Journal articles on the topic 'Cryogenic Instrumentation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Cryogenic Instrumentation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Poncet, J. M., J. Manzagol, A. Attard, J. André, L. Bizel-Bizellot, P. Bonnay, E. Ercolani, et al. "Cryogenic instrumentation for ITER magnets." IOP Conference Series: Materials Science and Engineering 171 (February 2017): 012130. http://dx.doi.org/10.1088/1757-899x/171/1/012130.
Full textVaught, Louis, Vasilis Tsigkis, and Andreas A. Polycarpou. "Development of a controlled-atmosphere, rapid-cooling cryogenic chamber for tribological and mechanical testing." Review of Scientific Instruments 93, no. 8 (August 1, 2022): 083911. http://dx.doi.org/10.1063/5.0102702.
Full textRicketson, B. W. A. "Cryogenic Temperature Measurement." Platinum Metals Review 33, no. 2 (April 1, 1989): 55–57. http://dx.doi.org/10.1595/003214089x3325557.
Full textFleischer, S. M., M. P. Ross, K. Venkateswara, C. A. Hagedorn, E. A. Shaw, E. Swanson, B. R. Heckel, and J. H. Gundlach. "A cryogenic torsion balance using a liquid-cryogen free, ultra-low vibration cryostat." Review of Scientific Instruments 93, no. 6 (June 1, 2022): 064505. http://dx.doi.org/10.1063/5.0089933.
Full textHuppi, Ernest Ray. "Cryogenic instrumentation and detector limits in FTS." Mikrochimica Acta 93, no. 1-6 (January 1987): 281–96. http://dx.doi.org/10.1007/bf01201695.
Full textTsai, C. C., J. R. Feller, Bimal K. Sarma, and J. B. Ketterson. "Instrumentation for cryogenic microwave cavity resonance measurements." Review of Scientific Instruments 75, no. 10 (September 20, 2004): 3158–63. http://dx.doi.org/10.1063/1.1781387.
Full textCreus Prats, J., D. Montanari, M. Adamowski, G. Cline, F. Matichard, M. Delaney, and A. Lawrence. "Status of LBNF/DUNE near site liquid argon proximity and external cryogenics systems development." IOP Conference Series: Materials Science and Engineering 1240, no. 1 (May 1, 2022): 012084. http://dx.doi.org/10.1088/1757-899x/1240/1/012084.
Full textBoeckmann, T., J. Bolte, Y. Bozhko, M. Clausen, K. Escherich, O. Korth, J. Penning, et al. "Use of PROFIBUS for cryogenic instrumentation at XFEL." IOP Conference Series: Materials Science and Engineering 278 (December 2017): 012088. http://dx.doi.org/10.1088/1757-899x/278/1/012088.
Full textBurrows, Nathan D., and R. Lee Penn. "Cryogenic Transmission Electron Microscopy: Aqueous Suspensions of Nanoscale Objects." Microscopy and Microanalysis 19, no. 6 (September 4, 2013): 1542–53. http://dx.doi.org/10.1017/s1431927613013354.
Full textYang, Fan, Xinliang Wang, Sichen Fan, Yang Bai, Junru Shi, Dandan Liu, Hui Zhang, et al. "Development and tuning of the microwave resonant cavity of a cryogenic cesium atomic fountain clock." Review of Scientific Instruments 93, no. 4 (April 1, 2022): 044708. http://dx.doi.org/10.1063/5.0082708.
Full textKamiya, Naoki, Kazuki Kuramoto, Kento Takishima, Tatsuya Yumoto, Haruka Oda, Takeshi Shimi, Hiroshi Kimura, Michio Matsushita, and Satoru Fujiyoshi. "Superfluid helium nanoscope insert with millimeter working range." Review of Scientific Instruments 93, no. 10 (October 1, 2022): 103703. http://dx.doi.org/10.1063/5.0107395.
Full textWollack, E. J., R. E. Kinzer, and S. A. Rinehart. "A cryogenic infrared calibration target." Review of Scientific Instruments 85, no. 4 (April 2014): 044707. http://dx.doi.org/10.1063/1.4871108.
Full textMezhov-Deglin, L. P., A. V. Lokhov, V. N. Khlopinskii, and Z. V. Kalmykova. "Portable devices for cryogenic medicine." Instruments and Experimental Techniques 43, no. 5 (September 2000): 683–86. http://dx.doi.org/10.1007/bf02759083.
Full textTancredi, G., S. Schmidlin, and P. J. Meeson. "Note: Cryogenic coaxial microwave filters." Review of Scientific Instruments 85, no. 2 (February 2014): 026104. http://dx.doi.org/10.1063/1.4863881.
Full textJarc, Giacomo, Shahla Yasmin Mathengattil, Francesca Giusti, Maurizio Barnaba, Abhishek Singh, Angela Montanaro, Filippo Glerean, et al. "Tunable cryogenic terahertz cavity for strong light–matter coupling in complex materials." Review of Scientific Instruments 93, no. 3 (March 1, 2022): 033102. http://dx.doi.org/10.1063/5.0080045.
Full textSłowiński, Michał, Marcin Makowski, Kamil Leon Sołtys, Kamil Stankiewicz, Szymon Wójtewicz, Daniel Lisak, Mariusz Piwiński, and Piotr Wcisło. "Cryogenic mirror position actuator for spectroscopic applications." Review of Scientific Instruments 93, no. 11 (November 1, 2022): 115003. http://dx.doi.org/10.1063/5.0116691.
Full textKogut, A., T. Essinger-Hileman, S. Denker, N. Bellis, L. Lowe, and P. Mirel. "The balloon-borne cryogenic telescope testbed mission: Bulk cryogen transfer at 40 km altitude." Review of Scientific Instruments 91, no. 12 (December 1, 2020): 124501. http://dx.doi.org/10.1063/5.0021483.
Full textVölksen, F., J. A. Devlin, M. J. Borchert, S. R. Erlewein, M. Fleck, J. I. Jäger, B. M. Latacz, et al. "A high-Q superconducting toroidal medium frequency detection system with a capacitively adjustable frequency range >180 kHz." Review of Scientific Instruments 93, no. 9 (September 1, 2022): 093303. http://dx.doi.org/10.1063/5.0089182.
Full textJiménez, José Miguel, and Paolo Chiggiato. "Vacuum science and technology at CERN." Europhysics News 51, no. 4 (July 2020): 24–26. http://dx.doi.org/10.1051/epn/2020404.
Full textCohen, L. F., and E. L. Wolf. "Microwave-coupled cryogenic STM." Measurement Science and Technology 2, no. 1 (January 1, 1991): 83–85. http://dx.doi.org/10.1088/0957-0233/2/1/014.
Full textKrzhimovskii, V. I. "Constant cryogenic voltage divider." Measurement Techniques 34, no. 10 (October 1991): 1039–44. http://dx.doi.org/10.1007/bf00981062.
Full textWeiss, Nicolas, Ute Drechsler, Michel Despont, and Stuart S. P. Parkin. "Cryogenic current-in-plane tunneling apparatus." Review of Scientific Instruments 79, no. 12 (December 2008): 123902. http://dx.doi.org/10.1063/1.2972167.
Full textAnashkin, E. V., V. M. Aul’chenko, R. R. Akhmetshin, V. Sh Banzarov, L. M. Barkov, S. E. Baru, N. S. Bashtovoi, et al. "The CMD-2 cryogenic magnetic detector." Instruments and Experimental Techniques 49, no. 6 (December 2006): 798–814. http://dx.doi.org/10.1134/s0020441206060066.
Full textLi, Yuzhang, Robert Sinclair, and Yi Cui. "Cryogenic-electron Microscopy for Battery Materials." Microscopy and Microanalysis 26, S2 (July 30, 2020): 1824–25. http://dx.doi.org/10.1017/s1431927620019509.
Full textEsser, Tim K., Benjamin Hoffmann, Scott L. Anderson, and Knut R. Asmis. "A cryogenic single nanoparticle action spectrometer." Review of Scientific Instruments 90, no. 12 (December 1, 2019): 125110. http://dx.doi.org/10.1063/1.5128203.
Full textPerez, Davis, Peter D. Dahlberg, and W. E. Moerner. "Advanced Cryogenic Light Microscopy Stage to Enable 3D Super-resolved Cryogenic Correlative Light and Electron Microscopy." Microscopy and Microanalysis 29, Supplement_1 (July 22, 2023): 1941. http://dx.doi.org/10.1093/micmic/ozad067.1005.
Full textBradu, B., K. Brodzinski, J. Casas-Cubillos, D. Delikaris, J. B. Deschamps, S. Le Naour, M. Pezzetti, et al. "Beam induced heat load instrumentation installed in LHC during the Long Shutdown 2." IOP Conference Series: Materials Science and Engineering 1240, no. 1 (May 1, 2022): 012043. http://dx.doi.org/10.1088/1757-899x/1240/1/012043.
Full textGrauso, G., A. Basco, N. Canci, R. de Asmundis, F. Di Capua, G. Matteucci, Y. Suvorov, and G. Fiorillo. "A versatile cryogenic system for liquid argon detectors." Journal of Instrumentation 18, no. 03 (March 1, 2023): C03018. http://dx.doi.org/10.1088/1748-0221/18/03/c03018.
Full textYang, Jinbo, Jian Li, Wei Liu, Yihao Li, Yalin Huang, Jun Zhou, and Xingyi Zhang. "Development of a load frame for neutron diffraction and fluorescent thermometry at cryogenic temperature." Review of Scientific Instruments 93, no. 7 (July 1, 2022): 073904. http://dx.doi.org/10.1063/5.0068365.
Full textLin, Kuan-Ting, Qianchun Weng, Sunmi Kim, Susumu Komiyama, and Yusuke Kajihara. "Development of a cryogenic passive-scattering-type near-field optical microscopy system." Review of Scientific Instruments 94, no. 2 (February 1, 2023): 023701. http://dx.doi.org/10.1063/5.0133575.
Full textBiassoni, M., A. Caminata, S. Caprioli, A. Celentano, S. Davini, A. Marini, and G. Sobrero. "Characterization of the performances of commercial plastic scintillators in cryogenic environments." Journal of Instrumentation 18, no. 05 (May 1, 2023): P05036. http://dx.doi.org/10.1088/1748-0221/18/05/p05036.
Full textBondar, A., A. Buzulutskov, A. Dolgov, E. Frolov, V. Nosov, L. Shekhtman, and A. Sokolov. "Study of cryogenic photomultiplier tubes for the future two-phase cryogenic avalanche detector." Journal of Instrumentation 12, no. 05 (May 5, 2017): C05002. http://dx.doi.org/10.1088/1748-0221/12/05/c05002.
Full textQi, H. Y., F. Z. Shen, H. C. Zhang, C. J. Huang, Y. M. Han, Y. C. Zhao, J. J. Xin, et al. "A tensile property measuring system for miniaturized samples from 300 K to 70 K based on pulse tube cryocooler." Journal of Instrumentation 18, no. 06 (June 1, 2023): P06004. http://dx.doi.org/10.1088/1748-0221/18/06/p06004.
Full textSchubert, M., L. Kilzer, T. Dubielzig, M. Schilling, C. Ospelkaus, and B. Hampel. "Active impedance matching of a cryogenic radio frequency resonator for ion traps." Review of Scientific Instruments 93, no. 9 (September 1, 2022): 093201. http://dx.doi.org/10.1063/5.0097583.
Full textZhu, Rusong, Guofu Yin, Gengsheng Tang, Hai Wang, and Shuangxi Zhang. "Temperature trajectory control of cryogenic wind tunnel with robust L1 adaptive control." Transactions of the Institute of Measurement and Control 40, no. 13 (October 9, 2017): 3675–89. http://dx.doi.org/10.1177/0142331217728569.
Full textGugliandolo, Giovanni, Andrea Alimenti, Mariangela Latino, Giovanni Crupi, Kostiantyn Torokhtii, Enrico Silva, and Nicola Donato. "Inkjet-Printed Interdigitated Capacitors for Sensing Applications: Temperature-Dependent Electrical Characterization at Cryogenic Temperatures down to 20 K." Instruments 7, no. 3 (July 19, 2023): 20. http://dx.doi.org/10.3390/instruments7030020.
Full textMIGLIORI, A., F. F. BALAKIREV, J. B. BETTS, G. S. BOEBINGER, C. H. MIELKE, and D. RICKEL. "DEVELOPMENT OF ADVANCED INSTRUMENTATION FOR STATIC AND PULSED FIELDS." International Journal of Modern Physics B 16, no. 20n22 (August 30, 2002): 3398. http://dx.doi.org/10.1142/s0217979202014553.
Full textAbrecht, M., A. Adare, and J. W. Ekin. "Magnetization and magnetoresistance of common alloy wires used in cryogenic instrumentation." Review of Scientific Instruments 78, no. 4 (2007): 046104. http://dx.doi.org/10.1063/1.2719652.
Full textArnaldi, L. H., and H. D. Dellavale. "Oversampled filter bank channelizer for cryogenic detectors." Review of Scientific Instruments 92, no. 2 (February 1, 2021): 023304. http://dx.doi.org/10.1063/5.0035449.
Full textHarris, C. Thomas, and Tzu-Ming Lu. "A PtNiGe resistance thermometer for cryogenic applications." Review of Scientific Instruments 92, no. 5 (May 1, 2021): 054904. http://dx.doi.org/10.1063/5.0014007.
Full textAntonio, D., H. Pastoriza, P. Julián, and P. Mandolesi. "Cryogenic transimpedance amplifier for micromechanical capacitive sensors." Review of Scientific Instruments 79, no. 8 (August 2008): 084703. http://dx.doi.org/10.1063/1.2970944.
Full textMitin, V. F., V. V. Kholevchuk, A. V. Semenov, A. A. Kozlovskii, N. S. Boltovets, V. A. Krivutsa, A. S. Slepova, and S. V. Novitskii. "Nanocrystalline SiC film thermistors for cryogenic applications." Review of Scientific Instruments 89, no. 2 (February 2018): 025004. http://dx.doi.org/10.1063/1.5024505.
Full textBrandl, M. F., M. W. van Mourik, L. Postler, A. Nolf, K. Lakhmanskiy, R. R. Paiva, S. Möller, et al. "Cryogenic setup for trapped ion quantum computing." Review of Scientific Instruments 87, no. 11 (November 2016): 113103. http://dx.doi.org/10.1063/1.4966970.
Full textMeshkov, I. N., V. N. Pavlov, A. O. Sidorin, and S. L. Yakovenko. "A cryogenic source of slow monochromatic positrons." Instruments and Experimental Techniques 50, no. 5 (September 2007): 639–45. http://dx.doi.org/10.1134/s0020441207050028.
Full textIlett, Martha, Teresa Roncal-Herrero, Rik Brydson, Andy Brown, and Nicole Hondow. "Progress on Cryogenic Analytical STEM of Nanomaterials." Microscopy and Microanalysis 25, S2 (August 2019): 1086–87. http://dx.doi.org/10.1017/s1431927619006160.
Full textOkamoto, Hiroshi, and Hans-Werner Fink. "Cryogenic low energy electron point source microscope." Review of Scientific Instruments 77, no. 4 (April 2006): 043714. http://dx.doi.org/10.1063/1.2195120.
Full textKanno, Ikuo, Shigeomi Hishiki, Osamu Sugiura, Ruifei Xiang, Tatsuya Nakamura, and Masaki Katagiri. "Photon detection by a cryogenic InSb detector." Review of Scientific Instruments 76, no. 2 (February 2005): 023102. http://dx.doi.org/10.1063/1.1835632.
Full textGillespie, Andrew K., Cuikun Lin, Robert P. Thorn, Heather Higgins, Robert Baca, Andrew A. Durso, Django Jones, Ruth Ogu, Jeremy Marquis, and R. V. Duncan. "A new fast response cryogenic evaporative calorimeter." Review of Scientific Instruments 91, no. 8 (August 1, 2020): 085103. http://dx.doi.org/10.1063/5.0013713.
Full textSon, Jiwon, and Taiha Joo. "Ultrafast time-resolved fluorescence at cryogenic temperature." Review of Scientific Instruments 89, no. 8 (August 2018): 083115. http://dx.doi.org/10.1063/1.5028367.
Full textIvanov, B. I., D. N. Klimenko, A. N. Sultanov, E. Il'ichev, and H. G. Meyer. "Narrow bandpass cryogenic filter for microwave measurements." Review of Scientific Instruments 84, no. 5 (May 2013): 054707. http://dx.doi.org/10.1063/1.4807152.
Full text