Dissertations / Theses on the topic 'Crystal Engineering Approach'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 15 dissertations / theses for your research on the topic 'Crystal Engineering Approach.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Hurley, Evan Patrick. "A crystal engineering approach for the design of multicomponent crystals and assembly of nano-scale architectures." Diss., Kansas State University, 2013. http://hdl.handle.net/2097/16004.
Full textDepartment of Chemistry
Christer B. Aakeroy
The work presented in this thesis has demonstrated that supramolecular synthons can be used to make multicomponent crystals, and various synthons can be combined to make supermolecules. The synthons can also be used to construct nanoscale assemblies. Molecules containing single and multiple hydrogen-bond (HB) and halogen-bond (XB) acceptor sites have been synthesized in an effort to carry out supramolecular synthesis in order to establish a reliable hierarchy for intermolecular interactions. Pyrazole-based molecules have been made, combined with various carboxylic acids, and characterized using infrared (IR) spectroscopy to give a success rate of 55-70%. Reactions that gave a positive result were converted to solution experiments, and crystals were grown and characterized using single-crystal X-ray diffraction (XRD). The co-crystals display infinite 1-D chains with the intended stoichiometry and structural landscape on 6/6 occasions. The salts, on the other hand, display unpredictable stoichiometry and structural landscape on 5/5 occasions. Furthermore, the electrostatic charge on the primary hydrogen-bond acceptor, N(pyz), can be altered by adding a nitro, R-NO2, covalent handle to the backbone of the pyrazole molecule. Addition of a strongly electron withdrawing group significantly lowered the charge on the pyrazole nitrogen atom and, in turn, lowered the supramolecular yield to 10%. Ditopic molecules containing pyrazole and pyridine on the same molecular backbone were synthesized and characterized using 1H NMR. The molecules were co-crystallized with carboxylic acids, and the resulting solids were characterized using IR spectroscopy. The solids could then be classified as co-crystal or salt using specific markers in the IR spectrum. Single-crystal XRD was used to observe the intermolecular interactions in the co-crystals and salts, and the co-crystals were assigned to two groups: Group 1 (2) and Group 2 (2). The salts (4) show more unpredictability with stoichiometry and structural landscape. A library of ditopic molecules containing triazole and pyridine acceptor sites were synthesized and characterized using 1H and 13C NMR. The molecules were co-crystallized with carboxylic acids and the resulting solids were characterized using IR spectroscopy which demonstrated a 100% supramolecular yield whenever a pyridine moiety was present, consistent with results from Chapter 3. Single-crystal XRD was used to identify the intermolecular interactions in the co-crystals (2) and salt (1), and the results show that triazole can compete with pyridine for hydrogen bond donors. A library of ditopic molecules was also used for halogen-bonding (XB) studies with a series of activated iodine and bromine-based donors. The results show that iodine donors have a higher success rate range (12.5-75%) compared to bromine donors (16.7-50%) based on results obtained from IR spectra. Furthermore, the results from the XRD show that pyrazole nitrogen atoms can compete with pyridine for forming XB, and two groups of supramolecular synthons were observed. Finally, relatively weak non-covalent interactions, HB and XB, can influence the assembly of nanoparticles based on IR spectroscopy and TEM images. The assembly of the particles is influenced by specific capping ligands, which were synthesized and characterized using 1H, 13C and 19F NMR. The results demonstrate that relatively weak non-covalent interactions based on HB and XB interactions can influence nanoparticle assembly.
Fischer, Christopher Carl. "A machine learning approach to crystal structure prediction." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/42132.
Full textIncludes bibliographical references (p. 137-147).
This thesis develops a machine learning framework for predicting crystal structure and applies it to binary metallic alloys. As computational materials science turns a promising eye towards design, routine encounters with chemistries and compositions lacking experimental information will demand a practical solution to structure prediction. We review the ingredients needed to solve this problem and focus on structure search. This thesis develops and argues for a search strategy utilizing a combination of machine learning and modern quantum mechanical methods. Structure correlations in a binary alloy database are extracted using probabilistic graphical models. Specific correlations are shown to reflect well-known structure stabilizing mechanisms. Two probabilistic models are investigated to represent correlation: an undirected graphical model known as a cumulant expansion, and a mixture model. The cumulant expansion is used to efficiently guide Density Functional Theory predictions of compounds in the Ag-Mg, Au-Zr, and Li-Pt alloy systems. Cross-validated predictions of compounds present in 1335 binary alloys are used to demonstrate predictive ability over a wide range of chemistries - providing both efficiency and confidence to the search problem. Inconsistencies present in the cumulant expansion are analyzed, and a formal correction is developed. Finally, a probabilistic mixture model is investigated as a means to represent correlation in a compact way. The mixture model leads to a significant reduction in model complexity while maintaining a level of prediction performance comparable to the cumulant expansion. Further analysis of the mixture model is performed in the context of classification. Unsupervised learning of alloy classes or groups is shown to reflect clear chemical trends.
by Christopher Carl Fischer.
Ph.D.
Bande, Gilbert. "A combined approach for analysis of single crystal nickel base superalloys /." Thesis, McGill University, 2001. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=37868.
Full textThe structure of the CA theory requires two main elements: a viscoplastic model (that admits a yield function) and a slip factor. The viscoplastic model describes the behavior of the material in the macroscopic level. Conversely, the slip factor based on the crystallographic theory, accounts for the micro-slip state that dominates SC materials during deformation.
In order to determine the slip factor, a preliminary slip trace study of the crystal is established. Also to determine material constants from experimental data, a procedure has been developed to reduce the 3D basic equations into a one-dimensional form. The model has been evaluated for its predictive capability on SC material behavior including orientation dependence of the initial yielding, tension/compression asymmetry, stress-strain response, fully reversed cyclic response, creep response and relaxation response. In almost all the cases, good correlation has been observed between the predicted responses and experimental data, when available. Furthermore, it is believable that the CA can be successfully used for many other SC materials such as the body-centered-cubic (b.c.c) or the hexagonal-closed-packet (h.c.p). In view of all these results, the CA theory seems to offer the greatest promise in this regard. Limitations and future development needs are discussed.
Zgola, Melissa Lee. "A triage approach to streamline environmental footprinting : a case study for liquid crystal displays." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/69482.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 64-69).
Quantitative environmental performance evaluation methods are desired given the growing certification and labeling landscape for consumer goods. Challenges associated with existing methods, such as life cycle assessment (LCA), may be prohibitive for complex goods such as information technology (IT). Conventional LCA is resource-intensive and lacks harmonized guidance for incorporating uncertainty. Current methods to streamline LCA may amplify uncertainty, undermining robustness. Despite high uncertainty, effective and efficient streamlining approaches may be possible. A methodology is proposed to identify high-impact activities within the life cycle of a specific product class for a streamlined assessment with a high degree of inherent uncertainty. First, a screening assessment is performed using Monte Carlo simulations, applying existing activity (materials and processes), impact, and uncertainty data, to identify elements with the most leverage to reduce overall environmental impact uncertainty. This data triage is informed by sensitivity analysis parameters produced by the simulations. Targeted data collection is carried out for key activities until overall uncertainty is reduced to the point where a product classes' impact probability distribution is distinct from others within a specified error rate. In this thesis, we find that triage and prioritization are possible despite high uncertainty. The methodology was applied to the case study of liquid crystal display (LCD) classes, producing a clear hierarchy of data importance to reduce uncertainty of the overall impact result. Specific data collection was only required for a subset of processes and activities (22 out of about 50) to enable discrimination of LCDs with a low error rate (9%). Most of these priority activities relate to manufacturing and use phases. The number of priority activities targeted may be balanced with the level to which they are able to be specified. It was found that ostensible product attributes alone are insufficient to discriminate with low error, even at high levels of specificity. This quantitative streamlining method is ideal for complex products for which there is great uncertainty in data collection and modeling. This application of this method may inform early product design decisions and enable harmonization of standardization efforts.
by Melissa Lee Zgola.
S.M.in Technology and Policy
Chatterjee, S. "Towards the total synthesis of multiplolide A, feigrisolide B and pandangolide 1 using chiron approach and exploration of click reaction in crystal engineering." Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 2008. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/2675.
Full textLeidermark, Daniel. "Modelling of constitutive and fatigue behaviour of a single-crystal nickel-base superalloy." Licentiate thesis, Linköping University, Linköping University, Solid Mechanics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-56288.
Full textIn this licentiate thesis the work done in the project KME410 will be presented. The overall objective of this project is to evaluate and develop tools for designing against fatigue in single-crystal nickel-base superalloys in gas turbines. Experiments have been done on single-crystal nickel-base superalloy specimens in order to investigate the mechanical behaviour of the material. The constitutive behaviour has been modelled and verified by simulations of the experiments. Furthermore, the microstructural degradation during long-time ageing has been investigated with respect to the component’s yield limit. The effect has been included in the constitutive model by lowering the resulting yield limit. Finally, the fatigue crack initiation of a component has been analysed and modelled by using a critical plane approach.
This thesis is divided into three parts. In the first part the theoretical framework, based upon continuum mechanics, crystal plasticity and the critical plane approach, is derived. This framework is then used in the second part, which consists of three included papers. Finally, in the third part, details are presented of the used numerical procedures.
McKellar, Scott Campbell. "Crystal engineering approaches to solid-state pharmaceutical systems." Thesis, University of Strathclyde, 2012. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=18024.
Full textAdler, Philip David Felix. "Crystalline cheminformatics : big data approaches to crystal engineering." Thesis, University of Southampton, 2015. https://eprints.soton.ac.uk/410940/.
Full textMartin, Craig Robert Leslie. "Crystal engineering approaches to controlling the formation of molecular complexes and their polymorphs." Thesis, University of Glasgow, 2012. http://theses.gla.ac.uk/3154/.
Full textNilamdeen, Mohamed Shezad. "An uncoupled multiphase approach towards modeling ice crystals in jet engines." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:8881/R/?func=dbin-jump-full&object_id=92185.
Full textGu, Huiming. "Processing of Pb(Mg1/3Nb2/3)O3-PbTio3 by a novel coating approach /." Philadelphia, Pa. : Drexel University, 2003. http://dspace.library.drexel.edu/handle/1860/252.
Full textAsare-Yeboah, Kyeiwaa. "Temperature gradient approach to grow preferentially-oriented tips pentacene crystals for organic thin film transistors." Thesis, The University of Alabama, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10006922.
Full textAs a functionalized pentacene, 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS pentacene) is a p-type organic semiconductor with remarkable intrinsic charge carrier transport and stability in ambient conditions. TIPS pentacene is soluble in most organic solvents, making it solution processable. TIPS pentacene, nonetheless, inherently forms acutely anisotropic crystals with large gaps in between the crystals, limiting charge transport and leading to vast variations in organic thin film transistor (OTFT) performance. Described in this dissertation are crystal growth techniques implemented to overcome these challenges. The presented temperature gradient technique, achieves highly aligned crystal arrays with excellent areal coverage which essentially results in an enhanced OTFT performance. The technique is firstly utilized to guide the TIPS pentacene crystal growth. An application of a temperature gradient to a TIPS pentacene solution controls the crystallization process to alleviate the intrinsic crystal misorientation and considerably improve film morphology. Employing this method resulted in TIPS pentacene films with uniform crystal orientations and extensive areal coverage. The favorable crystal morphology gave rise to a significant enhancement in OTFT average mobility compared to OTFTs without the temperature gradient. Employing the temperature gradient technique, however, simultaneously introduced thermal cracks in the films due to the occurrence of thermally induced stress during crystallization, which reduced the device performance of the TIPS pentacene OTFTs. To further improve the performance of TIPS pentacene based OTFTs, TIPS pentacene was blended with polymers to relieve the thermal stress and effectively prevent the generation of thermal cracks. Structural examination of, specifically, TIPS pentacene/Poly(?-methyl styrene) (P?MS) blend films at an optimal weight ratio, revealed a vertical phase segregation with elevated concentrations of TIPS pentacene molecules at the active layer/gate dielectric interface, facilitating charge transport. Thus, OTFTs based on TIPS pentacene/P?MS blends exhibited a dramatic increase in average hole mobility compared to those of pristine TIPS pentacene. In addition, an improved thin film uniformity directly enhanced the device performance consistency. Following the success of employing the temperature gradient technique concurrently with the insulating polymer, P?MS, studies were extended to build OTFTs on flexible substrates, indium tin oxide (ITO) coated polyethylene terephthalate (PET), to dramatically improve TIPS pentacene/P?MS system. Ultimately, TIPS pentacene/P?MS OTFTs on ITO/PET substrates demonstrated the highest achieved mobility from utilizing the temperature gradient system.
Durugkar, K. A. "Cross metathesis approaches for broussonetine C, G & 12-C-glycosyl-dodecanoic acids and exploration of click reaction in crystal engineering." Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 2009. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/2739.
Full textDurand, Julian. "Approche multi-échelles des problèmes de contact et d'étanchéité." Phd thesis, Ecole Nationale Supérieure des Mines de Paris, 2012. http://pastel.archives-ouvertes.fr/pastel-00820173.
Full text"ROLE OF IMPURITIES ON DEFORMATION OF HCP CRYSTAL: A MULTISCALE APPROACH." Doctoral diss., 2014. http://hdl.handle.net/2286/R.I.27423.
Full textDissertation/Thesis
Doctoral Dissertation Mechanical Engineering 2014