotta otticamente risulta differente rispetto alle misure XAS adiabatiche, dimostrando l’esistenza di una “fase nascosta” fotoindotta nel PCMO, la cui natura è ancora sconosciuta. I rutenati Srn+1RunO3n+1 (n=1,2,3) sono emersi come una famiglia importante di peroschiti a causa dell’evoluzione inattesa e senza precedenti dal comportamento anisotropico ferro- o metamagnetico del Sr4Ru3O10 (n=3) dipendente dalla direzione del campo magnetico, all’ aumentato paramagnetismo di Pauli vicino all’ordinamento magnetico del Sr3Ru2O7 (n=2) e, infine, alla superconduttività a bassa temperature in Sr2RuO4 (n=1). Nonostante vengano riportati numerosi studi sulle proprietà strutturali e magnetiche di questi composti, l’evoluzione delle strutture elettroniche occupate e non occupate non è stata investigata in dettaglio. Quindi, la dipendenza delle strutture elettroniche e l’ibridizzazione degli stati 2p dell’ossigeno sono state investigate combinando la spettroscopia XAS alla soglia K dell’ossigeno (transizione 2p-1s) dipendente dalla polarizzazione e la spettroscopia RXES. Una sezione del capitolo 3 è dedicata ad illustrare un setup sperimentale sviluppato recentemente per esperimenti XAS risolti in tempo sfruttando la struttura temporale “multibunch” dell’anello di accumulazione del sincrotrone. Sfruttando le potenzialità di questo setup, la transizione di superficie semiconduttore-metallo nel germanio cristallino è stata fotoindotta ed il set completo di dati viene discusso. Lo schema della mia tesi di dottorato è il seguente. Il primo capitolo presenta una panoramica dell’intero lavoro. Il secondo capitolo è diviso in due sezioni. La prima sezione introduce il lettore alla fisica orbitale ed alle transizioni di fase elettroniche nei metalli di transizione a ridotta dimensionalità, con un excursus sullo stato dell’arte dei composti 3d del manganese e la famiglia 4d dei rutenati. L’intento della seconda sezione è quello di spiegare l’importanza delle tecniche spettroscopiche nei raggi X molli come strumenti per investigare le proprietà elettroniche dei solidi. La descrizione delle spettroscopie XAS e RXES vengono riviste più in dettaglio nel capitolo 3, che include anche la descrizione dell’apparato sperimentale della beamline BACH e del laboratorio T-ReX al Sincrotrone Elettra. Il capitolo 4 è dedicato alla teoria funzionale di densità (DFT) ed alla approssimazione locale di densità più U (LDA+U) ed ai dettagli del modello del sistema hd-PCMO. Il capitolo 5, che presenta i casi studiati, è diviso in due sezioni: il caso del PCMO, che include le misure XAS statiche e risolte in tempo, ed il caso della serie Ruddlesden-Popper dei rutenati di Sr investigate per mezzo della RXES. Nel capitolo finale vengono presentati i commenti finali su questo lavoro.
In the vast scenario of strongly correlated-electron materials transition-metal oxides have attracted enormous interest because of their interesting physical properties, including for example, superconductivity in cuprates and colossal magnetoresistance in manganites. In particular, my interest was directed to a particular class of materials, whose dimensionality is the most defining material parameter. With my Ph.D. project I deepened into some physical properties of these materials by means of core-levels spectroscopies such as resonant x ray emission (RXES) and static and time-resolved x ray absorption (XAS). All the measurements have been carried out at the beamline BACH (Beamline for Advanced diCHroism) at the Elettra light source facility in Trieste. The experimental activities focused on two case-study systems: the single layered half-doped Pr0.5Ca1.5MnO4 (hd-PCMO) and the layered Srn+1RunO3n+1 (n=1,2,3) family. Both these systems exhibit fascinating phenomena intimately related to a complicated interplay between the crystal lattice, spin, charge, and orbital degrees of freedom, where crystal dimensionality plays a crucial role. hd-PCMO exhibits a charge-orbital ordering (CO-O) transition at a remarkably high TCO, slightly above room temperature, accompanied by an orthorhombic structural distortion, where the strongly correlated Mn eg charge carriers order onto separate crystallographic sub-lattices (charge-ordered state) with a specific orbital character (orbital ordered state). Furthermore, hd-PCMO also displays an anomalous lattice response at temperatures 20K above the Neél temperature TN, which is associated to an unexpected spin-lattice coupling. Since a study of the PCMO unoccupied electronic states was lacking, temperature dependence measurements by XAS linear dichroism (XLD) have been performed at the O-K and Mn-L3 thresholds in order to elucidate the role of Mn 3d - O 2p orbital topology. The experimental data, supported by ab-initio LDA+U, shed light on the charge redistribution and p-DOS changes at the CO-O and antiferromagnetic (AFM) transitions. The results obtained show that the competitive interplay between the local atomic distortion, necessary for accomodating the CO-ordering, and the charge dynamics of the hopping mechanism regulates the orbital state of the charge carriers. Furthermore, on the basis of theoretical studies that predict the formation of transient “hidden” orbital and structural phases by optical stimulation, we have studied the unoccupied DOS of the optically induced metastable state in PCMO by means of time resolved XAS, which offers a unique tool to measure site and symmetry projected DOS of metastable states in matter. Tr-XAS measurements at the O-K edge have been carried out by means of a novel experimental apparatus available at BACH, which is based on a variable repetition rate Ti:sapphire laser (pump pulse) synchronized with the ∼ 500 MHz X-ray photon pulses (probe pulses). The time evolution of the XAS lineshapes across the optically photoinduced CO-O transition results different respect to the adiabatic XAS measurements, demonstrating the existence of a photoinduced “hidden phase” in PCMO, whose nature is still unknown. The layered Srn+1RunO3n+1 (n=1,2,3) have emerged as an important family of perovskites because of the unexpected and unprecedented evolution from anisotropic ferro- or metamagnetic behavior of Sr4Ru3O10 (n=3) dependent on the direction of the magnetic field, enhanced Pauli paramagnetism close to magnetic order of Sr3Ru2O7 (n=2) and, finally, to low-temperature superconductivity in Sr2RuO4 (n=1). Although numerous studies have been reported on the structural and magnetic properties of these compounds, the evolution of the occupied and unoccupied electronic structures were not investigated in detail. Thus, the dependence of electronic structures and the hybridization of O 2p states have been investigated by combining polarization dependent O K (2p-1s transition) XAS and RXES spectroscopies. A section of the chapter 3 is dedicated to illustrate a newly developed experimental setup for time-resolved XAS experiments by exploiting the multibunch time structure of a synchrotron storage ring. By exploiting the capabilities of this setup, the surface semiconductor-metal transition in crystalline germanium has been photoinduced and the complete set of data discussed. The outline of my Ph.D. thesis is the following. The first chapter presents an overview of the entire work. The second chapter is divided into two sections. The first section introduces the reader into the orbital physics and the electronic phase transitions in low dimensional transition metal oxides, with an excursus on the state of the art of 3d manganese compounds and the family of 4d Ruthenates. The second section is aimed to explain the importance of soft x-ray spectroscopic techniques as tools to investigate the electronic properties of solids. The description of XAS and RXES are reviewed in more details in chapter 3, which includes also the description of the experimental apparatus of BACH beamline and T-ReX lab at the Elettra synchrotron light source. Chapter 4 is dedicated to the Density Functional Theory (DFT) and Local Density Approximation plus U (LDA+U) theories and to the details of the modelling of the hd-PCMO system. Chapter 5, which presents the cases studied, is divided into two sections: the case of PCMO, including static and time resolved XAS measurements, and the case of Ruddlesden-Popper series of Sr Ruthenates investigated by means of RXES. In the final chapter the concluding remarks on this work are presented.
XXV Ciclo
1983
Warzycha, Karolina Verfasser], and Arno [Akademischer Betreuer] [Pfitzner. "Transition Metal Antimony (III) Oxidehalides. Synthesis, crystal structure and physical characteristics / Karolina Warzycha. Betreuer: Arno Pfitzner." Regensburg : Universitätsbibliothek Regensburg, 2010. http://d-nb.info/1022819666/34.
Full textHashiguchi, Ryota. "Studies on Polynuclear Metal Complexes and Low-Dimensional Mixed-Valence Halogen-Bridged Transition Metal Complexes Based on them." 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225426.
Full textWilson, Nicholas Craig, and nick wilson@csiro au. "An investigation of hybrid density functional theory in the calculation of the structure and properties of transition metal oxides." RMIT University. Applied Sciences, 2009. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20091217.142149.
Full textHugosson, Håkan Wilhelm. "A Theoretical Treatise on the Electronic Structure of Designer Hard Materials." Doctoral thesis, Uppsala University, Department of Physics, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-651.
Full textThe subject of the present thesis is theoretical first principles electronic structure calculations on designer hard materials such as the transition metal carbides and oxides. The theoretical investigations have been made in close collaboration with experimental research and have addressed both bulk electronic properties and surface electronic properties of the materials.
Among the bulk studies are investigations on the effects of substoichiometry on the relative phase stabilities and the electronic structure of several phases of MoC and the nature of the resulting vacancy peaks. The changes in phase stabilities and homo-geneity ranges in the group IV to VI transition metal carbides have been studied and explained, from calculations of the T=0 energies of formation and cohesive energies. The anomalous volume behavior and phase stabilities in substoichiometric TiC was studied including effects of local relaxations around the vacancy sites. The vacancy ordering problem in this compound was also studied by a combination of electronic structure calculations and statistical physics.
The studies of the surface electronic properties include research on the surface energies and work functions of the transition metal carbides and an investigation on the segregation of transition metal impurities on the TiC (100) surface.
Theoretical studies with the aim to facilitate the realization of novel designer hard materials were made, among these a survey of means of stabilizing potentially super-hard cubic RuO2, studying the effects of alloying, substoichiometry and lattice strains. A mechanism for enhancing hardness in the industrially important hard transition metal carbides and nitrides, from the discovery of multi-phase/polytypic alloys, has also been predicted from theoretical calculations.
Otake, Ken-ichi. "Studies on the Dimensional-Extended Halogen-Bridged Mixed-Valence Transition-Metal Complexes: Neutral-Chains and Nanotubes." 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/217132.
Full textGriffith, Kent Joseph. "Atomic and electronic structure of complex metal oxides during electrochemical reaction with lithium." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/271191.
Full textLu, Xiaonan. "Effects of Transition Metal Oxide and Mixed-Network Formers on Structure and Properties of Borosilicate Glasses." Thesis, University of North Texas, 2018. https://digital.library.unt.edu/ark:/67531/metadc1404587/.
Full text李鼎威 and Ting-wai Lee. "Self-assembly and crystal structure analysis of some first-row transition metal coordination polymers of 1,3-bis(4-pyridyl)propane." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2001. http://hub.hku.hk/bib/B31224660.
Full textLee, Ting-wai. "Self-assembly and crystal structure analysis of some first-row transition metal coordination polymers of 1,3-bis(4-pyridyl)propane." Hong Kong : University of Hong Kong, 2001. http://sunzi.lib.hku.hk/hkuto/record.jsp?B23242322.
Full text張碧玉 and Pik-yuk Christine Cheung. "Crystal structure analysis of imido, nitrido and oxo complexes of rhenium (V), osmium (VI) and ruthenium (III) and some complexes oftrinuclear gold (I)." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1991. http://hub.hku.hk/bib/B31210211.
Full textTriana, Carlos A. "Atomic short-range order, optical and electronic properties of amorphous transition metal oxides : An experimental and theoretical study of amorphous titanium aTiO2 and tungsten aWO3 solid thin-film oxides." Doctoral thesis, Uppsala universitet, Fasta tillståndets fysik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-318193.
Full textCheung, Pik-yuk Christine. "Crystal structure analysis of imido, nitrido and oxo complexes of rhenium (V), osmium (VI) and ruthenium (III) and some complexes of trinuclear gold (I) /." [Hong Kong : University of Hong Kong], 1991. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13138327.
Full textVennström, Marie. "Crystal Chemistry of the Ti3Sn-D, Nb4MSi-D and Pd-Ni-P Systems." Doctoral thesis, Uppsala universitet, Institutionen för materialkemi, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-3466.
Full textGuillaumont, Marc. "Variantes d’oxydes de métaux de transition : relations entre structure, transport et performances bolométriques." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAI022.
Full textInfraRed detection, formerly reserved to defense and spatial applications, is currently undergoing deep changes which open new opportunities. Uncooled microbolometer technologies, compatible with classical semiconductors processes, are now able to produce low cost thermal imagers and this will open the door to customer markets in a close future.The technology developed in the CEA/LETI laboratory use the amorphous silicon (noted "a-Si") as the thermistor material. This material has many advantages, in particular, its excellent compatibility with the classical tools used in microelectronic industry. However, better performance in the thermistor material is still needed to address future applications.To handle this challenge, CEA/LETI laboratory is currently developing thermistors made of transition metal oxides thin films. The study presented hereby is based on various transition metal oxides samples deposited in the CEA/LETI Laboratory.Characterization of the structure and the electronic transport for each of these samples allowed us to put in evidence correlations between microscopic structure and conduction mechanisms. Two main figures of merit impacting the overall material performance were investigated : the TCR, Temperature Coefficient of Resistance (which must be maximized) and the 1/f noise (which must be minimized).Finally we conclude this work by highlighting majors outlines governing the performance of a thermistor
Vennström, Marie. "Crystal Chemistry of the Ti3Sn-D, Nb4MSi-D and Pd-Ni-P Systems." Doctoral thesis, Uppsala University, Department of Materials Chemistry, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-3466.
Full textFuture energy systems based on hydrogen as energy carrier require reliable ways for storing hydrogen gas in safe, clean and efficient ways. Metal hydrides absorb hydrogen gas reversibly, making them suitable for storage applications. Investigations of the crystal structures of these materials contribute to an understanding of the factors which can influence the absorption.
Three systems, Ti3Sn-D, Nb4MSi-D (M=Co or Ni) and Pd-Ni-P, have been investigated in this thesis. Various solid state synthesis techniques have been used for sample preparation. The crystal structures have been studied using x-ray and neutron diffraction techniques.
Three metal hydride phases were found in the Ti3Sn-D system upon hydrogenation. Deuterium occupies titanium octahedra and the applied deuterium pressure induces the phase transitions. The distances between the deuterium atoms increase from 2.47 Å in orthorhombic Ti3SnD0.80 to 4.17 Å in cubic Ti3SnD.
The Nb4MSi-D system (M=Co or Ni) readily absorbs deuterium at room temperature and 90 kPa deuterium pressure to give a deuterium content of Nb4MSiD~2.5. Two interstitial voids, both coordinated by four niobium atoms arranged in a tetrahedral configuration, accommodate deuterium atoms.
Two ternary phases and a solid solution of nickel in Pd3P have been synthesised and the crystal structures determined. PdNi2P is orthorhombic and crystallises in the MgCuAl2-type structure: an ordered derivative of the Re3B-type structure. Pd8Ni31P16 is a tetragonal high-temperature phase stable at 700°C with 110 atoms in the unit cell. Pd2.7Ni0.3P0.94 has the cementite-type structure with mixed occupancy of palladium and nickel at one of the two non-equivalent crystallographic metal positions.
Bacher, Patrice. "Etude du profil des raies de diffraction neutronique en temps de vol utilisant un obturateur statistique : application à l'étude d'oxynitrures de structure tétraèdrique ou de type pérovskite." Grenoble 1, 1987. http://www.theses.fr/1987GRE10035.
Full text