Journal articles on the topic 'Cryogenic carbon capture'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 45 journal articles for your research on the topic 'Cryogenic carbon capture.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Scholes, Colin A., Minh T. Ho, Dianne E. Wiley, Geoff W. Stevens, and Sandra E. Kentish. "Cost competitive membrane—cryogenic post-combustion carbon capture." International Journal of Greenhouse Gas Control 17 (September 2013): 341–48. http://dx.doi.org/10.1016/j.ijggc.2013.05.017.
Full textKhandaker, Tasmina, Muhammad Sarwar Hossain, Palash Kumar Dhar, Md Saifur Rahman, Md Ashraf Hossain, and Mohammad Boshir Ahmed. "Efficacies of Carbon-Based Adsorbents for Carbon Dioxide Capture." Processes 8, no. 6 (May 30, 2020): 654. http://dx.doi.org/10.3390/pr8060654.
Full textBabar, M., M. A. Bustam, A. S. Maulud, and A. H. Ali. "Optimization of cryogenic carbon dioxide capture from natural gas." Materialwissenschaft und Werkstofftechnik 50, no. 3 (March 2019): 248–53. http://dx.doi.org/10.1002/mawe.201800202.
Full textFont-Palma, Carolina, David Cann, and Chinonyelum Udemu. "Review of Cryogenic Carbon Capture Innovations and Their Potential Applications." C 7, no. 3 (July 29, 2021): 58. http://dx.doi.org/10.3390/c7030058.
Full textKotowicz, Janusz, and Sylwia Berdowska. "The influence of selected parameters on the efficiency and economic charactersistics of the oxy-type coal unit with a membrane-cryogenic oxygen separator." Archives of Thermodynamics 37, no. 1 (March 1, 2016): 73–85. http://dx.doi.org/10.1515/aoter-2016-0005.
Full textSusanti, Indri. "Technologies and Materials for Carbon Dioxide Capture." Science Education and Application Journal 1, no. 2 (October 5, 2019): 84. http://dx.doi.org/10.30736/seaj.v1i2.147.
Full textScholes, Colin, Minh Ho, and Dianne Wiley. "Membrane-Cryogenic Post-Combustion Carbon Capture of Flue Gases from NGCC." Technologies 4, no. 2 (April 22, 2016): 14. http://dx.doi.org/10.3390/technologies4020014.
Full textCormos, Calin-Cristian. "Techno-Economic Evaluations of Copper-Based Chemical Looping Air Separation System for Oxy-Combustion and Gasification Power Plants with Carbon Capture." Energies 11, no. 11 (November 9, 2018): 3095. http://dx.doi.org/10.3390/en11113095.
Full textBabar, Muhammad, Mohamad Azmi Bustam, Abulhassan Ali, Abdulhalim Shah Maulud, Umar Shafiq, Ahmad Mukhtar, Syed Nasir Shah, Khuram Maqsood, Nurhayati Mellon, and Azmi M. Shariff. "Thermodynamic data for cryogenic carbon dioxide capture from natural gas: A review." Cryogenics 102 (September 2019): 85–104. http://dx.doi.org/10.1016/j.cryogenics.2019.07.004.
Full textMat, Norfamila Che, and G. Glenn Lipscomb. "Global sensitivity analysis for hybrid membrane-cryogenic post combustion carbon capture process." International Journal of Greenhouse Gas Control 81 (February 2019): 157–69. http://dx.doi.org/10.1016/j.ijggc.2018.12.023.
Full textSongolzadeh, Mohammad, Mansooreh Soleimani, Maryam Takht Ravanchi, and Reza Songolzadeh. "Carbon Dioxide Separation from Flue Gases: A Technological Review Emphasizing Reduction in Greenhouse Gas Emissions." Scientific World Journal 2014 (2014): 1–34. http://dx.doi.org/10.1155/2014/828131.
Full textSafdarnejad, Seyed Mostafa, John D. Hedengren, and Larry L. Baxter. "Plant-level dynamic optimization of Cryogenic Carbon Capture with conventional and renewable power sources." Applied Energy 149 (July 2015): 354–66. http://dx.doi.org/10.1016/j.apenergy.2015.03.100.
Full textYu, Zhitao, Franklin Miller, and John M. Pfotenhauer. "Numerical modeling and analytical modeling of cryogenic carbon capture in a de-sublimating heat exchanger." IOP Conference Series: Materials Science and Engineering 278 (December 2017): 012032. http://dx.doi.org/10.1088/1757-899x/278/1/012032.
Full textShafiee, Alireza, Mobin Nomvar, Zongwen Liu, and Ali Abbas. "Automated process synthesis for optimal flowsheet design of a hybrid membrane cryogenic carbon capture process." Journal of Cleaner Production 150 (May 2017): 309–23. http://dx.doi.org/10.1016/j.jclepro.2017.02.151.
Full textTan, Yuting, Worrada Nookuea, Hailong Li, Eva Thorin, and Jinyue Yan. "Cryogenic technology for biogas upgrading combined with carbon capture - a review of systems and property impacts." Energy Procedia 142 (December 2017): 3741–46. http://dx.doi.org/10.1016/j.egypro.2017.12.270.
Full textFazlollahi, Farhad, Alex Bown, Edris Ebrahimzadeh, and Larry L. Baxter. "Transient natural gas liquefaction and its application to CCC-ES (energy storage with cryogenic carbon capture™)." Energy 103 (May 2016): 369–84. http://dx.doi.org/10.1016/j.energy.2016.02.109.
Full textAli, Abulhassan, Khuram Maqsood, Ali Redza, Karen Hii, Azmi B. M. Shariff, and Saibal Ganguly. "Performance enhancement using multiple cryogenic desublimation based pipeline network during dehydration and carbon capture from natural gas." Chemical Engineering Research and Design 109 (May 2016): 519–31. http://dx.doi.org/10.1016/j.cherd.2016.01.020.
Full textChorowski, Maciej, and Wojciech Gizicki. "Technical and economic aspects of oxygen separation for oxy-fuel purposes." Archives of Thermodynamics 36, no. 1 (March 1, 2015): 157–70. http://dx.doi.org/10.1515/aoter-2015-0011.
Full textAlqaheem, Yousef, Abdulaziz Alomair, Mari Vinoba, and Andrés Pérez. "Polymeric Gas-Separation Membranes for Petroleum Refining." International Journal of Polymer Science 2017 (2017): 1–19. http://dx.doi.org/10.1155/2017/4250927.
Full textFazlollahi, Farhad, Alex Bown, Edris Ebrahimzadeh, and Larry L. Baxter. "Design and analysis of the natural gas liquefaction optimization process- CCC-ES (energy storage of cryogenic carbon capture)." Energy 90 (October 2015): 244–57. http://dx.doi.org/10.1016/j.energy.2015.05.139.
Full textSafdarnejad, Seyed Mostafa, John D. Hedengren, and Larry L. Baxter. "Dynamic optimization of a hybrid system of energy-storing cryogenic carbon capture and a baseline power generation unit." Applied Energy 172 (June 2016): 66–79. http://dx.doi.org/10.1016/j.apenergy.2016.03.074.
Full textBabar, Muhammad, Mohamad Azmi Bustam, Abulhassan Ali, and Abdulhalim Shah Maulud. "Optimization of Cryogenic Carbon Dioxide Removal from CO2-CH4 System by Response Surface Methodology." Materials Science Forum 997 (June 2020): 103–10. http://dx.doi.org/10.4028/www.scientific.net/msf.997.103.
Full textAtsonios, K., K. D. Panopoulos, A. Doukelis, A. Koumanakos, and E. Kakaras. "Cryogenic method for H2 and CH4 recovery from a rich CO2 stream in pre-combustion carbon capture and storage schemes." Energy 53 (May 2013): 106–13. http://dx.doi.org/10.1016/j.energy.2013.02.026.
Full textJensen, Mark J., Christopher S. Russell, David Bergeson, Christopher D. Hoeger, David J. Frankman, Christopher S. Bence, and Larry L. Baxter. "Prediction and validation of external cooling loop cryogenic carbon capture (CCC-ECL) for full-scale coal-fired power plant retrofit." International Journal of Greenhouse Gas Control 42 (November 2015): 200–212. http://dx.doi.org/10.1016/j.ijggc.2015.04.009.
Full textChiesa, Paolo, Thomas G. Kreutz, and Giovanni G. Lozza. "CO2 Sequestration From IGCC Power Plants by Means of Metallic Membranes." Journal of Engineering for Gas Turbines and Power 129, no. 1 (September 6, 2005): 123–34. http://dx.doi.org/10.1115/1.2181184.
Full textTan, Yuting, Worrada Nookuea, Hailong Li, Eva Thorin, and Jinyue Yan. "Evaluation of viscosity and thermal conductivity models for CO 2 mixtures applied in CO 2 cryogenic process in carbon capture and storage (CCS)." Applied Thermal Engineering 123 (August 2017): 721–33. http://dx.doi.org/10.1016/j.applthermaleng.2017.05.124.
Full textKim, Jeongdong, Jinwoo Park, Meng Qi, Inkyu Lee, and Il Moon. "Process Integration of an Autothermal Reforming Hydrogen Production System with Cryogenic Air Separation and Carbon Dioxide Capture Using Liquefied Natural Gas Cold Energy." Industrial & Engineering Chemistry Research 60, no. 19 (May 7, 2021): 7257–74. http://dx.doi.org/10.1021/acs.iecr.0c06265.
Full textElhenawy, Salma, Majeda Khraisheh, Fares AlMomani, and Mohamed Hassan. "Key Applications and Potential Limitations of Ionic Liquid Membranes in the Gas Separation Process of CO2, CH4, N2, H2 or Mixtures of These Gases from Various Gas Streams." Molecules 25, no. 18 (September 18, 2020): 4274. http://dx.doi.org/10.3390/molecules25184274.
Full textCanducci, Chiara, Paolo Bartolomei, Giuseppe Magnani, Antonietta Rizzo, Angela Piccoli, Laura Tositti, and Massimo Esposito. "Upgrade of the CO2 Direct Absorption Method for Low-Level 14C Liquid Scintillation Counting." Radiocarbon 55, no. 2 (2013): 260–67. http://dx.doi.org/10.1017/s0033822200057362.
Full textMehrpooya, Mehdi, Reza Esfilar, and S. M. Ali Moosavian. "Introducing a novel air separation process based on cold energy recovery of LNG integrated with coal gasification, transcritical carbon dioxide power cycle and cryogenic CO2 capture." Journal of Cleaner Production 142 (January 2017): 1749–64. http://dx.doi.org/10.1016/j.jclepro.2016.11.112.
Full textSukor, Norhasyima Rahmad, Abd Halim Shamsuddin, Teuku Meurah Indra Mahlia, and Md Faudzi Mat Isa. "Techno-Economic Analysis of CO2 Capture Technologies in Offshore Natural Gas Field: Implications to Carbon Capture and Storage in Malaysia." Processes 8, no. 3 (March 19, 2020): 350. http://dx.doi.org/10.3390/pr8030350.
Full textChestnut, H., D. P. Siegel, J. L. Burns, and Y. Talmon. "A temperature-jump technique for time-resolved cryo-transmission Electron Microscopy." Proceedings, annual meeting, Electron Microscopy Society of America 47 (August 6, 1989): 742–43. http://dx.doi.org/10.1017/s0424820100155682.
Full textAmbrose, J. L., Y. Zhou, K. Haase, H. R. Mayne, R. Talbot, and B. C. Sive. "A gas chromatographic instrument for measurement of hydrogen cyanide in the lower atmosphere." Atmospheric Measurement Techniques 5, no. 6 (June 1, 2012): 1229–40. http://dx.doi.org/10.5194/amt-5-1229-2012.
Full textHoeger, Christopher, Stephanie Burt, and Larry Baxter. "Cryogenic Carbon Capture™ Technoeconomic Analysis." SSRN Electronic Journal, 2021. http://dx.doi.org/10.2139/ssrn.3820158.
Full textBaxter, Larry, Christopher Hoeger, Kyler Stitt, Stephanie Burt, and Andrew Baxter. "Cryogenic Carbon Capture™ (CCC) Status Report." SSRN Electronic Journal, 2021. http://dx.doi.org/10.2139/ssrn.3819906.
Full textFrankman, David, Stephanie Burt, Ethan Beven, Dallin Parkinson, Christopher Wagstaff, William Roberts, and Larry Baxter. "Recent Cryogenic Carbon Capture™ Field Test Results." SSRN Electronic Journal, 2021. http://dx.doi.org/10.2139/ssrn.3820161.
Full textWang, Xiaoxing, and Chunshan Song. "Carbon Capture From Flue Gas and the Atmosphere: A Perspective." Frontiers in Energy Research 8 (December 15, 2020). http://dx.doi.org/10.3389/fenrg.2020.560849.
Full textRodrigues, Guillaume, Martin Raventos, Richard Dubettier, and Sidonie Ruban. "Adsorption Assisted Cryogenic Carbon Capture: an Alternate Path to Steam Driven Technologies to Decrease Cost and Carbon Footprint." SSRN Electronic Journal, 2021. http://dx.doi.org/10.2139/ssrn.3820744.
Full textOsman, Ahmed I., Mahmoud Hefny, M. I. A. Abdel Maksoud, Ahmed M. Elgarahy, and David W. Rooney. "Recent advances in carbon capture storage and utilisation technologies: a review." Environmental Chemistry Letters, November 22, 2020. http://dx.doi.org/10.1007/s10311-020-01133-3.
Full textMastropasqua, Luca, Stefano Campanari, and Jack Brouwer. "Electrochemical Carbon Separation in a SOFC–MCFC Polygeneration Plant With Near-Zero Emissions." Journal of Engineering for Gas Turbines and Power 140, no. 1 (September 19, 2017). http://dx.doi.org/10.1115/1.4037639.
Full textBhander, Gurbakhash, Chun Wai Lee, and Matthew Hakos. "Perspective Analysis of Emerging Natural Gas-based Technology Options for Electricity Production." International Journal of Emerging Electric Power Systems 20, no. 5 (October 22, 2019). http://dx.doi.org/10.1515/ijeeps-2019-0034.
Full textGambini, Marco, and Michela Vellini. "Oxygen Transport Membranes for Ultra-Supercritical (USC) Power Plants With Very Low CO2 Emissions." Journal of Engineering for Gas Turbines and Power 134, no. 8 (June 19, 2012). http://dx.doi.org/10.1115/1.4006482.
Full textFerguson, Suzanne, and Anthony Tarrant. "Molten Carbonate Fuel Cells for 90% Post Combustion CO2 Capture From a New Build CCGT." Frontiers in Energy Research 9 (July 21, 2021). http://dx.doi.org/10.3389/fenrg.2021.668431.
Full textCampanari, Stefano, and Matteo Gazzani. "High Efficiency SOFC Power Cycles With Indirect Natural Gas Reforming and CO2 Capture." Journal of Fuel Cell Science and Technology 12, no. 2 (April 1, 2015). http://dx.doi.org/10.1115/1.4029425.
Full textManzolini, G., S. Campanari, P. Chiesa, A. Giannotti, P. Bedont, and F. Parodi. "CO2 Separation From Combined Cycles Using Molten Carbonate Fuel Cells." Journal of Fuel Cell Science and Technology 9, no. 1 (December 27, 2011). http://dx.doi.org/10.1115/1.4005125.
Full text