Academic literature on the topic 'Cryogenic processing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cryogenic processing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cryogenic processing"
Nie, Yu Shuang, Guang Ren Sun, and Xian Ling Zhang. "Design of Green Processing Chain for Processing of Ginseng Fruit Vinegar." Advanced Materials Research 933 (May 2014): 988–93. http://dx.doi.org/10.4028/www.scientific.net/amr.933.988.
Full textArykov, A. K., and K. Khaydarov. "CRYOGENIC PROCESSING OF DIAMOND COMPOSITES." Vestnik of the Kyrgyz-Russian Slavic University 22, no. 4 (2022): 3–7. http://dx.doi.org/10.36979/1694-500x-2022-22-4-3-7.
Full textYuryev, Y. N., Y. S. Jang, S. K. Kim, K. B. Lee, M. K. Lee, S. J. Lee, W. S. Yoon, and Y. H. Kim. "Signal processing in cryogenic particle detection." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 635, no. 1 (April 2011): 82–85. http://dx.doi.org/10.1016/j.nima.2011.01.127.
Full textHe, L., and J. E. Siewenie. "Cryogenic processing of thin metal films." Surface and Coatings Technology 150, no. 1 (February 2002): 76–79. http://dx.doi.org/10.1016/s0257-8972(01)01504-3.
Full textDeptuck, D., M. M. Lowry, and I. C. Girit. "Signal processing for cryogenic micro-calorimetry." Journal of Low Temperature Physics 93, no. 3-4 (November 1993): 275–80. http://dx.doi.org/10.1007/bf00693432.
Full textShi, Z. Q., and W. A. Anderson. "Cryogenic processing of metal/GaAs schottky diodes." Solid-State Electronics 35, no. 10 (October 1992): 1427–32. http://dx.doi.org/10.1016/0038-1101(92)90078-q.
Full textWang, Fei, and Yong Cai Chen. "Study about the Effects of Cryogenic Treatment on the Mechanical Properties of PCrNi3MoVA Steel." Applied Mechanics and Materials 541-542 (March 2014): 303–6. http://dx.doi.org/10.4028/www.scientific.net/amm.541-542.303.
Full textALEKSANDROVA, I. V., E. R. KORESHEVA, I. E. OSIPOV, V. I. GOLOV, and V. I. CHTCHERBAKOV. "Microtomography data processing methods for cryogenic target characterization." Laser and Particle Beams 17, no. 4 (October 1999): 729–40. http://dx.doi.org/10.1017/s0263034699174172.
Full textPavlyuk, Raisa, Viktoriya Pogarska, Vadim Pavlyuk, Katerina Balabai, and Svetlana Loseva. "THE DEVELOPMENT OF CRYOGENIC METHOD OF DEEP TREATMENT OF INULIN-CONTAINING VEGETABLES (TOPINAMBOUR) AND OBTAINING OF PREBIOTICS IN THE NANOPOWDERS FORM." EUREKA: Life Sciences 3 (May 31, 2016): 36–43. http://dx.doi.org/10.21303/2504-5695.2016.00145.
Full textRazavykia, Abbas, Cristiana Delprete, and Paolo Baldissera. "Correlation between Microstructural Alteration, Mechanical Properties and Manufacturability after Cryogenic Treatment: A Review." Materials 12, no. 20 (October 11, 2019): 3302. http://dx.doi.org/10.3390/ma12203302.
Full textDissertations / Theses on the topic "Cryogenic processing"
Huang, Bo. "Cryogenic Processing of Al 7050-T7451 Alloy for Improved Surface Integrity." UKnowledge, 2016. http://uknowledge.uky.edu/me_etds/78.
Full textCammack, Darren S. "The control of metal-nInGaAs and nInAlAs interfaces by cryogenic processing." Thesis, Sheffield Hallam University, 1999. http://shura.shu.ac.uk/19420/.
Full textJensen, Mark. "Energy Process Enabled by Cryogenic Carbon Capture." BYU ScholarsArchive, 2015. https://scholarsarchive.byu.edu/etd/5711.
Full textMohammed, Anwaruddin. "ACHIEVING ULTRAFINE GRAINS IN Mg AZ31B-O ALLOY BY CRYOGENIC FRICTION STIR PROCESSING AND MACHINING." UKnowledge, 2011. http://uknowledge.uky.edu/ms_etds/1.
Full textThornton, R. W. "Investigating the effects of cryogenic processing on the wear performance and microstructure of engineering materials." Thesis, University of Sheffield, 2014. http://etheses.whiterose.ac.uk/6935/.
Full textFazlollahi, Farhad. "Dynamic Liquefied Natural Gas (LNG) Processing with Energy Storage Applications." BYU ScholarsArchive, 2016. https://scholarsarchive.byu.edu/etd/5956.
Full textCaudill, James R. "ENHANCED SURFACE INTEGRITY WITH THERMALLY STABLE RESIDUAL STRESS FIELDS AND NANOSTRUCTURES IN CRYOGENIC PROCESSING OF TITANIUM ALLOY TI-6AL-4V." UKnowledge, 2019. https://uknowledge.uky.edu/me_etds/134.
Full textSingh, Jagat. "Commissioning of an Arc-Melting/Vacuum Quench Furnace Facility for Fabrication of Ni-Ti-Fe Shape Memory Alloys, and the Characterization." Master's thesis, University of Central Florida, 2004. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2104.
Full textM.S.M.S.E.
Department of Mechanical, Materials and Aerospace Engineering;
Engineering and Computer Science
Materials Science and Engineering
CASTRO, Alessandra Almeida, and Alessandra Almeida Castro PAGANI. "Propriedades térmicas, qualidade e armazenabilidade de camarão (Litopenaeus vannamei, Boone) congelados em temperaturas criogênicas." Universidade Federal de Campina Grande, 2004. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/2003.
Full textMade available in DSpace on 2018-10-17T19:51:05Z (GMT). No. of bitstreams: 1 ALESSANDRA ALMEIDA CASTRO - TESE PPGEP 2004..pdf: 50999854 bytes, checksum: 5c3c28a3bdfe146c8c95c174dbbd858e (MD5) Previous issue date: 2004-08-20
Capes
O objetivo desta pesquisa foi estudar o efeito das técnicas de: a) congelamento nas temperaturas de -20 °C, -196 °C e -170 °C; b) armazenamento as temperaturas de (-20 °C, -30 °C e -170 °C, e c) do método de descongelamento (temperatura ambiente: aproximadamente 25 °C e em banho termostatizado: 35 °C) sobre duas amostras de camarão: 1) com exoesqueleto e cabeça e 2) sem exoesqueleto e sem cabeça, por um período de 12 meses de armazenamento. Foram determinados os seguintes parâmetros: a) características físicas (massa, comprimento, espessura e volume); b) cinética de congelamento as temperaturas de -20 °C, -170 °C e -196 °C; c) propriedades termofisicas (densidade, calor específico, difusividade térmica e condutividade térmica); d) características físico-químicas (conteúdo de água, cinzas, proteínas, pH, carboidratos, gorduras, calorias, exsudado e um atributo de textura: dureza); e) caracterização microbiológica (salmonela, coliformes fecais, vibrio parahaemolyticus) e f) avaliação sensorial (sabor, odor, textura e aparência), visando verificar a eficácia das técnicas de congelamento e descongelamento na qualidade do camarão armazenado. Na análise da cinética, as curvas de congelamento obtidas à temperatura de -20 °C para o camarão com exoesqueleto e cabeça e para o filé foram observadas claramente as três fases, ou seja, resfriamento, cristalização e pós-congelamento. Este fato também ocorreu para o camarão com cabeça congelado a -170 °C, já para o filé congelado a -170 °C não se distinguiu com clareza a fase I da Fase II, ou seja, a fase de resfriamento e a fase de cristalização, fato este atribuído a maior velocidade de congelamento. Nas curvas de congelamento do camarão com cabeça e filé quando estes foram submetidos ao congelamento por imersão em N2 líquido (-196 °C) também não se observou uma distinção entre as fases de resfriamento e cristalização. Com relação às propriedades termofisicas, a densidade do camarão "fresco" (25 °C) com exoesqueleto e cabeça foi de l,066g/cm3 e do filé foi de l,02g/cm3. Os valores médios do calor específico do camarão com exoesqueleto e do filé "fresco" foram de 0,84 e 0,86 kcal/kg °C, respectivamente e para o camarão com exoesqueleto e filé à temperatura de -170 °C foram de 0,28 kcal/kg °C, 0,31 kcal/kg °C e a -196 °C foram de 0,25 kcal/kg °C e 0,28 kcal/kg °C, respectivamente. A difusividade efetiva média do camarão com exoesqueleto às temperaturas de -20 °C, -170 °C e -196 °C, foi de 9,13 x 10 3 mm2/s; 29 x 10 3 mm2/s; 571,8 x 10 3 mm2/s e para o filé nas mesmas temperaturas foi 9,9 x 10 3 mm2/s; 28,1 x IO"3 mm2/s; 384,3 x IO"3 mm2/s. A condutividade térmica média para o camarão com exoesqueleto às temperaturas de -170°C e -196 °C foi de 0,032 W/m °C e 0,499 W/m °C e para o filé nas mesmas temperaturas foi de 0,029 W/m °C e 0,371 W/m °C, respectivamente. Na caracterização físico-química, tanto nos camarões com cabeça quanto nos filés, congelados e armazenados em vapor de N2 (-170 °C) mantiveram-se inalterados o conteúdo de água, cinzas, proteínas, pH, gorduras e exsudado, durante todo o período de armazenagem. Os resultados das análises microbiológicas dos camarões frescos, depois de congelados e durante os 12 meses de armazenamento, apresentaram ausência de salmonela, de coliformes fecais e vibrio parahaemolyticus. Na avaliação sensorial quanto aos atributos sabor, odor, textura e aparência, os degustadores demonstraram preferência pelas amostras congeladas e armazenadas em vapor de N2, as amostras que tiveram menores índices de aceitabilidade foram às congeladas e armazenadas a -20 °C. Concluiu-se ainda que tanto no sabor, odor e textura, em todos os tratamentos, as médias das notas dos camarões descongelados em banho termostatizado à temperatura de 35 °C foram menores que as descongeladas a temperatura ambiente, todavia, na avaliação da aparência do camarão com exoesqueleto e cabeça, quando descongeladas em banho termostatizado a 35 °C, apresentaram notas mais elevadas que as descongeladas à temperatura ambiente, tal fato é atribuído a astaxantina existente em crustáceos, que quando aquecida dá a cor alaranjada ao camarão.
The objective of this research was to study the effect of techniques of: 1) freezing in temperatures of-20 °C, -196 °C and -170 °C; 2) storage in temperatures of (-20 °C, -30 °C and -170 °C, and 3) of unfreezing method ( environmental temperature: approximately 25 °C and in thermostatized bath: 35 °C) on two samples of shrimp: 1) with exoskeleton and head and 2) without exoskeleton and head, for a period of 12 months of storage. The following parameters had been determined: 1) physical characteristics (mass, length, thickness and volume); 2) kinetic freezing of temperatures at -20 °C, -170 °C and -196 °C; 3) thermophysical properties (density, specific heat, thermal diffusivity and thermal conductivity); 4) physicochemical characteristic (water content, ashes, proteins, pH, carbohydrates, fats, calories, exuded and an texture attribution: hardness); 5) microbiological characterization (salmonella, fecale coliform, vibrio parahaemolyticus) and 6) sensorial evaluation (flavor, scent, texture and appearance), aiming to verify the effectiveness of freezing and unfreezing techniques in the quality of the stored shrimp. During kinetic analysis, the curves of freezing obtained at the temperature of -20 °C for the shrimp with the head and exoskeleton for the filet, the three phases, or better saying, cooling, crystallization and after-freezing were clearly observed. This fact also occurred for the shrimp with frozen head at -170 °C, on the other hand for the filet at -170 °C, it was not easy to distinguish with clarity phase I from Phase II, in other words, the phases of cooling and crystallization, due to the speed of freezing. At the shrimps with head freezing curve, it was observed that when these were submitted to freezing by immersion in liquid N2 (-196 °C) there was not any distinction between the phases of cooling and crystallization. In relation to the thermophysical properties, the density of fresh shrimp (25 °C) with exoskeleton and head were of l,066g/cm3 and of that of filet was l,02g/cm3. The average values of the specific heat of the shrimp with exoskeleton and fresh filet is of 0,84 and 0,86 kcal/kg °C, respectively and for shrimp with exoskeleton and filet at temperature of -170 °C were of 0,28 kcal/kb °C, 0.31 kcal/kg °C and 196°C were of 0,25 kcal/kg °C and 0,28 kcal/kg °C, respectively. The medium diffusivity effectiveness of the shrimp with exoskeleton at the temperatures of -20 °C, -170 °C and -196 °C, was of 9,13 x 10"3 mm2/s; 29 x 10"3 mm2/s; 571,8 x 10"3 mm2/s and for the filet at the same temperature was 9,9 x 10"3 mm2/s temperatures was; 28.1 x 10"3 mm2/s; 384,3 x 10"3 mm2/s. The average thermal conductivity for shrimp with exoskeleton at -170 °C and -196 °C was of 0,032 W/m °C and 0,499 W/m °C and for filet at the temperature was of 0,029 W/m °C and 0.371 W/m °C, respectively. For physicist-chemistry characterization, both in shrimps with head as well as that of filet, frozen and stored in N2 vapor (-170 °C) the water content, proteins, pH, fats and exuded remained unchanged during all the period of storage. The results of the microbiological analyses of the fresh shrimps, after been frozen and during 12 months of storage, presented absence of salmonella, fecal coliform and vibrio parahaemolyticus. In the sensorial evaluation as much as flavor, scent, texture and appearance are concerned, the testators demonstrated preference for samples frozen and stored in vapor of N2, the samples with the least acceptability indices were those frozen and stored at -20 °C. It was concluded that in the flavor, scent and texture, in all the treatments, the average notes of defrosted shrimps in thermostatized bath of 35 °C temperature were less than those defrosted at environmental temperature, however, in the evaluation of the appearance of the shrimp with exoskeleton and head, when defrosted at thermostatized bath of 35 °C, presented higher notes than those defrosted at environmental temperature, such facts are attributed to astaxantine existing in crustaceans, which when heated, gives the shrimp that gives the orange color to the shrimp,
Huang, Shang-Tzi, and 黃聖財. "Study of Schottky Contact with Cryogenic Processing and Characterization of Semiconductor Material by Photoreflectance Modulation technique." Thesis, 1994. http://ndltd.ncl.edu.tw/handle/43678271955579564017.
Full text國立交通大學
電子物理學系
82
In this thesis, we stuty Photoreflectance spectroscopy and the characteristics of Schottky contacts with cryogenic processing. The Schottky contacts with cryogenic processing reserve an amorphous-like structure at the interface. This metal-insulator -semiconductor(MIS)-like structure at the interface enhances the barrier height. From FKO( Franz-Keldysh Oscillation ) of photoreflectance spectroscopy shows that the built-in electric field of Schottky contacts in cryogenic processing is 1.3 times as large as in room temperature processing. In addition, we use the nondestructive measurement system to study the energy state of GaAs/AlGaAs superlattice, InGaAs/GaAs strain quantum well laser structure,InAlGaAs material.
Books on the topic "Cryogenic processing"
Waldron, R. D. Lunar processing options for liquefaction and storage of cryogens. [S.l.]: [s.n.], 1988.
Find full textMihaylov, Vyacheslav, Elena Sotnikova, and Nina Kalpina. Eco-friendly air protection systems for motor transport facilities. ru: INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/1093106.
Full textBraton, Norman R. Cryogenic Recycling and Processing. Edited by Norman R. Braton. CRC Press, 2018. http://dx.doi.org/10.1201/9781351071253.
Full textCryogenic Recycling and Processing. Taylor & Francis Group, 2017.
Find full textBraton, Norman R. Cryogenic Recycling and Processing. Taylor & Francis Group, 2018.
Find full textBraton, Norman R. Cryogenic Recycling and Processing. Taylor & Francis Group, 2018.
Find full textBraton, Norman R. Cryogenic Recycling and Processing. Taylor & Francis Group, 2018.
Find full textBraton, Norman R. Cryogenic Recycling and Processing. Taylor & Francis Group, 2018.
Find full textCardwell, David A., David C. Larbalestier, and Aleksander Braginski. Handbook of Superconductivity: Processing and Cryogenics, Volume Two. Taylor & Francis Group, 2021.
Find full textCardwell, David A., David C. Larbalestier, and Aleksander Braginski. Handbook of Superconductivity: Processing and Cryogenics, Volume Two. Taylor & Francis Group, 2021.
Find full textBook chapters on the topic "Cryogenic processing"
Singh, Himani, Murlidhar Meghwal, and Pramod K. Prabhakar. "Cryogenic Freezing." In Food Processing, 181–94. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003163251-8.
Full textBreidenbaugh, Arnie. "Advanced Cryogenic Processing: Frequently Asked Questions." In 63rd Porcelain Enamel Institute Technical Forum: Ceramic Engineering and Science Proceedings, Volume 22, Issue 5, 137–40. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008. http://dx.doi.org/10.1002/9780470294710.ch14.
Full textKalia, Susheel, and Shao-Yun Fu. "Cryogenic Processing: State of the Art, Advantages and Applications." In Polymers at Cryogenic Temperatures, 1–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35335-2_1.
Full textTachikawa, Kyoji. "Processing of Nb3Al and Other Emerging Superconductors." In Advances in Cryogenic Engineering Materials, 1049–59. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-9871-4_124.
Full textSastry, P. V. P. S. S., K. M. Amm, D. C. Knoll, S. C. Peterson, and J. Schwartz. "Synthesis and Processing of Doped Hg1Ba2Ca2Cu3Oy Superconductors." In Advances in Cryogenic Engineering Materials, 477–84. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-9056-6_63.
Full textBlack, M. A., and P. J. McGinn. "Reduced pO2 Melt Processing of YBa2Cu3O6+x." In Advances in Cryogenic Engineering Materials, 687–94. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-9059-7_92.
Full textNeumüller, H. W., M. Wilhelm, K. Fischer, A. Jenovelis, M. Schubert, and Chr Rodig. "Processing and Properties of 2223 BiPbSrCaCuO Silver Sheathed Tapes." In Advances in Cryogenic Engineering Materials, 139–46. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-9053-5_19.
Full textGuo, Y. Y., Y. Liang, P. R. Yang, and Q. H. Xiao. "Development and Research of a Cryogenic Plant for Recycling and Processing Wasted Tires." In Advances in Cryogenic Engineering, 1715–22. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4215-5_97.
Full textBalachandran, U., M. Lelovic, T. Deis, N. G. Eror, P. Haldar, and V. Selvamanickam. "Recent Advances in Processing of Ag-Clad Bi-2223 Superconductors." In Advances in Cryogenic Engineering Materials, 525–31. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-9056-6_69.
Full textFoner, S., C. L. H. Thieme, S. Pourrahimi, and B. B. Schwartz. "Practical Processing of A-15 Multifilamentary Superconducting Wire from Powders: Nb3Al and Nb3Sn." In Advances in Cryogenic Engineering Materials, 1031–39. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-9871-4_122.
Full textConference papers on the topic "Cryogenic processing"
Holmes, D. Scott. "Cryogenic Electronics And Quantum Information Processing." In 2021 IEEE International Roadmap for Devices and Systems Outbriefs. IEEE, 2021. http://dx.doi.org/10.1109/irds54852.2021.00012.
Full textHolesinger, T. G. "The Effect of Alumina Additions on the Processing of Bi-2212 Conductors." In ADVANCES IN CRYOGENIC ENGINEERING. AIP, 2006. http://dx.doi.org/10.1063/1.2192410.
Full textRenaud, C. V. "Nb3Sn Powder-in-Tube Superconductor: Processing, Design Optimization and Properties." In ADVANCES IN CRYOGENIC ENGINEERING: Transactions of the International Cryogenic Materials Conference - ICMC. AIP, 2004. http://dx.doi.org/10.1063/1.1774591.
Full textRudziak, M. K. "Development of multifilament jelly-roll NbAl precursor for melt-quench processing." In ADVANCES IN CRYOGENIC ENGINEERING: Proceedings of the International Cryogenic Materials Conference - ICMC. AIP, 2002. http://dx.doi.org/10.1063/1.1472647.
Full textButa, F. "Processing-superconducting property correlation studies in RHQT-processed Niobium-Aluminum superconductors." In ADVANCES IN CRYOGENIC ENGINEERING: Proceedings of the International Cryogenic Materials Conference - ICMC. AIP, 2002. http://dx.doi.org/10.1063/1.1472648.
Full textTachikawa, K. "Optimization of processing parameter of (Nb,Ta)[sub 3]Sn superconductors with Ta-Sn core." In ADVANCES IN CRYOGENIC ENGINEERING: Proceedings of the International Cryogenic Materials Conference - ICMC. AIP, 2002. http://dx.doi.org/10.1063/1.1472632.
Full textButa, F. "Phase formation during the rapid-heating step of RHQT Nb[sub 3]Al superconductor processing." In ADVANCES IN CRYOGENIC ENGINEERING: Proceedings of the International Cryogenic Materials Conference - ICMC. AIP, 2002. http://dx.doi.org/10.1063/1.1472646.
Full textHonjo, T. "MOD-TFA processing for REBa[sub 2]Cu[sub 3]O[sub 7−δ] coated conductors." In ADVANCES IN CRYOGENIC ENGINEERING: Proceedings of the International Cryogenic Materials Conference - ICMC. AIP, 2002. http://dx.doi.org/10.1063/1.1472589.
Full textBaca, F. J., T. G. Holesinger, J. Y. Coulter, H. Miao, Y. Huang, J. Parrell, S. Campbell, et al. "Effect of pre-annealing in thermal processing of Bi-2212 round wires." In ADVANCES IN CRYOGENIC ENGINEERING: Transactions of the International Cryogenic Materials Conference - ICMC, Volume 58. AIP, 2012. http://dx.doi.org/10.1063/1.4712114.
Full textKarasev, Y. V., V. I. Pantsyrny, D. S. Novosiliva, M. V. Polikarpova, L. V. Potanina, I. N. Gubkin, and A. V. Malchenkov. "The effect of final processing steps on RRR of NbTi strands for ITER PF coils." In ADVANCES IN CRYOGENIC ENGINEERING: Transactions of the International Cryogenic Materials Conference - ICMC, Volume 58. AIP, 2012. http://dx.doi.org/10.1063/1.4712095.
Full textReports on the topic "Cryogenic processing"
Geng, Rongli. Processing and cryogenic RF testing of PKU-4C-1206. Office of Scientific and Technical Information (OSTI), April 2014. http://dx.doi.org/10.2172/1466756.
Full textMcCammon, K., J. Morse, D. Masquelier, C. McConaghey, H. Garrett, K. Hugenberg, M. Lowry, E. Track, and L. Bunz. Performance characterization of photonic links in cryogenic environments for advanced signal processing applications. Revision 1. Office of Scientific and Technical Information (OSTI), January 1994. http://dx.doi.org/10.2172/10168485.
Full text