Academic literature on the topic 'Cryogenic liquefaction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cryogenic liquefaction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cryogenic liquefaction"
Wojcieszak, Paweł, and Ziemowit Malecha. "Cryogenic energy storage system coupled with packed-bed cold storage." E3S Web of Conferences 44 (2018): 00190. http://dx.doi.org/10.1051/e3sconf/20184400190.
Full textDe Salve, M., D. Milani, B. Panella, and G. Roveta. "A Laboratory Plant for Gas Liquefaction." International Journal of Air-Conditioning and Refrigeration 23, no. 02 (May 27, 2015): 1550010. http://dx.doi.org/10.1142/s2010132515500108.
Full textBukholdin, Yu S., S. V. Sukhostavets, and I. I. Petukhov. "Cryogenic plant for natural gas liquefaction." Chemical and Petroleum Engineering 43, no. 3-4 (March 2007): 212–20. http://dx.doi.org/10.1007/s10556-007-0040-x.
Full textMelag, Leena, M. Munir Sadiq, Kristina Konstas, Farnaz Zadehahmadi, Kiyonori Suzuki, and Matthew R. Hill. "Performance evaluation of CuBTC composites for room temperature oxygen storage." RSC Advances 10, no. 67 (2020): 40960–68. http://dx.doi.org/10.1039/d0ra07068h.
Full textHamdy, Sarah, Francisco Moser, Tatiana Morosuk, and George Tsatsaronis. "Exergy-Based and Economic Evaluation of Liquefaction Processes for Cryogenics Energy Storage." Energies 12, no. 3 (February 4, 2019): 493. http://dx.doi.org/10.3390/en12030493.
Full textNAGAO, Masashi, Takashi INAGUCHI, Hideto YOSHIMURA, Tadatoshi YAMADA, and Masatami IWAMOTO. "Helium liquefaction by Gifford-McMahon cycle cryogenic refrigerator." TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan) 24, no. 4 (1989): 222–27. http://dx.doi.org/10.2221/jcsj.24.222.
Full textXu, Gang, Le Li, Yongping Yang, Longhu Tian, Tong Liu, and Kai Zhang. "A novel CO2 cryogenic liquefaction and separation system." Energy 42, no. 1 (June 2012): 522–29. http://dx.doi.org/10.1016/j.energy.2012.02.048.
Full textLee, Ho Saeng, S. T. Oh, Jung In Yoon, S. G. Lee, and K. H. Choi. "Analysis of Cryogenic Refrigeration Cycle Using Two Stage Intercooler." Defect and Diffusion Forum 297-301 (April 2010): 1146–51. http://dx.doi.org/10.4028/www.scientific.net/ddf.297-301.1146.
Full textCao, Wen Sheng, and Christoph Bluth. "Air Purification System on Reduction of CO2 Concentration Using Low Temperature Liquefaction." Materials Science Forum 980 (March 2020): 493–501. http://dx.doi.org/10.4028/www.scientific.net/msf.980.493.
Full textEde, Andrew. "Liquefaction of Helium and the Promotion of National Science." Scientia Canadensis 14, no. 1-2 (June 18, 2009): 51–65. http://dx.doi.org/10.7202/800301ar.
Full textDissertations / Theses on the topic "Cryogenic liquefaction"
Laimene, Karim. "Analyse des cycles de liquéfaction du gaz naturel. Analysis of natural gas liquefaction cycles." Université catholique de Louvain, 2003. http://edoc.bib.ucl.ac.be:81/ETD-db/collection/available/BelnUcetd-04012003-164249/.
Full textTurnidge, Martin Laurence. "Vibrational energy transfer at low temperatures and the use of infrared laser excitation for trace detection." Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.337427.
Full textWaagaard, Elias. "Benchmarking a Cryogenic Code for the FREIA Helium Liquefier." Thesis, Uppsala universitet, FREIA, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-412781.
Full textTermodynamiken bakom heliumförvätskaren i FREIA-laboratoriet innehåller fortfarande många okända aspekter. Detta kandidatarbete syftar till att utveckla en teoretisk modell och implementera den i MATLAB med hjälp av biblioteket CoolProp. Denna modell av FREIA:s förvätskningscykel syftar till att hitta de okända parametrar som inte specificerats av tillverkaren, och baserar sig på principen om entalpins bevarande. Inspiration togs från de klassiska förvätskningscyklerna Linde-Hampson, Claude och Collins. Vi utvecklade en linjär matematisk modell för cykelkomponenter såsom expansionsturbiner och värmeväxlare, och en icke-linjär modell för själva förvätskningen i fasseparatorn. En förvätskningsverkningsgrad på 10% och 6% uppnåddes i våra modellsimuleringar, med respektive utan förkylning med flytande kväve - liknande verkningsgraderna i FREIA- förvätskaren inom en procentenhet. Sensorerna placerade i FREIA visade på liknande tryck och temperaturer, även om bristen på sensorer gjorde att vi inte kunde bekräfta varje punkt. Vi observerade en ökning på mer än 50% i verkningsgrad efter att ha justerat värmeväxlardesignen något, speciellt för den första. Detta kan utgöra riktlinjer för var man framöver kan förbättra den faktiska förvätskaren.
Subject reader/Ämnesgranskare: Roger Ruber
Fazlollahi, Farhad. "Dynamic Liquefied Natural Gas (LNG) Processing with Energy Storage Applications." BYU ScholarsArchive, 2016. https://scholarsarchive.byu.edu/etd/5956.
Full textBassila, Joseph. "Etude et conception d’un système d’épuration de biogaz et de liquéfaction de bio-méthane." Thesis, Paris, CNAM, 2017. http://www.theses.fr/2017CNAM1105.
Full textGlobal energy consumption, which is gradually increasing, has led to the search for alternative renewable resources. Europe has put the development of the biogas sector as a priority to enhance organic matter and produce sustainable energy and clean fuel. Several technologies have been developed to produce bio-methane and then to liquefy it. Cryo Pur developed a cryogenic process where the biogas is cooled gradually to 3 temperature levels: -40 ° C; -75 ° C and -120 °C. In a first step, the steam is extracted at -40 °C and at -75 ° C, the dry biogas contains 65 % methane and 35 % CO2. The biogas is then cooled to -120 °C in a low-temperature refrigeration system to capture carbon dioxide and obtain bio-methane with 2.5 % of CO2. Once this bio-methane is obtained, it is liquefied at a pressure of 15 bara and a temperature of -120 °C. An energy and exergy study is studied and takes as reference the pilot of purification and liquefaction Cryo Pur installed at the exit of digester of the purification station of Valenton. CO2 is captured by frosting on the fins of heat exchangers. The defrosting is carried out by a two-phase flow rate taken from the -40 °C stage of the low-temperature refrigeration system. The thesis compares the energy recovered by a liquid CO2 defrosted with a rise in temperature up to -56 °C (triple point temperature of CO2) and defrosting by sublimation of CO2 at a temperature much lower than - 56 ° C which is the subject of an energy optimization. The thesis also conducts an energy and exergy study of the complete process of biogas and bio-methane liquefaction with the recovery of energy by sublimation of carbon dioxide.A test bench is designed to evaluate the energy performance of the CO2 defrosting process by sublimation. The various necessary elements of this test bench are presented with their energy consumption. In this test bench, the defrosting of the carbon dioxide by sublimation is carried out via a low-temperature heat-transfer fluid which recovers the energy sublimation of the CO2 reducing the power consumed by the low-temperature refrigeration system. This new process requires a vacuum pump. The consumption of this vacuum pump depends on the sublimation pressure and is the subject of an energy optimization study. The density of CO2 varies enormously depending on the temperature and the sublimation pressure. A model of the evolution of the thickness of the frost during the sublimation is presented. As a conclusion of this section, a comparison is made between the specific power consumption of the system installed at Valenton and that of the test bench.On the other hand, the duration of the frosting cycle also requires an energy optimization study associated with the design of the exchanger that capture the CO2. The tube-fins exchanger with the shape of the fin and the parameters affecting the CO2 frosting are presented. A study is carried out to uniformly distribution of the CO2 mass on the exchange surface to reduce the blocking rate of the exchanger and to extend the duration of the frosting phase. A study on the effect of biogas velocity and temperature slippage of the refrigerant over the cycle is carried out as well as a study on the materials of the fins and tubes selected in order to minimize the exchange surface and have the bio-methane with 2 % CO2
Books on the topic "Cryogenic liquefaction"
Waldron, R. D. Lunar processing options for liquefaction and storage of cryogens. [S.l.]: [s.n.], 1988.
Find full textExplosive boiling of superheated cryogenic liquids. Weinheim, DE: Wiley-VCH, 2007.
Find full textRivers, H. Kevin. Cyclic cryogenic thermal-mechanical testing of an X-33/RLV liquid oxygen tank concept. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Find full textCenter, Langley Research, ed. Cyclic cryogenic thermal-mechanical testing of an X-33/RLV liquid oxygen tank concept. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Find full textCyclic cryogenic thermal-mechanical testing of an X-33/RLV liquid oxygen tank concept. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Find full textCenter, Langley Research, ed. Cyclic cryogenic thermal-mechanical testing of an X-33/RLV liquid oxygen tank concept. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Find full textCenter, Langley Research, ed. Cyclic cryogenic thermal-mechanical testing of an X-33/RLV liquid oxygen tank concept. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Find full textBook chapters on the topic "Cryogenic liquefaction"
Timmerhaus, Klaus D., and Thomas M. Flynn. "Refrigeration and Liquefaction." In Cryogenic Process Engineering, 103–88. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-8756-5_4.
Full textNakagome, H., T. Kuriyama, H. Ogiwara, T. Fujita, T. Yazawa, and T. Hashimoto. "Reciprocating Magnetic Refrigerator for Helium Liquefaction." In Advances in Cryogenic Engineering, 753–62. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2213-9_85.
Full textLongwell, P. A., and J. W. Kruse. "Computer Simulation of Natural Gas Liquefaction Plant Processes." In Advances in Cryogenic Engineering, 18–27. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-0513-3_3.
Full textBartlit, J. R., K. D. Williamson, and F. J. Edeskuty. "J-T Liquefaction of Hydrogen-Hydrocarbon Gas Mixtures." In Advances in Cryogenic Engineering, 452–56. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-0513-3_57.
Full textGschneidner, K. A., H. Takeya, J. O. Moorman, V. K. Pecharsky, S. K. Malik, and C. B. Zimm. "New Magnetic Refrigeration Materials for the Liquefaction of Hydrogen." In Advances in Cryogenic Engineering, 1457–65. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2522-6_179.
Full textOhira, Katsuhide, Kenji Nakamichi, and Hitoshi Furumoto. "Experimental Study on Magnetic Refrigeration for the Liquefaction of Hydrogen." In Advances in Cryogenic Engineering, 1747–54. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4215-5_101.
Full textGifford, W. E., N. Kadaikkal, and A. Acharya. "Simon Helium Liquefaction Method Using a Refrigerator and Thermal Valve." In Advances in Cryogenic Engineering, 422–27. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-0513-3_52.
Full textKun, L. C. "Expansion Turbines and Refrigeration for Gas Separation and Liquefaction." In A Cryogenic Engineering Conference Publication, 963–73. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-9874-5_116.
Full textNumazawa, Takenori, Takasu Hashimoto, and Hideki Nakagome. "Improvement of Liquefaction Efficiency of the Heat Pipe Type Magnetic Refrigerator." In Advances in Cryogenic Engineering, 771–77. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2213-9_87.
Full textGistau Baguer, Guy. "Commissioning Tests of a Refrigeration-Liquefaction Plant." In Cryogenic Helium Refrigeration for Middle and Large Powers, 585–612. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51677-2_14.
Full textConference papers on the topic "Cryogenic liquefaction"
Taher, Matt, and Cyrus B. Meher-Homji. "Cryogenic Turboexpanders in LNG Liquefaction Applications." In ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-57020.
Full textBarclay, M. A. "Thermodynamic Cycle Selection for Distributed Natural Gas Liquefaction." In ADVANCES IN CRYOGENIC ENGEINEERING: Transactions of the Cryogenic Engineering Conference - CEC. AIP, 2004. http://dx.doi.org/10.1063/1.1774669.
Full textClausen, Juergen. "Considerations for small to medium liquefaction plants." In ADVANCES IN CRYOGENIC ENGINEERING: Transactions of the Cryogenic Engineering Conference - CEC, Volume 57. AIP, 2012. http://dx.doi.org/10.1063/1.4707072.
Full textBreedlove, J. J., P. J. Magari, G. W. Miller, J. G. Weisend, John Barclay, Susan Breon, Jonathan Demko, et al. "CRYOCOOLER FOR AIR LIQUEFACTION ONBOARD LARGE AIRCRAFT." In ADVANCES IN CRYOGENIC ENGINEERING: Transactions of the Cryogenic Engineering Conference - CEC, Vol. 52. AIP, 2008. http://dx.doi.org/10.1063/1.2908678.
Full textOhlig, K., and L. Decker. "The latest developments and outlook for hydrogen liquefaction technology." In ADVANCES IN CRYOGENIC ENGINEERING: Transactions of the Cryogenic Engineering Conference - CEC. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4860858.
Full textLindemann, U., S. Boeck, L. Blum, K. Kurtcuoglu, and J. G. Weisend. "TURNKEY HELIUM PURIFICATION AND LIQUEFACTION PLANT FOR DARWIN, AUSTRALIA." In TRANSACTIONS OF THE CRYOGENIC ENGINEERING CONFERENCE—CEC: Advances in Cryogenic Engineering. AIP, 2010. http://dx.doi.org/10.1063/1.3422363.
Full textKamiya, K. "Design and Build of Magnetic Refrigerator for Hydrogen Liquefaction." In ADVANCES IN CRYOGENIC ENGINEERING: Transactions of the Cryogenic Engineering Conference - CEC. AIP, 2006. http://dx.doi.org/10.1063/1.2202464.
Full textAndress, D. L. "Beauty of Simplicity: Phillips Optimized Cascade LNG Liquefaction Process." In ADVANCES IN CRYOGENIC ENGEINEERING: Transactions of the Cryogenic Engineering Conference - CEC. AIP, 2004. http://dx.doi.org/10.1063/1.1774671.
Full textNumazawa, T., K. Kamiya, S. Yoshioka, H. Nakagome, K. Matsumoto, J. G. Weisend, John Barclay, et al. "DEVELOPMENT OF A MAGNETIC REFIRGERATOR FOR HYDROGEN LIQUEFACTION." In ADVANCES IN CRYOGENIC ENGINEERING: Transactions of the Cryogenic Engineering Conference - CEC, Vol. 52. AIP, 2008. http://dx.doi.org/10.1063/1.2908470.
Full textBerdais, K. H., H. Wilhelm, Th Ungricht, J. G. Weisend, John Barclay, Susan Breon, Jonathan Demko, et al. "IMPROVEMENTS OF HELIUM LIQUEFACTION∕REFRIGERATION PLANTS AND APPLICATIONS." In ADVANCES IN CRYOGENIC ENGINEERING: Transactions of the Cryogenic Engineering Conference - CEC, Vol. 52. AIP, 2008. http://dx.doi.org/10.1063/1.2908676.
Full text