Academic literature on the topic 'Cryogenic liquefaction'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cryogenic liquefaction.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Cryogenic liquefaction"

1

Wojcieszak, Paweł, and Ziemowit Malecha. "Cryogenic energy storage system coupled with packed-bed cold storage." E3S Web of Conferences 44 (2018): 00190. http://dx.doi.org/10.1051/e3sconf/20184400190.

Full text
Abstract:
Cryogenic Energy Storage (CES) systems are able to improve the stability of electrical grids with large shares of intermittent power plants. In CES systems, excess electrical energy can be used in the liquefaction of cryogenic fluids, which may be stored in large cryogenic vessels for long periods of time. When the demand for electricity is high, work is recovered from the cryogen during a power cycle using ambient or waste heat as an upper heat source. Most research is focused on liquid air energy storage (LAES). However, natural gas can also be a promising working fluid for the CES system. This paper presents a natural gas-based CES system, coupled with a low temperature packed bed cold storage unit. The cold, which is stored at a low temperature level, can be used to increase the efficiency of the cryogenic liquefiers. The model for the packed bed in a high grade cold storage unit was implemented and then compared with the experimental data. The impact of cold recycling on the liquefaction yield and efficiency of the cryogenic energy storage system was investigated
APA, Harvard, Vancouver, ISO, and other styles
2

De Salve, M., D. Milani, B. Panella, and G. Roveta. "A Laboratory Plant for Gas Liquefaction." International Journal of Air-Conditioning and Refrigeration 23, no. 02 (May 27, 2015): 1550010. http://dx.doi.org/10.1142/s2010132515500108.

Full text
Abstract:
A prototype gas liquefaction plant has been designed and manufactured for Politecnico di Torino cryogenic laboratory and has been used for cryogenic applications like superconducting cables and low temperature refrigeration devices. The plant is able to liquefy nitrogen and, by means of little changes, hydrogen and other cryogenic fluids too. The thermal energy is removed by four high speed (up to 360 000 revolutions per minute) helium turbines that are connected in series. The gas liquefaction is carried out by the cooling condensation process of the gas flow that feeds a 0.15 m3 super insulated tank that is cooled inside. The cryogenic system is based on the Claude and Collins cycles, fed with helium that provides the cold sink. The paper shows the characteristics of the plant main components, and the time history of the measured temperatures, pressures, and flow rates during the plant start-up, as well as the steady state liquefied gas production rate. From the energetic point of view, the plant performance is acceptable for a research laboratory and the plant efficiency is not far from that of commercial larger size plants.
APA, Harvard, Vancouver, ISO, and other styles
3

Bukholdin, Yu S., S. V. Sukhostavets, and I. I. Petukhov. "Cryogenic plant for natural gas liquefaction." Chemical and Petroleum Engineering 43, no. 3-4 (March 2007): 212–20. http://dx.doi.org/10.1007/s10556-007-0040-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Melag, Leena, M. Munir Sadiq, Kristina Konstas, Farnaz Zadehahmadi, Kiyonori Suzuki, and Matthew R. Hill. "Performance evaluation of CuBTC composites for room temperature oxygen storage." RSC Advances 10, no. 67 (2020): 40960–68. http://dx.doi.org/10.1039/d0ra07068h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hamdy, Sarah, Francisco Moser, Tatiana Morosuk, and George Tsatsaronis. "Exergy-Based and Economic Evaluation of Liquefaction Processes for Cryogenics Energy Storage." Energies 12, no. 3 (February 4, 2019): 493. http://dx.doi.org/10.3390/en12030493.

Full text
Abstract:
Cryogenics-based energy storage (CES) is a thermo-electric bulk-energy storage technology, which stores electricity in the form of a liquefied gas at cryogenic temperatures. The charging process is an energy-intensive gas liquefaction process and the limiting factor to CES round trip efficiency (RTE). During discharge, the liquefied gas is pressurized, evaporated and then super-heated to drive a gas turbine. The cold released during evaporation can be stored and supplied to the subsequent charging process. In this research, exergy-based methods are applied to quantify the effect of cold storage on the thermodynamic performance of six liquefaction processes and to identify the most cost-efficient process. For all liquefaction processes assessed, the integration of cold storage was shown to multiply the liquid yield, reduce the specific power requirement by 50–70% and increase the exergetic efficiency by 30–100%. The Claude-based liquefaction processes reached the highest exergetic efficiencies (76–82%). The processes reached their maximum efficiency at different liquefaction pressures. The Heylandt process reaches the highest RTE (50%) and the lowest specific power requirement (1021 kJ/kg). The lowest production cost of liquid air (18.4 €/ton) and the lowest specific investment cost (<700 €/kWchar) were achieved by the Kapitza process.
APA, Harvard, Vancouver, ISO, and other styles
6

NAGAO, Masashi, Takashi INAGUCHI, Hideto YOSHIMURA, Tadatoshi YAMADA, and Masatami IWAMOTO. "Helium liquefaction by Gifford-McMahon cycle cryogenic refrigerator." TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan) 24, no. 4 (1989): 222–27. http://dx.doi.org/10.2221/jcsj.24.222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Xu, Gang, Le Li, Yongping Yang, Longhu Tian, Tong Liu, and Kai Zhang. "A novel CO2 cryogenic liquefaction and separation system." Energy 42, no. 1 (June 2012): 522–29. http://dx.doi.org/10.1016/j.energy.2012.02.048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lee, Ho Saeng, S. T. Oh, Jung In Yoon, S. G. Lee, and K. H. Choi. "Analysis of Cryogenic Refrigeration Cycle Using Two Stage Intercooler." Defect and Diffusion Forum 297-301 (April 2010): 1146–51. http://dx.doi.org/10.4028/www.scientific.net/ddf.297-301.1146.

Full text
Abstract:
This paper presents the comparison of performance characteristics for the several natural gas liquefaction cycles. The liquefaction cycle with the staged compression was designed and simulated for improving the cycle efficiency using HYSYS software. This includes a cascade cycle with a two-stage intercooler which is consisted of a Propane, Ethylene and Methane cycle. In addition, these cycles are compared with a modified staged compression process. The key parameters of the above cascade cycles were compared and analyzed. The COP (Coefficient of Performance) of the cascade cycle with a two-stage intercooler and a modified staged compression process is 13.7% and 29.7% higher than that of basic cycle. Also, the yield efficiency of LNG (Liquefied Natural Gas) improved compared with the basic cycle by 28.5%.
APA, Harvard, Vancouver, ISO, and other styles
9

Cao, Wen Sheng, and Christoph Bluth. "Air Purification System on Reduction of CO2 Concentration Using Low Temperature Liquefaction." Materials Science Forum 980 (March 2020): 493–501. http://dx.doi.org/10.4028/www.scientific.net/msf.980.493.

Full text
Abstract:
For a closed working environment, the CO2 content in the air in a closed space will rise continuously due to personnel breathing and some equipment or electronic devices, and even exceed the allowable content in the normal working environment. In order to prevent the CO2 content from exceeding the standard in the closed working environment, the method of low temperature liquefaction is used to separate the CO2 in the air. Through simulation calculation and comparison of key parameters of the process of using cascade liquefaction and nitrogen expansion liquefaction to reduce CO2 concentration in air, it is concluded that it is feasible to use cryogenic liquefaction method to separate carbon dioxide from air to purify air and improve air quality in confined space.
APA, Harvard, Vancouver, ISO, and other styles
10

Ede, Andrew. "Liquefaction of Helium and the Promotion of National Science." Scientia Canadensis 14, no. 1-2 (June 18, 2009): 51–65. http://dx.doi.org/10.7202/800301ar.

Full text
Abstract:
ABSTRACT In 1923 John McLennan and his assistants succeeded in the liquefaction of helium. This event was heralded by the Canadian media as a major triumph of science. Yet it was neither a scientific first, nor a terminal experiment, but simply a means of producing material for use in McLennan's cryogenic research program. This article examines the events surrounding the liquefaction as they related to McLennan's efforts to promote national science and establish a post-war national science council.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Cryogenic liquefaction"

1

Laimene, Karim. "Analyse des cycles de liquéfaction du gaz naturel. Analysis of natural gas liquefaction cycles." Université catholique de Louvain, 2003. http://edoc.bib.ucl.ac.be:81/ETD-db/collection/available/BelnUcetd-04012003-164249/.

Full text
Abstract:
Le développement et l'utilisation des procédés industriels à basse température ont été très importants durant ces dernières années. Le développement est surtout dû à l'accroissement de la demande en produits liquides (purs ou mélanges) sur le marché mondial. L'auteur de cette thèse propose une analyse approfondie des trois grandes familles de procédés de liquéfaction du gaz naturel utilisés en Algérie. Il commence par examiner les traitements subis par le gaz naturel avant sa liquéfaction qui consiste à le ramener à une température de -160°C et à une pression légèrement supérieure à la pression atmosphérique. Il analyse ensuite, à l'aide du logiciel ASPEN PLUS, les différentes performances des trois types de cycles et conclut en montrant que le cycle Propane-MCR est thermodynamiquement le plus avantageux.
APA, Harvard, Vancouver, ISO, and other styles
2

Turnidge, Martin Laurence. "Vibrational energy transfer at low temperatures and the use of infrared laser excitation for trace detection." Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.337427.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Waagaard, Elias. "Benchmarking a Cryogenic Code for the FREIA Helium Liquefier." Thesis, Uppsala universitet, FREIA, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-412781.

Full text
Abstract:
The thermodynamics inside the helium liquefier in the FREIA laboratory still contains many unknowns. The purpose of this project is to develop a theoretical model and implement it in MATLAB, with the help of the CoolProp library. This theoretical model of the FREIA liquefaction cycle aims at finding the unknown parameters not specified in the manual of the manufacturer, starting from the principle of enthalpy conservation. Inspiration was taken from the classical liquefaction cycles of Linde-Hampson, Claude and Collins. We developed a linear mathematical model for cycle components such as turboexpanders and heat exchangers, and a non-linear model for the liquefaction in the phase separator. Liquefaction yields of 10% and 6% were obtained in our model simulations, with and without liquid nitrogen pre-cooling respectively - similar to those in the FREIA liqueuefier within one percentage point. The sensors placed in FREIA showed similar pressure and temperature values, even though not every point could be verified due to the lack of sensors. We observed an increase of more than 50% in yield after adjustments of the heat exchanger design in the model, especially the first one. This constitutes a guideline for possible future improvements of the liquefier.
Termodynamiken bakom heliumförvätskaren i FREIA-laboratoriet innehåller fortfarande många okända aspekter. Detta kandidatarbete syftar till att utveckla en teoretisk modell och implementera den i MATLAB med hjälp av biblioteket CoolProp. Denna modell av FREIA:s förvätskningscykel syftar till att hitta de okända parametrar som inte specificerats av tillverkaren, och baserar sig på principen om entalpins bevarande. Inspiration togs från de klassiska förvätskningscyklerna Linde-Hampson, Claude och Collins. Vi utvecklade en linjär matematisk modell för cykelkomponenter såsom expansionsturbiner och värmeväxlare, och en icke-linjär modell för själva förvätskningen i fasseparatorn. En förvätskningsverkningsgrad på 10% och 6% uppnåddes i våra modellsimuleringar, med respektive utan förkylning med flytande kväve - liknande verkningsgraderna i FREIA- förvätskaren inom en procentenhet. Sensorerna placerade i FREIA visade på liknande tryck och temperaturer, även om bristen på sensorer gjorde att vi inte kunde bekräfta varje punkt. Vi observerade en ökning på mer än 50% i verkningsgrad efter att ha justerat värmeväxlardesignen något, speciellt för den första. Detta kan utgöra riktlinjer för var man framöver kan förbättra den faktiska förvätskaren.

Subject reader/Ämnesgranskare: Roger Ruber

APA, Harvard, Vancouver, ISO, and other styles
4

Fazlollahi, Farhad. "Dynamic Liquefied Natural Gas (LNG) Processing with Energy Storage Applications." BYU ScholarsArchive, 2016. https://scholarsarchive.byu.edu/etd/5956.

Full text
Abstract:
The cryogenic carbon capture™ (CCC) process provides energy- and cost-efficient carbon capture and can be configured to provide an energy storage system using an open-loop natural gas (NG) refrigeration system, which is called energy storing cryogenic carbon capture (CCC-ES™). This investigation focuses on the transient operation and especially on the dynamic response of this energy storage system and explores its efficiency, effectiveness, design, and operation. This investigation included four tasks.The first task explores the steady-state design of four different natural gas liquefaction processes simulated by Aspen HYSYS. These processes differ from traditional LNG process in that the CCC process vaporizes the LNG and the cold vapors return through the LNG heat exchangers, exchanging sensible heat with the incoming flows. The comparisons include costs and energy performance with individually optimized processes, each operating at three operating conditions: energy storage, energy recovery, and balanced operation. The second task examines steady-state and transient models and optimization of natural gas liquefaction using Aspen HYSYS. Steady-state exergy and heat exchanger efficiency analyses characterize the performance of several potential systems. Transient analyses of the optimal steady-state model produced most of the results discussed here. The third task explores transient Aspen HYSYS modeling and optimization of two natural gas liquefaction processes and identifies the rate-limiting process components during load variations. Novel flowrate variations included in this investigation drive transient responses of all units, especially compressors and heat exchangers. Model-predictive controls (MPC) effectively manages such heat exchangers and compares favorably with results using traditional controls. The last task shows how an unprocessed natural gas (NG) pretreatment system can remove more than 90% of the CO2 from NG with CCC technology using Aspen Plus simulations and experimental data. This task shows how CCC-based technology can treat NG streams to prepare them for LNG use. Data from an experimental bench-scale apparatus verify simulation results. Simulated results on carbon (CO2) capture qualitatively and quantitatively agree with experimental results as a function of feedstock properties.
APA, Harvard, Vancouver, ISO, and other styles
5

Bassila, Joseph. "Etude et conception d’un système d’épuration de biogaz et de liquéfaction de bio-méthane." Thesis, Paris, CNAM, 2017. http://www.theses.fr/2017CNAM1105.

Full text
Abstract:
La consommation mondiale en énergie qui augmente progressivement a favorisé la recherche de ressources alternatives renouvelables. L’Europe a mis le développement de la filière de biogaz comme une priorité pour valoriser la matière organique et produire une énergie durable et un carburant propre. Plusieurs technologies ont été développées afin de produire le bio-méthane et ensuite le liquéfier. Cryo Pur a développé un procédé cryogénique où le biogaz est refroidi progressivement à 3 niveaux de température :-40 °C ; -75 °C et -120 °C. Dans un premier temps, la vapeur d’eau est extraite à -40 °C et à -75 °C, le biogaz sec ne contient plus alors que du méthane à une concentration de 65 % et du CO2 à 35 %. Le biogaz est alors refroidi jusqu’à -120 °C dans un système frigorifique en cascade intégrée pour capter le dioxyde de carbone jusqu’à une concentration résiduelle de 2 %. Une fois ce bio-méthane obtenu, il est liquéfié. A une pression de 15 bara et une température de -120 °C. Une étude énergétique et exergétique est menée et prend comme référence le pilote d’épuration et de liquéfaction Cryo Pur installé à la sortie de méthaniseurs de la station d’épuration de Valenton. Le CO2 est capté par givrage sur les ailettes d’échangeurs frigorifiques ; le dégivrage est effectué par un débit diphasique prélevé à l’étage -40 °C de la cascade intégrée. La thèse compare l’énergie récupérée par un dégivrage en phase liquide du CO2 avec donc une remontée en température jusqu’à -56 °C (température du point triple du CO2) et un dégivrage par sublimation du CO2 à une température bien inférieure à -56 °C qui fait l’objet d’une optimisation énergétique. La thèse mène aussi une étude énergétique et exergétique du procédé complet d’épuration de biogaz et de liquéfaction de bio-méthane avec récupération d’énergie par sublimation du dioxyde de carbone.Un banc d’essai est conçu pour évaluer la performance énergétique du procédé de dégivrage du CO2 par sublimation. Les différents éléments nécessaires de ce banc d’essai sont présentés avec leurs consommations énergétiques. Dans ce banc d’essai, le dégivrage du dioxyde de carbone par sublimation est effectué via un caloporteur qui récupère la froideur de sublimation du CO2 réduisant la puissance consommée par la cascade intégrée. Ce nouveau procédé a besoin d’une pompe à vide. La consommation de cette pompe à vide dépend de la pression de sublimation et fait l’objet d’une étude d’optimisation énergétique. La densité du CO2 varie énormément en fonction de la température et la pression de sublimation. Un modèle de calcul de l’évolution de l’épaisseur du givre au cours de la sublimation est présenté. Comme conclusion de cette partie, une comparaison est faite entre la consommation électrique spécifique du système installé à Valenton et celle du banc d’essai.D’autre part, la durée du cycle de givrage demande elle aussi une étude d’optimisation énergétique associée au dimensionnement de l’échangeur de captage du CO2. L’échangeur tube-ailettes avec la forme de l’ailette et les paramètres affectant le givrage du CO2 sont présentés. Une étude est effectuée pour répartir uniformément la masse de CO2 déposée sur la surface d’échange pour réduire le taux de blocage de l’échangeur et prolonger la durée de la phase de givrage. Une étude sur l’effet de la vitesse du biogaz et du glissement en température du réfrigérant sur la durée du cycle est menée ainsi qu’une étude sur les matériaux des ailettes et des tubes choisis afin de minimiser la surface d’échange en gardant la sortie du bio-méthane avec 2 % de CO2
Global energy consumption, which is gradually increasing, has led to the search for alternative renewable resources. Europe has put the development of the biogas sector as a priority to enhance organic matter and produce sustainable energy and clean fuel. Several technologies have been developed to produce bio-methane and then to liquefy it. Cryo Pur developed a cryogenic process where the biogas is cooled gradually to 3 temperature levels: -40 ° C; -75 ° C and -120 °C. In a first step, the steam is extracted at -40 °C and at -75 ° C, the dry biogas contains 65 % methane and 35 % CO2. The biogas is then cooled to -120 °C in a low-temperature refrigeration system to capture carbon dioxide and obtain bio-methane with 2.5 % of CO2. Once this bio-methane is obtained, it is liquefied at a pressure of 15 bara and a temperature of -120 °C. An energy and exergy study is studied and takes as reference the pilot of purification and liquefaction Cryo Pur installed at the exit of digester of the purification station of Valenton. CO2 is captured by frosting on the fins of heat exchangers. The defrosting is carried out by a two-phase flow rate taken from the -40 °C stage of the low-temperature refrigeration system. The thesis compares the energy recovered by a liquid CO2 defrosted with a rise in temperature up to -56 °C (triple point temperature of CO2) and defrosting by sublimation of CO2 at a temperature much lower than - 56 ° C which is the subject of an energy optimization. The thesis also conducts an energy and exergy study of the complete process of biogas and bio-methane liquefaction with the recovery of energy by sublimation of carbon dioxide.A test bench is designed to evaluate the energy performance of the CO2 defrosting process by sublimation. The various necessary elements of this test bench are presented with their energy consumption. In this test bench, the defrosting of the carbon dioxide by sublimation is carried out via a low-temperature heat-transfer fluid which recovers the energy sublimation of the CO2 reducing the power consumed by the low-temperature refrigeration system. This new process requires a vacuum pump. The consumption of this vacuum pump depends on the sublimation pressure and is the subject of an energy optimization study. The density of CO2 varies enormously depending on the temperature and the sublimation pressure. A model of the evolution of the thickness of the frost during the sublimation is presented. As a conclusion of this section, a comparison is made between the specific power consumption of the system installed at Valenton and that of the test bench.On the other hand, the duration of the frosting cycle also requires an energy optimization study associated with the design of the exchanger that capture the CO2. The tube-fins exchanger with the shape of the fin and the parameters affecting the CO2 frosting are presented. A study is carried out to uniformly distribution of the CO2 mass on the exchange surface to reduce the blocking rate of the exchanger and to extend the duration of the frosting phase. A study on the effect of biogas velocity and temperature slippage of the refrigerant over the cycle is carried out as well as a study on the materials of the fins and tubes selected in order to minimize the exchange surface and have the bio-methane with 2 % CO2
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Cryogenic liquefaction"

1

Waldron, R. D. Lunar processing options for liquefaction and storage of cryogens. [S.l.]: [s.n.], 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Explosive boiling of superheated cryogenic liquids. Weinheim, DE: Wiley-VCH, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rivers, H. Kevin. Cyclic cryogenic thermal-mechanical testing of an X-33/RLV liquid oxygen tank concept. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Center, Langley Research, ed. Cyclic cryogenic thermal-mechanical testing of an X-33/RLV liquid oxygen tank concept. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cyclic cryogenic thermal-mechanical testing of an X-33/RLV liquid oxygen tank concept. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Center, Langley Research, ed. Cyclic cryogenic thermal-mechanical testing of an X-33/RLV liquid oxygen tank concept. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Center, Langley Research, ed. Cyclic cryogenic thermal-mechanical testing of an X-33/RLV liquid oxygen tank concept. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Cryogenic liquefaction"

1

Timmerhaus, Klaus D., and Thomas M. Flynn. "Refrigeration and Liquefaction." In Cryogenic Process Engineering, 103–88. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-8756-5_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nakagome, H., T. Kuriyama, H. Ogiwara, T. Fujita, T. Yazawa, and T. Hashimoto. "Reciprocating Magnetic Refrigerator for Helium Liquefaction." In Advances in Cryogenic Engineering, 753–62. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2213-9_85.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Longwell, P. A., and J. W. Kruse. "Computer Simulation of Natural Gas Liquefaction Plant Processes." In Advances in Cryogenic Engineering, 18–27. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-0513-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bartlit, J. R., K. D. Williamson, and F. J. Edeskuty. "J-T Liquefaction of Hydrogen-Hydrocarbon Gas Mixtures." In Advances in Cryogenic Engineering, 452–56. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-0513-3_57.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gschneidner, K. A., H. Takeya, J. O. Moorman, V. K. Pecharsky, S. K. Malik, and C. B. Zimm. "New Magnetic Refrigeration Materials for the Liquefaction of Hydrogen." In Advances in Cryogenic Engineering, 1457–65. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2522-6_179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ohira, Katsuhide, Kenji Nakamichi, and Hitoshi Furumoto. "Experimental Study on Magnetic Refrigeration for the Liquefaction of Hydrogen." In Advances in Cryogenic Engineering, 1747–54. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4215-5_101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gifford, W. E., N. Kadaikkal, and A. Acharya. "Simon Helium Liquefaction Method Using a Refrigerator and Thermal Valve." In Advances in Cryogenic Engineering, 422–27. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-0513-3_52.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kun, L. C. "Expansion Turbines and Refrigeration for Gas Separation and Liquefaction." In A Cryogenic Engineering Conference Publication, 963–73. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-9874-5_116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Numazawa, Takenori, Takasu Hashimoto, and Hideki Nakagome. "Improvement of Liquefaction Efficiency of the Heat Pipe Type Magnetic Refrigerator." In Advances in Cryogenic Engineering, 771–77. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2213-9_87.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gistau Baguer, Guy. "Commissioning Tests of a Refrigeration-Liquefaction Plant." In Cryogenic Helium Refrigeration for Middle and Large Powers, 585–612. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51677-2_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Cryogenic liquefaction"

1

Taher, Matt, and Cyrus B. Meher-Homji. "Cryogenic Turboexpanders in LNG Liquefaction Applications." In ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-57020.

Full text
Abstract:
Turboexpanders provide the most efficient solution when it is required to reduce the pressure of a fluid stream. By expanding high pressure fluid, energy in the high pressure fluid entering the turboexpander can be efficiently used for either driving a booster compressor or for electrical power generation. While the plants are designed to operate without the need for the power produced by turboexpander, the work recovered from the expansion is a bonus, which increases the plant thermal efficiency. This paper is intended to explain the benefits of utilizing a turboexpander in LNG liquefaction applications. Also, in absence of a published API standard for a turboexpander-generator package, this paper provides recommendations on factory acceptance tests.
APA, Harvard, Vancouver, ISO, and other styles
2

Barclay, M. A. "Thermodynamic Cycle Selection for Distributed Natural Gas Liquefaction." In ADVANCES IN CRYOGENIC ENGEINEERING: Transactions of the Cryogenic Engineering Conference - CEC. AIP, 2004. http://dx.doi.org/10.1063/1.1774669.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Clausen, Juergen. "Considerations for small to medium liquefaction plants." In ADVANCES IN CRYOGENIC ENGINEERING: Transactions of the Cryogenic Engineering Conference - CEC, Volume 57. AIP, 2012. http://dx.doi.org/10.1063/1.4707072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Breedlove, J. J., P. J. Magari, G. W. Miller, J. G. Weisend, John Barclay, Susan Breon, Jonathan Demko, et al. "CRYOCOOLER FOR AIR LIQUEFACTION ONBOARD LARGE AIRCRAFT." In ADVANCES IN CRYOGENIC ENGINEERING: Transactions of the Cryogenic Engineering Conference - CEC, Vol. 52. AIP, 2008. http://dx.doi.org/10.1063/1.2908678.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ohlig, K., and L. Decker. "The latest developments and outlook for hydrogen liquefaction technology." In ADVANCES IN CRYOGENIC ENGINEERING: Transactions of the Cryogenic Engineering Conference - CEC. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4860858.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lindemann, U., S. Boeck, L. Blum, K. Kurtcuoglu, and J. G. Weisend. "TURNKEY HELIUM PURIFICATION AND LIQUEFACTION PLANT FOR DARWIN, AUSTRALIA." In TRANSACTIONS OF THE CRYOGENIC ENGINEERING CONFERENCE—CEC: Advances in Cryogenic Engineering. AIP, 2010. http://dx.doi.org/10.1063/1.3422363.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kamiya, K. "Design and Build of Magnetic Refrigerator for Hydrogen Liquefaction." In ADVANCES IN CRYOGENIC ENGINEERING: Transactions of the Cryogenic Engineering Conference - CEC. AIP, 2006. http://dx.doi.org/10.1063/1.2202464.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Andress, D. L. "Beauty of Simplicity: Phillips Optimized Cascade LNG Liquefaction Process." In ADVANCES IN CRYOGENIC ENGEINEERING: Transactions of the Cryogenic Engineering Conference - CEC. AIP, 2004. http://dx.doi.org/10.1063/1.1774671.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Numazawa, T., K. Kamiya, S. Yoshioka, H. Nakagome, K. Matsumoto, J. G. Weisend, John Barclay, et al. "DEVELOPMENT OF A MAGNETIC REFIRGERATOR FOR HYDROGEN LIQUEFACTION." In ADVANCES IN CRYOGENIC ENGINEERING: Transactions of the Cryogenic Engineering Conference - CEC, Vol. 52. AIP, 2008. http://dx.doi.org/10.1063/1.2908470.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Berdais, K. H., H. Wilhelm, Th Ungricht, J. G. Weisend, John Barclay, Susan Breon, Jonathan Demko, et al. "IMPROVEMENTS OF HELIUM LIQUEFACTION∕REFRIGERATION PLANTS AND APPLICATIONS." In ADVANCES IN CRYOGENIC ENGINEERING: Transactions of the Cryogenic Engineering Conference - CEC, Vol. 52. AIP, 2008. http://dx.doi.org/10.1063/1.2908676.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography