Academic literature on the topic 'Crystal field energy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Crystal field energy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Crystal field energy"

1

Brik, M. G., and A. A. Chaykin. "Comparative crystal field study of Ni2+ energy levels and crystal field effects in CsCdBr3 and CsMgBr3 crystals." Journal of Luminescence 145 (January 2014): 563–68. http://dx.doi.org/10.1016/j.jlumin.2013.08.037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ryu, Sun Young, In Hwan Oh, Sang Jin Cho, Shin Ae Kim, and Hyun Kyu Song. "Enhancing Protein Crystallization under a Magnetic Field." Crystals 10, no. 9 (September 16, 2020): 821. http://dx.doi.org/10.3390/cryst10090821.

Full text
Abstract:
High-quality crystals are essential to ensure high-resolution structural information. Protein crystals are controlled by many factors, such as pH, temperature, and the ion concentration of crystalline solutions. We previously reported the development of a device dedicated to protein crystallization. In the current study, we have further modified and improved our device. Exposure to external magnetic field leads to alignment of the crystal toward a preferred direction depending on the magnetization energy. Each material has different magnetic susceptibilities depending on the individual direction of their unit crystal cells. One of the strategies to acquire a large crystal entails controlling the nucleation rate. Furthermore, exposure of a crystal to a magnetic field may lead to new morphologies by affecting the crystal volume, shape, and quality.
APA, Harvard, Vancouver, ISO, and other styles
3

Su, Ping, and Wen-Chen Zheng. "Crystal field energy levels of the laser crystal Gd3Ga5O12: Nd3+." Optik 123, no. 22 (November 2012): 2025–27. http://dx.doi.org/10.1016/j.ijleo.2011.09.038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

BRIK, M. G. "ON THE CRYSTAL FIELD ANALYSIS OFCr4+ENERGY LEVELS INRb2CrF6." Modern Physics Letters B 20, no. 17 (July 30, 2006): 1007–14. http://dx.doi.org/10.1142/s0217984906011712.

Full text
Abstract:
Optical absorption spectrum of Cr4+ion in Rb2CrF6is analyzed using the exchange charge model of crystal field theory. The crystal field parameters acting on the optical electrons of Cr4+are calculated using the crystal structure data; a good agreement between the calculated and observed energy levels of Cr4+in the title host is demonstrated. The crystal field strength Dq=2159 cm-1and Racah parameters B=639 cm-1, C=3605 cm-1were evaluated from the experimental spectrum.
APA, Harvard, Vancouver, ISO, and other styles
5

Muñoz-Santiuste, J. E., A. Lorenzo, L. E. Bausá, and J. García Solé. "Crystal field and energy levels of centres in." Journal of Physics: Condensed Matter 10, no. 34 (August 31, 1998): 7653–64. http://dx.doi.org/10.1088/0953-8984/10/34/018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Day, Graeme. "Insight from energy surfaces: structure prediction by lattice energy exploration." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C28. http://dx.doi.org/10.1107/s2053273314099719.

Full text
Abstract:
A long-standing challenge for the application of computational chemistry in the field of crystallography is the prediction of crystal packing, given no more than the chemical bonding of the molecules being crystallised. Recent years have seen significant progress towards reliable crystal structure prediction methods, even for traditionally challenging systems involving flexible molecules and multi-component solids [1]. These methods are based on global searches of the lattice energy surface: a search is performed to locate all possible packing arrangements, and these structures are ranked by their calculated energy [2]. One aim of this lecture is to provide an overview of advances in methods for crystal structure prediction, focussing on molecular organic crystals, and highlighting strategies that are being explored to extend the reach of these methods to more complex systems. A second aim is to discuss the range applications of crystal structure prediction calculations, which have traditionally included solid form screening, particularly of pharmaceutically active molecules, and structure determination. As energy models become more reliable at correctly ranking the stability order of putative structures, and the timescale required for structure searching decreases, crystal structure prediction has the potential for the discovery of novel molecular materials with targeted properties. Prospects for computer-guided discovery of materials will be discussed.
APA, Harvard, Vancouver, ISO, and other styles
7

Diao, Xin-Feng, Li-Ke Gao, Yu Xie, Tian-Yu Tang, and Yan-Lin Tang. "Ferromagnetic and Antiferromagnetic Properties of Perovskite Solar Cell Materials." Journal of Nanoelectronics and Optoelectronics 16, no. 3 (March 1, 2021): 434–43. http://dx.doi.org/10.1166/jno.2021.2943.

Full text
Abstract:
This paper provides an intriguing electronic and magnetic properties of the Perovskite solar cell materials (MAPbI3, CsGeI3) which are analyzed by using density functional theory, where MAPbI3 is the abbreviation of CH3NH3PbI3. Herein, we mainly discuss the influence of ferromagnetism and antiferromagnetism on the crystal structure, band gap and electronic density of states of perovskite (MAPbI3) (CsGeI3). The magmom values of the applied magnetic field are from −6 μB to 6 μB, respectively (The negative sign here represents the opposite direction of the original magnetic field). The lattice parameters and volume of the crystal under different magnetic fields are obtained. It can be seen from the free energy that the stability of the crystal is compared with non-magnetic field, when the applied magnetic fields are at 4 μB and 5 μB, the free energy of the crystal is the lowest and its relative stability is better. At the same time, the magnetic field of CsGeI3 increases from −5 μB to 5 μB. The results show that the density of states of CsGeI3 moves towards the direction of higher energy, and the change of MAPbI3 crystal is more obvious. Similarly, we should pay attention to that when applying a magnetic field to the crystals, it is found that the band gap of both MAPbI3 and CsGeI3 decreases obviously after increasing the magnetic field, which avoids the situation of spin up and spin down overlap of MAPbI3, which is helpful to adjust the band gap size. From the perspective of crystal spectral absorption characteristics, when considering the ferromagnetic effect on CsGeI3 with the magnetic moment of a single atom is set to (1 μB, 2 μB, 3 μB, 4 μB, 5 μB, 6 μB), the width of absorption spectrum tends to decrease, but the impact on MAPbI3 is small.
APA, Harvard, Vancouver, ISO, and other styles
8

Elking, Dennis M., Laszlo Fusti-Molnar, and Anthony Nichols. "Crystal structure prediction of rigid molecules." Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 72, no. 4 (August 1, 2016): 488–501. http://dx.doi.org/10.1107/s2052520616010118.

Full text
Abstract:
A non-polarizable force field based on atomic multipoles fit to reproduce experimental crystal properties andab initiogas-phase dimers is described. The Ewald method is used to calculate both long-range electrostatic and 1/r6dispersion energies of crystals. The dispersion energy of a crystal calculated by a cutoff method is shown to converge slowly to the exact Ewald result. A method for constraining space-group symmetry during unit-cell optimization is derived. Results for locally optimizing 4427 unit cells including volume, cell parameters, unit-cell r.m.s.d. and CPU timings are given for both flexible and rigid molecule optimization. An algorithm for randomly generating rigid molecule crystals is described. Using the correct experimentally determined space group, the average and maximum number of random crystals needed to find the correct experimental structure is given for 2440 rigid single component crystals. The force field energy rank of the correct experimental structure is presented for the same set of 2440 rigid single component crystals assuming the correct space group. A complete crystal prediction is performed for two rigid molecules by searching over the 32 most probable space groups.
APA, Harvard, Vancouver, ISO, and other styles
9

Nakamura, Satoshi, Keiichirou Shinohara, Nobuo Kieda, and Kimihiro Yamashita. "Polarization Energy Effect of Electrovector Hydroxyapatite on Bonelike Crystal Growth in SBF." Key Engineering Materials 309-311 (May 2006): 145–48. http://dx.doi.org/10.4028/www.scientific.net/kem.309-311.145.

Full text
Abstract:
An electrovector effect of the polarized hydroxyapatite (HA) on crystal growth in a simulated body fluid was clarified to discuss the role of the polarization energy in the effect. The polarization of the HA carried out in high dc field at 300-600°C was confirmed by thermally stimulated depolarization current measurements. The dependence of the thickness of the crystal grown layer on the induced charge was remarkably indicated in the modification of the growth rates. The growth rate under an optimum polarization condition was estimated to be almost 3 times of that by the biomimetic method. At the early stage of the crystal growth, the grown crystals were spherical and their sizes were dependent on the field strength and time for polarization. The polarization is therefore considered to effect the nucleation as well as the crystal growth.
APA, Harvard, Vancouver, ISO, and other styles
10

Zhong, Z., M. Hasnah, A. Broadbent, E. Dooryhee, and M. Lucas. "Phase-space matching between bent Laue and flat Bragg crystals." Journal of Synchrotron Radiation 26, no. 6 (October 23, 2019): 1917–23. http://dx.doi.org/10.1107/s1600577519010774.

Full text
Abstract:
Through phase-space analysis of Dumond diagrams for a flat Bragg crystal, a single bent Laue crystal and a monochromator consisting of double-bent Laue crystals, this work shows that it is possible to match the flat Bragg crystal to both the single-crystal and double-crystal Laue monochromators. The matched system has the advantage that the phase space of the bent crystal's output beam is much larger than that of the flat crystal, making the combined system stable. Here it is suggested that such a matched system can be used at synchrotron facilities to realize X-ray dark-field imaging, analyzer-based imaging and diffraction-enhanced imaging at beamlines using double-Laue monochromators.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Crystal field energy"

1

Kabro, Pierre. "Optical spectroscopy, crystal field analysis, upconversion and energy transfer studies of Er³§+ doped yttrium vanadate single crystals." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq25909.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Berry, Andrew John. "Optical spectroscopy of terbium elpasolites." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.320164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

蔡慶銘 and Hing-ming Michael Chua. "Transition intensities and energy transfer of lanthanide ions in crystals." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1994. http://hub.hku.hk/bib/B31211409.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chua, Hing-ming Michael. "Transition intensities and energy transfer of lanthanide ions in crystals /." [Hong Kong : University of Hong Kong], 1994. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13692689.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Crispin, Katherine L. "Cation Diffusion in Periclase." Case Western Reserve University School of Graduate Studies / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=case1309455282.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chan, Hin Chung Stephen. "Polymorph prediction of organic (co-) crystal structures from a thermodynamic perspective." Thesis, University of Bradford, 2012. http://hdl.handle.net/10454/5530.

Full text
Abstract:
A molecule can crystallise in more than one crystal structure, a common phenomenon in organic compounds known as polymorphism. Different polymorphic forms may have significantly different physical properties, and a reliable prediction would be beneficial to the pharmaceutical industry. However, crystal structure prediction (CSP) based on the knowledge of the chemical structure had long been considered impossible. Previous failures of some CSP attempts led to speculation that the thermodynamic calculations in CSP methodologies failed to predict the kinetically favoured structures. Similarly, regarding the stabilities of co-crystals relative to their pure components, the results from lattice energy calculations and full CSP studies were inconclusive. In this thesis, these problems are addressed using the state-of-the-art CSP methodology implemented in the GRACE software. Firstly, it is shown that the low-energy predicted structures of four organic molecules, which have previously been considered difficult for CSP, correspond to their experimental structures. The possible outcomes of crystallisation can be reliably predicted by sufficiently accurate thermodynamic calculations. Then, the polymorphism of 5- chloroaspirin is investigated theoretically. The order of polymorph stability is predicted correctly and the isostructural relationships between a number of predicted structures and the experimental structures of other aspirin derivatives are established. Regarding the stabilities of co-crystals, 99 out of 102 co-crystals and salts of nicotinamide, isonicotinamide and picolinamide reported in the Cambridge Structural Database (CSD) are found to be more stable than their corresponding co-formers. Finally, full CSP studies of two co-crystal systems are conducted to explain why the co-crystals are not easily obtained experimentally.
APA, Harvard, Vancouver, ISO, and other styles
7

Bright, Trevor James. "Infrared properties of dielectric thin films and near-field radiation for energy conversion." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/50364.

Full text
Abstract:
Studies of the radiative properties of thin films and near-field radiation transfer in layered structures are important for applications in energy, near-field imaging, coherent thermal emission, and aerospace thermal management. A comprehensive study is performed on the optical constants of dielectric tantalum pentoxide (Ta₂O₅) and hafnium oxide (HfO₂) thin films from visible to the far infrared using spectroscopic methods. These materials have broad applications in metallo-dielectric multilayers, anti-reflection coatings, and coherent emitters based on photonic crystal structures, especially at high temperatures since both materials have melting points above 2000 K. The dielectric functions of HfO₂ and Ta₂O₅ obtained from this work may facilitate future design of devices with these materials. A parametric study of near-field TPV performance using a backside reflecting mirror is also performed. Currently proposed near-field TPV devices have been shown to have increased power throughput compared to their far-field counterparts, but whose conversion efficiencies are lower than desired. This is due to their low quantum efficiency caused by recombination of minority carriers and the waste of sub-bandgap radiation. The efficiency may be improved by adding a gold mirror as well as by reducing the surface recombination velocity, as demonstrated in this thesis. The analysis of the near-field TPV and proposed methods may facilitate the development or high-efficiency energy harvesting devices. Many near-field devices may eventually utilize metallo-dielectric structures which exhibit unique properties such as negative refraction due to their hyperbolic isofrequency contour. These metamaterials are also called indefinite materials because of their ability to support propagating waves with large lateral wavevectors, which can result in enhanced near-field radiative heat transfer. The energy streamlines in such structures are studied for the first time. Energy streamlines illustrate the flow of energy through a structure when the fields are evanescent and energy propagation is not ray like. The energy streamlines through two semi-infinite uniaxially anisotropic effective medium structures, separated by a small vacuum gap, are modeled using the Green’s function. The lateral shift and penetration depth are calculated from the streamlines and shown to be relatively large compared to the vacuum gap dimension. The study of energy streamlines in hyperbolic metamaterials helps understand the near-field energy propagation on a fundamental level.
APA, Harvard, Vancouver, ISO, and other styles
8

Svärd, Michael. "Crystal Polymorphism of Substituted Monocyclic Aromatics." Licentiate thesis, KTH, Chemical Engineering and Technology, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cao, Kanyu. "Crystal-field splitting of Er 3+in ZnO and experimental observations." Ohio : Ohio University, 1997. http://www.ohiolink.edu/etd/view.cgi?ohiou1177608455.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Svärd, Michael. "Structural, Kinetic and Thermodynamic Aspects of the Crystal Polymorphism of Substituted Monocyclic Aromatic Compounds." Doctoral thesis, KTH, Teknisk strömningslära, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-33836.

Full text
Abstract:
This work concerns the interrelationship between thermodynamic, kinetic and structural aspects of crystal polymorphism. It is both experimental and theoretical, and limited with respect to compounds to substituted monocyclic aromatics. Two polymorphs of the compound m-aminobenzoic acid have been experimentally isolated and characterized by ATR-FTIR spectroscopy, X-ray powder diffraction and optical microscopy. In addition, two polymorphs of the compound m-hydroxybenzoic acid have been isolated and characterized by ATR-FTIR spectroscopy, high-temperature XRPD, confocal Raman, hot-stage and scanning electron microscopy. For all polymorphs, melting properties and specific heat capacity have been determined calorimetrically, and the solubility in several pure solvents measured at different temperatures with a gravimetric method. The solid-state activity (ideal solubility), and the free energy, enthalpy and entropy of fusion have been determined as functions of temperature for all solid phases through a thermodynamic analysis of multiple experimental data. It is shown that m-aminobenzoic acid is an enantiotropic system, with a stability transition point determined to be located at approximately 156°C, and that the difference in free energy at room temperature between the polymorphs is considerable. It is further shown that m-hydroxybenzoic acid is a monotropic system, with minor differences in free energy, enthalpy and entropy. 1393 primary nucleation experiments have been carried out for both compounds in different series of repeatability experiments, differing with respect to solvent, cooling rate, saturation temperature and solution preparation and pre-treatment. It is found that in the vast majority of experiments, either the stable or the metastable polymorph is obtained in the pure form, and only for a few evaluated experimental conditions does one polymorph crystallize in all experiments. The fact that the polymorphic outcome of a crystallization is the result of the interplay between relative thermodynamic stability and nucleation kinetics, and that it is vital to perform multiple experiments under identical conditions when studying nucleation of polymorphic compounds, is strongly emphasized by the results of this work. The main experimental variable which in this work has been found to affect which polymorph will preferentially crystallize is the solvent. For m-aminobenzoic acid, it is shown how a significantly metastable polymorph can be obtained by choosing a solvent in which nucleation of the stable form is sufficiently obstructed. For m-hydroxybenzoic acid, nucleation of the stable polymorph is promoted in solvents where the solubility is high. It is shown how this partly can be rationalized by analysing solubility data with respect to temperature dependence. By crystallizing solutions differing only with respect to pre-treatment and which polymorph was dissolved, it is found that the immediate thermal and structural history of a solution can have a significant effect on nucleation, affecting the predisposition for overall nucleation as well as which polymorph will preferentially crystallize. A set of polymorphic crystal structures has been compiled from the Cambridge Structural Database. It is found that statistically, about 50% crystallize in the crystallographic space group P21/c. Furthermore, it is found that crystal structures of polymorphs tend to differ significantly with respect to either hydrogen bond network or molecular conformation. Molecular mechanics based Monte Carlo simulated annealing has been used to sample different potential crystal structures corresponding to minima in potential energy with respect to structural degrees of freedom, restricted to one space group, for each of the polymorphic compounds. It is found that all simulations result in very large numbers of predicted structures. About 15% of the predicted structures have excess relative lattice energies of <=10% compared to the most stable predicted structure; a limit verified to reflect maximum lattice energy differences between experimentally observed polymorphs of similar compounds. The number of predicted structures is found to correlate to molecular weight and to the number of rotatable covalent bonds. A close study of two compounds has shown that predicted structures tend to belong to different groups defined by unique hydrogen bond networks, located in well-defined regions in energy/packing space according to the close-packing principle. It is hypothesized that kinetic effects in combination with this structural segregation might affect the number of potential structures that can be realized experimentally. The experimentally determined crystal structures of several compounds have been geometry-optimized (relaxed) to the nearest potential energy minimum using ten different combinations of common potential energy functions (force fields) and techniques for assigning nucleus-centred point charges used in the electrostatic description of the energy. Changes in structural coordinates upon relaxation have been quantified, crystal lattice energies calculated and compared with experimentally determined enthalpies of sublimation, and the energy difference before and after relaxation computed and analysed. It is found that certain combinations of force fields and charge assignment techniques work reasonably well for modelling crystal structures of small aromatics, provided that proper attention is paid to electrostatic description and to how the force field was parameterized. A comparison of energy differences for randomly packed as well as experimentally determined crystal structures before and after relaxation suggests that the potential energy function for the solid state of a small organic molecule is highly undulating with many deep, narrow and steep minima.
QC 20110527
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Crystal field energy"

1

Jonathan, Pawlik, ed. The Newcastle guide to healing with crystals: Balancing the human energy field for physical and spiritual well-being. North Hollywood, Calif: Newcastle Pub. Co., 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chase, Pamela. The Newcastle guide to healing with crystals: Balancing the human energy field for physical and spiritual well-being. San Bernardino, Calif: Borgo Press, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rainey, Amber. Crystal Healing: How Crystal Healing Works, Crystal Therapy, the Human Energy Field, Gemstones, and How to Use Crystals for Healing and Increased Energy! Ingram Publishing, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Crystal Healing: How crystal healing works, crystal therapy, the human energy field, gemstones, and how to use crystals for healing and increased energy! CreateSpace Independent Publishing Platform, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Crystal Healing: Types Of Crystals And Their Impact On Human Energy Field. Amazon Digital Services, Inc., 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

J, Eggleston J., Voorhees P. W. 1955-, and National Institute of Standards and Technology (U.S.), eds. A phase-field model for high anisotropic interfacial energy. [Gaithersburg, MD]: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

J, Eggleston J., Voorhees P. W. 1955-, and National Institute of Standards and Technology (U.S.), eds. A phase-field model for high anisotropic interfacial energy. [Gaithersburg, MD]: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

J, Eggleston J., Voorhees P. W, and National Institute of Standards and Technology (U.S.), eds. A phase-field model for high anisotropic interfacial energy. [Gaithersburg, MD]: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

A phase-field model for high anisotropic interfacial energy. [Gaithersburg, MD]: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

A phase-field model for high anisotropic interfacial energy. [Gaithersburg, MD]: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Crystal field energy"

1

Meyer, B. K. "ZnO: crystal-field splitting energy." In New Data and Updates for IV-IV, III-V, II-VI and I-VII Compounds, their Mixed Crystals and Diluted Magnetic Semiconductors, 583. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14148-5_324.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chizhik, Vladimir I., Yuri S. Chernyshev, Alexey V. Donets, Vyacheslav V. Frolov, Andrei V. Komolkin, and Marina G. Shelyapina. "Energy Levels of Paramagnetic Center in Crystal Field." In Magnetic Resonance and Its Applications, 555–77. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05299-1_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Montagnani, Giovanni Ludovico. "Development of a 3” LaBr3 SiPM-Based Detection Module for High Resolution Gamma Ray Spectroscopy and Imaging." In Special Topics in Information Technology, 77–82. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-62476-7_7.

Full text
Abstract:
AbstractGamma radiation detection finds many applications in different fields, including astrophysics, nuclear physics and medical diagnostics. Nowadays large Lanthanum Bromide crystals coupled to Photomultiplier Tubes (PMTs) represent the state of the art for gamma detection modules, in particular for spectroscopic measurements. Nevertheless, there is an interest in substituting photomultiplier tubes with solid state photodetectors like Silicon Photomultipliers (SiPMs), owing to the latter’s significant advantages. These include insensitivity to magnetic fields, low bias voltage, compactness, fast response and mechanical robustness. The aim of this thesis work, which was carried out within the context of the GAMMA project supported by IstitutoNazionale di FisicaNucleare (INFN), is the design, development and experimental characterization of a -ray spectrometer based on large Lanthanum Bromide scintillator crystals coupled with Silicon Photomultipliers. This detector specifications are compliant with nuclear physics experiments with energies ranging from 100 keV to 20 MeV, characterized by state-of-the-art energy resolution and imaging capability, in a compact, modular and robust structure. In order to perform the readout of large scintillator crystals, a matrix of 144 Silicon Photomultipliers was designed using NUV-HD SiPMs from Fondazione Bruno Kessler (FBK). These were chosen due to their high Photon Detection Efficiency in correspondence with the peak emission wavelength of the crystal, the high cell density and low Dark Count Rate.
APA, Harvard, Vancouver, ISO, and other styles
4

"Energy level diagrams and crystal field spectra of transition metal ions." In Mineralogical Applications of Crystal Field Theory, 44–86. Cambridge University Press, 1993. http://dx.doi.org/10.1017/cbo9780511524899.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

"Energy levels of ions in crystals." In Crystal-Field Engineering of Solid-State Laser Materials, 93–133. Cambridge University Press, 2000. http://dx.doi.org/10.1017/cbo9780511524165.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"Energy transfer and excited state absorption." In Crystal-Field Engineering of Solid-State Laser Materials, 194–221. Cambridge University Press, 2000. http://dx.doi.org/10.1017/cbo9780511524165.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sutton, Adrian P. "Dislocations." In Physics of Elasticity and Crystal Defects, 105–40. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198860785.003.0006.

Full text
Abstract:
Plastic deformation involves planes of atoms sliding over each other. The sliding happens through the movement of linear defects called dislocations. The phenomenology of dislocations and their characterisation by the Burgers circuit and line direction are described. The Green’s function plays a central role in Volterra’s formula for the displacement field of a dislocation and Mura’s formula for the strain and stress fields. The isotropic elastic fields of edge and screw dislocations are derived. The field of an infinitesimal dislocation loop and its dipole tensor are also derived. The elastic energy of interaction between a dislocation and another source of stress is derived, and leads to force on a dislocation. The elastic energy of a dislocation and the Frank-Read source of dislocations are also discussed. Problem set 6 extends the content of the chapter in several directions including grain boundaries and faults.
APA, Harvard, Vancouver, ISO, and other styles
8

Sutton, Adrian P. "The force on a defect." In Physics of Elasticity and Crystal Defects, 163–78. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198860785.003.0008.

Full text
Abstract:
This chapter is based on Eshelby’s static energy-momentum tensor which results in an integral expression for the configurational force on a defect. After elucidating the concepts of a configurational force and an elastic singularity the mechanical pressure on an interface, such as a twin boundary or a martensitic interface, is derived. Eshelby’s force on a defect is derived using both physical arguments and more formally using classical field theory. It is equivalent to the J-integral in fracture mechanics. The Peach–Koehler force on a dislocation is rederived using the static energy-momentum tensor. An expression for an image force is derived, where a defect interacts with a free surface.
APA, Harvard, Vancouver, ISO, and other styles
9

Newnham, Robert E. "Ferroic crystals." In Properties of Materials. Oxford University Press, 2004. http://dx.doi.org/10.1093/oso/9780198520757.003.0018.

Full text
Abstract:
Twinned crystals are normally classified according to twin-laws and morphology, or according to their mode of origin, or according to a structural basis, but there is another classification that deserves wider acceptance, one that is based on the tensor properties of the orientation states. An advantage of such a classification is the logical relationship between free energy and twin structures, for it becomes immediately apparent which forces and fields will be effective in moving twin walls. The domain patterns in ferroelectric and ferromagnetic materials are strongly affected by external fields, but there are many other types of twinned crystals with movable twin walls and hysteresis. These materials are classified as ferroelastic, ferrobielastic, and various other ferroic species. As explained in the next section, each type of switching arises from a particular term in the free energy function. Ferroic crystals possess two or more orientation states or domains, and under a suitably chosen driving force the domain walls move, switching the crystal from one domain state to another. Switching may be accomplished by mechanical stress (X), electric field (E), magnetic field (H), or some combination of the three. Ferroelectric, ferroelastic, and ferromagnetic materials are well known examples of primary ferroic crystals in which the orientation states differ in spontaneous polarization (P(s)), spontaneous strain (x(s)), and spontaneous magnetization (I(s)), respectively. It is not necessary, however, that the orientation states differ in the primary quantities (strain, polarization, or magnetization) for the appropriate field to develop a driving force for domain walls. If, for example, the twinning rules between domains lead to a different orientation of the elastic compliance tensor, a suitably chosen stress can then produce different strains in the two domains. This same stress may act upon the difference in induced strain to produce wall motion and domain reorientation. Aizu suggested the term ferrobielastic to distinguish this type of response from ferroelasticity, and illustrated the effect with Dauphine twinning in quartz. Other types of secondary ferroic crystals are listed in Table 16.1, along with the difference between domain states, and the driving fields required to switch between states.
APA, Harvard, Vancouver, ISO, and other styles
10

Mazurak, Z., J. B. Gruber, C. A. Morrison, and S. Maia-Melo. "OPTICAL SPECTRA, ENERGY LEVELS AND CRYSTAL-FIELD ANALYSIS OF Pr3+, Nd3+, Er3+ IN Li, K LnP4O12 CRYSTALS." In New Frontiers in Rare Earth Science and Applications, 346. Elsevier, 1985. http://dx.doi.org/10.1016/b978-0-12-767661-6.50086-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Crystal field energy"

1

Munakata, Tetsuo, and Satoshi Someya. "Numerical Study on the CZ Silicon Melt Convection for High Efficient Solar Cell." In ASME 2003 International Solar Energy Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/isec2003-44222.

Full text
Abstract:
Conversion efficiency of solar cell is strongly affected by quality of substrate and the quality of substrate is influenced by melt convection if the substrate crystal is grown by melt growth technique. Therefore, melt convection control techniques are important to produce a high quality single crystal. In this paper, we have proposed a high frequency magnetic field applied CZ method and investigated the effect of high frequency magnetic field on silicon melt convection. The result reveals that the high frequency magnetic fields affect the tendency of the melt convection: until certain intensity of the high frequency magnetic field, the melt convection is suppressed and above such intensity of the high frequency magnetic field, the melt convection intensity is enhanced. This result indicates that the melt convection can be controlled by the high frequency magnetic field and the high quality silicon single crystals will be grown by this method.
APA, Harvard, Vancouver, ISO, and other styles
2

Dovhyj, Ya, and I. Man'kovska. "Influence of the low-symmetry crystal field on the energy states of CuO crystals." In 2012 IEEE International Conference on Oxide Materials for Electronic Engineering (OMEE). IEEE, 2012. http://dx.doi.org/10.1109/omee.2012.6464814.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ye, Wenjiang, Zhidong Zhang, Hongyu Xing, Guochen Yang, and Guoying Chen. "Electric-field-induced effective anchoring energy in nematic liquid crystal." In 2010 International Conference on Display and Photonics, edited by Yanwen Wu. SPIE, 2010. http://dx.doi.org/10.1117/12.869375.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sun, Qiang, Hu Sheng, Guitao Chen, and Junpeng Ji. "Research on the Cusp Electromagnetic Field in Single Crystal Furnace." In 2011 Asia-Pacific Power and Energy Engineering Conference (APPEEC). IEEE, 2011. http://dx.doi.org/10.1109/appeec.2011.5748925.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Petkova, P., E. L. Andreici, and N. M. Avram. "Crystal field parameters and energy levels scheme of trivalent chromium doped BSO." In TIM 2013 PHYSICS CONFERENCE. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4903025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Hongbo, and William S. Oates. "A Phase Field Model of Photo-Induced Trans-Cis-Trans Bending of Liquid Crystal Elastomer Films." In ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2010. http://dx.doi.org/10.1115/smasis2010-3657.

Full text
Abstract:
A new class of glassy liquid crystal elastomers are studied to understand their light-coupled deformation characteristics. In particular, the photomechanics of azobenzene liquid crystal elastomers is modeled using a nonlinear continuum mechanics approach coupled with time-dependent liquid crystal domain structure evolution to understand light polarization effects on deformation. Light propagation and absorption within the elastomer is modeled using Maxwell’s electro-magnetic equations. By consideration of electric energy due to light absorption, light-induced electrical stresses are introduced which provide the driving force for mechanical deformation via coupling with the azobenzene liquid crystals. A liquid crystal director (i.e., orientation of the liquid crystal molecule) is used to describe liquid crystal evolution and elastomer deformation. This aspect of the model is extended to include 3D effects to accommodate trans-cis-trans photoisomerization. This is coupled to plane stress, nonlinear mechanics to demonstrate key field-coupled mechanics relations governing this class of smart materials. The results show that the model successfully predicts large, bi-directional bending of the polymer film by controlling the polarization of light. The results are consistent with recent experimental data given in the literature.
APA, Harvard, Vancouver, ISO, and other styles
7

Shunkeyev, Kuanyshbek, Lyudmila Myasnikova, Aida Maratova, and Karlygash Bizhanova. "Mechanisms of Radiation Defect Formation in the KI Crystal in the Deformation Field." In 2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE). IEEE, 2020. http://dx.doi.org/10.1109/efre47760.2020.9242132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ni, Xiao-Jing, and Min Huang. "Faraday Effect Optical Current/Magnetic Field Sensors Based on Cerium-Substituted Yttrium Iron Garnet Single Crystal." In 2010 Asia-Pacific Power and Energy Engineering Conference. IEEE, 2010. http://dx.doi.org/10.1109/appeec.2010.5448944.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Huang, Min, and Li Ling. "Faraday Rotation and Sensitivity of Bi-Substituted Iron Garnet Single Crystal for Optical Current/Magnetic Field Sensors." In 2009 Asia-Pacific Power and Energy Engineering Conference. IEEE, 2009. http://dx.doi.org/10.1109/appeec.2009.4918369.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Monteil, A., C. Garapon, and G. Boulon. "Cr3+ to Nd3+ energy transfer in substituted GGG in relation to the crystal field distribution." In ADVANCES IN LASER SCIENCE−IV. AIP, 1989. http://dx.doi.org/10.1063/1.38568.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography