Journal articles on the topic 'Cryogenic liquefaction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Cryogenic liquefaction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Wojcieszak, Paweł, and Ziemowit Malecha. "Cryogenic energy storage system coupled with packed-bed cold storage." E3S Web of Conferences 44 (2018): 00190. http://dx.doi.org/10.1051/e3sconf/20184400190.
Full textDe Salve, M., D. Milani, B. Panella, and G. Roveta. "A Laboratory Plant for Gas Liquefaction." International Journal of Air-Conditioning and Refrigeration 23, no. 02 (May 27, 2015): 1550010. http://dx.doi.org/10.1142/s2010132515500108.
Full textBukholdin, Yu S., S. V. Sukhostavets, and I. I. Petukhov. "Cryogenic plant for natural gas liquefaction." Chemical and Petroleum Engineering 43, no. 3-4 (March 2007): 212–20. http://dx.doi.org/10.1007/s10556-007-0040-x.
Full textMelag, Leena, M. Munir Sadiq, Kristina Konstas, Farnaz Zadehahmadi, Kiyonori Suzuki, and Matthew R. Hill. "Performance evaluation of CuBTC composites for room temperature oxygen storage." RSC Advances 10, no. 67 (2020): 40960–68. http://dx.doi.org/10.1039/d0ra07068h.
Full textHamdy, Sarah, Francisco Moser, Tatiana Morosuk, and George Tsatsaronis. "Exergy-Based and Economic Evaluation of Liquefaction Processes for Cryogenics Energy Storage." Energies 12, no. 3 (February 4, 2019): 493. http://dx.doi.org/10.3390/en12030493.
Full textNAGAO, Masashi, Takashi INAGUCHI, Hideto YOSHIMURA, Tadatoshi YAMADA, and Masatami IWAMOTO. "Helium liquefaction by Gifford-McMahon cycle cryogenic refrigerator." TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan) 24, no. 4 (1989): 222–27. http://dx.doi.org/10.2221/jcsj.24.222.
Full textXu, Gang, Le Li, Yongping Yang, Longhu Tian, Tong Liu, and Kai Zhang. "A novel CO2 cryogenic liquefaction and separation system." Energy 42, no. 1 (June 2012): 522–29. http://dx.doi.org/10.1016/j.energy.2012.02.048.
Full textLee, Ho Saeng, S. T. Oh, Jung In Yoon, S. G. Lee, and K. H. Choi. "Analysis of Cryogenic Refrigeration Cycle Using Two Stage Intercooler." Defect and Diffusion Forum 297-301 (April 2010): 1146–51. http://dx.doi.org/10.4028/www.scientific.net/ddf.297-301.1146.
Full textCao, Wen Sheng, and Christoph Bluth. "Air Purification System on Reduction of CO2 Concentration Using Low Temperature Liquefaction." Materials Science Forum 980 (March 2020): 493–501. http://dx.doi.org/10.4028/www.scientific.net/msf.980.493.
Full textEde, Andrew. "Liquefaction of Helium and the Promotion of National Science." Scientia Canadensis 14, no. 1-2 (June 18, 2009): 51–65. http://dx.doi.org/10.7202/800301ar.
Full textChowdhury, Debajyoti R., Nathuram Chakraborty, and Swapan C. Sarkar. "Development of a cryogenic condenser and computation of its heat transfer efficiency based on liquefaction of nitrogen gas." Mechanics and Mechanical Engineering 23, no. 1 (July 10, 2019): 291–96. http://dx.doi.org/10.2478/mme-2019-0039.
Full textYoshimura, Hideto, Masashi Nagao, Takashi Inaguchi, Tadatoshi Yamada, and Masatami Iwamoto. "Helium liquefaction by a Gifford–McMahon cycle cryogenic refrigerator." Review of Scientific Instruments 60, no. 11 (November 1989): 3533–36. http://dx.doi.org/10.1063/1.1140505.
Full textAl Rabadi, Said. "A generic concept for Helium purification and liquefaction plant." Volume 2 issue 1 2, no. 1 (August 1, 2019): 51–58. http://dx.doi.org/10.48103/jjeci272019.
Full textAl Rabadi, Said. "Improved Configurations For Liquefied Natural Gas Cycles." JORDANIAN JOURNAL OF ENGINEERING AND CHEMICAL INDUSTRIES (JJECI) 1, no. 1 (June 1, 2018): 19–37. http://dx.doi.org/10.48103/jjeci132018.
Full textQyyum, Muhammad Abdul, Yus Donald Chaniago, Wahid Ali, Hammad Saulat, and Moonyong Lee. "Membrane-Assisted Removal of Hydrogen and Nitrogen from Synthetic Natural Gas for Energy-Efficient Liquefaction." Energies 13, no. 19 (September 24, 2020): 5023. http://dx.doi.org/10.3390/en13195023.
Full textVerma, Rahul, Ashish Alex Sam, and Parthasarathi Ghosh. "CFD Analysis of Turbo Expander for Cryogenic Refrigeration and Liquefaction Cycles." Physics Procedia 67 (2015): 373–78. http://dx.doi.org/10.1016/j.phpro.2015.06.043.
Full textWang, Zhe, Fenghui Han, Yulong Ji, and Wenhua Li. "Combined Analysis of Parameter Sensitivity and Exergy for Natural Gas Liquefaction in Cryogenic Fuel Production Process." Processes 8, no. 5 (May 10, 2020): 561. http://dx.doi.org/10.3390/pr8050561.
Full textTaskaev, Sergey, Vladimir Khovaylo, Maxim Ulyanov, Dmitriy Bataev, Ekaterina Danilova, and Danil Plakhotskiy. "Low Temperature Magnetocaloric Materials for Cryogenic Gas Liquefaction by Magnetic Cooling Technique." Key Engineering Materials 833 (March 2020): 176–80. http://dx.doi.org/10.4028/www.scientific.net/kem.833.176.
Full textChang, Ho-Myung. "A thermodynamic review of cryogenic refrigeration cycles for liquefaction of natural gas." Cryogenics 72 (December 2015): 127–47. http://dx.doi.org/10.1016/j.cryogenics.2015.10.003.
Full textSadaghiani, Mirhadi S., and Mehdi Mehrpooya. "Introducing and energy analysis of a novel cryogenic hydrogen liquefaction process configuration." International Journal of Hydrogen Energy 42, no. 9 (March 2017): 6033–50. http://dx.doi.org/10.1016/j.ijhydene.2017.01.136.
Full textKnapik, Ewa, Piotr Kosowski, and Jerzy Stopa. "Cryogenic liquefaction and separation of CO2 using nitrogen removal unit cold energy." Chemical Engineering Research and Design 131 (March 2018): 66–79. http://dx.doi.org/10.1016/j.cherd.2017.12.027.
Full textVikse, Matias, Harry Watson, Truls Gundersen, and Paul Barton. "Simulation of Dual Mixed Refrigerant Natural Gas Liquefaction Processes Using a Nonsmooth Framework." Processes 6, no. 10 (October 17, 2018): 193. http://dx.doi.org/10.3390/pr6100193.
Full textSaggu, Mustansar Hayat, Nadeem Ahmed Sheikh, Usama Muhammad Niazi, Muhammad Irfan, and Adam Glowacz. "Predicting the Structural Reliability of LNG Processing Plate-Fin Heat Exchanger for Energy Conservation." Energies 13, no. 9 (May 1, 2020): 2175. http://dx.doi.org/10.3390/en13092175.
Full textXiao, Lu. "Study on comprehensive utilization technology of low concentration coal bed methane." E3S Web of Conferences 290 (2021): 03010. http://dx.doi.org/10.1051/e3sconf/202129003010.
Full textHofman, Paul, Eric May, Guillaume Watson, Brendan Graham, and Mark Trebble. "Dynamic column breakthrough measurements for increasing LNG production efficiency with cryogenic pressure swing adsorption." APPEA Journal 50, no. 2 (2010): 738. http://dx.doi.org/10.1071/aj09102.
Full textJiang, Qingfeng, Ming Zhuang, Zhigang Zhu, Linhai Sheng, and Ping Zhu. "Influence of heat in-leak, longitudinal conduction and property variations on the performance of cryogenic plate-fin heat exchangers based on distributed parameter model." Thermal Science 23, no. 3 Part B (2019): 1969–79. http://dx.doi.org/10.2298/tsci170627235j.
Full textMueller, P., and T. Durrant. "Cryogenic propellant liquefaction and storage for a precursor to a human Mars mission." Cryogenics 39, no. 12 (December 1999): 1021–28. http://dx.doi.org/10.1016/s0011-2275(99)00107-1.
Full textWilhelmsen, Øivind, David Berstad, Ailo Aasen, Petter Nekså, and Geir Skaugen. "Reducing the exergy destruction in the cryogenic heat exchangers of hydrogen liquefaction processes." International Journal of Hydrogen Energy 43, no. 10 (March 2018): 5033–47. http://dx.doi.org/10.1016/j.ijhydene.2018.01.094.
Full textDomashenko, Anatoly M., and Andrey L. Dovbish. "The process of production of liquefied methane - the component of rocket propellant." MATEC Web of Conferences 324 (2020): 01004. http://dx.doi.org/10.1051/matecconf/202032401004.
Full textBouabidi, Zineb, Fares Almomani, Easa I. Al-musleh, Mary A. Katebah, Mohamed M. Hussein, Abdur Rahman Shazed, Iftekhar A. Karimi, and Hassan Alfadala. "Study on Boil-off Gas (BOG) Minimization and Recovery Strategies from Actual Baseload LNG Export Terminal: Towards Sustainable LNG Chains." Energies 14, no. 12 (June 11, 2021): 3478. http://dx.doi.org/10.3390/en14123478.
Full textSarkar, S. C. "LNG as an energy efficient eco-friendly cryogenic fuel." Journal of Energy in Southern Africa 16, no. 4 (November 1, 2005): 55–58. http://dx.doi.org/10.17159/2413-3051/2005/v16i4a3089.
Full textKalavani, Farshad, Behnam Mohammadi-Ivatloo, Ali Karimi, and Farshid Kalavani. "Stochastic optimal sizing of integrated cryogenic energy storage and air liquefaction unit in microgrid." Renewable Energy 136 (June 2019): 15–22. http://dx.doi.org/10.1016/j.renene.2018.12.101.
Full textSam, Ashish Alex, and Parthasarathi Ghosh. "Flow field analysis of high-speed helium turboexpander for cryogenic refrigeration and liquefaction cycles." Cryogenics 82 (March 2017): 1–14. http://dx.doi.org/10.1016/j.cryogenics.2017.01.004.
Full textPakzad, Pouria, Mehdi Mehrpooya, and Andrew Zaitsev. "Investigation of a new energy‐efficient cryogenic process configuration for helium extraction and liquefaction." International Journal of Energy Research 45, no. 7 (February 16, 2021): 10355–77. http://dx.doi.org/10.1002/er.6525.
Full textBÜSCHER, M., A. BOUKHAROV, A. SEMENOV, A. GERASIMOV, V. CHERNETSKY, and P. FEDORETS. "PRODUCTION OF HYDROGEN, NITROGEN AND ARGON PELLETS WITH THE MOSCOW-JÜLICH PELLET TARGET." International Journal of Modern Physics E 18, no. 02 (February 2009): 505–10. http://dx.doi.org/10.1142/s0218301309012562.
Full textQyyum, Muhammad Abdul, Muhammad Yasin, Alam Nawaz, Tianbiao He, Wahid Ali, Junaid Haider, Kinza Qadeer, Abdul-Sattar Nizami, Konstantinos Moustakas, and Moonyong Lee. "Single-Solution-Based Vortex Search Strategy for Optimal Design of Offshore and Onshore Natural Gas Liquefaction Processes." Energies 13, no. 7 (April 5, 2020): 1732. http://dx.doi.org/10.3390/en13071732.
Full textChen, Shuangtao, Lu Niu, Qiang Zeng, Xiaojiang Li, Fang Lou, Liang Chen, and Yu Hou. "Thermodynamic Analysis on of Skid-Mounted Coal-bed Methane Liquefaction Device using Cryogenic Turbo-Expander." IOP Conference Series: Materials Science and Engineering 278 (December 2017): 012027. http://dx.doi.org/10.1088/1757-899x/278/1/012027.
Full textZainal Abidin, Mohd Zaki, Usama Mohamed Nour, and Ku Zilati Ku Shaari. "Effect of Varying Mixed Refrigerant Composition on Main Cryogenic Heat Exchanger Performance." Key Engineering Materials 594-595 (December 2013): 13–17. http://dx.doi.org/10.4028/www.scientific.net/kem.594-595.13.
Full textSayyaadi, Hoseyn, and M. Babaelahi. "Thermoeconomic optimization of a cryogenic refrigeration cycle for re-liquefaction of the LNG boil-off gas." International Journal of Refrigeration 33, no. 6 (September 2010): 1197–207. http://dx.doi.org/10.1016/j.ijrefrig.2010.03.008.
Full textTaskaev, Sergey, Vladimir Khovaylo, Konstantin Skokov, Wei Liu, Eduard Bykov, Maxim Ulyanov, Dmitriy Bataev, et al. "Magnetocaloric effect in GdNi2 for cryogenic gas liquefaction studied in magnetic fields up to 50 T." Journal of Applied Physics 127, no. 23 (June 21, 2020): 233906. http://dx.doi.org/10.1063/5.0006281.
Full textSun, Chongzheng, Xuewen Cao, Yuxing Li, Jianlu Zhu, and Liang Liu. "Improvement of offshore adaptability of main cryogenic heat exchanger in FLNG dual mixed refrigerant liquefaction process." International Journal of Heat and Mass Transfer 169 (April 2021): 120909. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2021.120909.
Full textBuijs, C., J. J. B. Pek, and W. J. Meiring. "THE PMR PROCESS, AN INNOVATIVE TECHNOLOGY FOR LARGE LNG TRAINS." APPEA Journal 46, no. 1 (2006): 127. http://dx.doi.org/10.1071/aj05008.
Full textTrotsenko, A. V. "ANALYSIS OF ENERGY CONSUMPTION ECONOMY IN CRYOGENIC SYSTEMS BY THE USE OF HEAT EXCHANGERS." ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations 60, no. 3 (May 17, 2017): 256–64. http://dx.doi.org/10.21122/1029-7448-2017-60-3-256-264.
Full textŁaciak, Mariusz. "Thermodynamic Processes Involving Liquefied Natural Gas at the LNG Receiving Terminals / Procesy termodynamiczne z wykorzystaniem skroplonego gazu ziemnego w terminalach odbiorczych LNG." Archives of Mining Sciences 58, no. 2 (June 1, 2013): 349–59. http://dx.doi.org/10.2478/amsc-2013-0024.
Full textSpitoni, Marco, Mariano Pierantozzi, Gabriele Comodi, Fabio Polonara, and Alessia Arteconi. "Theoretical evaluation and optimization of a cryogenic technology for carbon dioxide separation and methane liquefaction from biogas." Journal of Natural Gas Science and Engineering 62 (February 2019): 132–43. http://dx.doi.org/10.1016/j.jngse.2018.12.007.
Full textXiong, Xiaojun, Wensheng Lin, and Anzhong Gu. "Integration of CO 2 cryogenic removal with a natural gas pressurized liquefaction process using gas expansion refrigeration." Energy 93 (December 2015): 1–9. http://dx.doi.org/10.1016/j.energy.2015.09.022.
Full textFazlollahi, Farhad, Alex Bown, Edris Ebrahimzadeh, and Larry L. Baxter. "Transient natural gas liquefaction and its application to CCC-ES (energy storage with cryogenic carbon capture™)." Energy 103 (May 2016): 369–84. http://dx.doi.org/10.1016/j.energy.2016.02.109.
Full textXiao, Lu, and Jinhua Chen. "Experimental Study on Distillation Column Parameters for Liquefaction Device of Low Concentration Coalbed Methane." Processes 9, no. 4 (March 30, 2021): 606. http://dx.doi.org/10.3390/pr9040606.
Full textHuang, Ning, Zhenlin Li, and Baoshan Zhu. "Cavitating Flow Suppression in the Draft Tube of a Cryogenic Turbine Expander through Runner Optimization." Processes 8, no. 3 (February 27, 2020): 270. http://dx.doi.org/10.3390/pr8030270.
Full textWu, Xian Li, Lian Ying Wu, Kai Wang, and Yang Dong Hu. "Energy Integration of Air Separation System Utilizing LNG Cryogenic Energy Based on Gradual Energy Integration and Optimization Strategy." Advanced Materials Research 781-784 (September 2013): 2534–37. http://dx.doi.org/10.4028/www.scientific.net/amr.781-784.2534.
Full text