Academic literature on the topic 'Cryogenic carbon capture'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cryogenic carbon capture.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cryogenic carbon capture"
Scholes, Colin A., Minh T. Ho, Dianne E. Wiley, Geoff W. Stevens, and Sandra E. Kentish. "Cost competitive membrane—cryogenic post-combustion carbon capture." International Journal of Greenhouse Gas Control 17 (September 2013): 341–48. http://dx.doi.org/10.1016/j.ijggc.2013.05.017.
Full textKhandaker, Tasmina, Muhammad Sarwar Hossain, Palash Kumar Dhar, Md Saifur Rahman, Md Ashraf Hossain, and Mohammad Boshir Ahmed. "Efficacies of Carbon-Based Adsorbents for Carbon Dioxide Capture." Processes 8, no. 6 (May 30, 2020): 654. http://dx.doi.org/10.3390/pr8060654.
Full textBabar, M., M. A. Bustam, A. S. Maulud, and A. H. Ali. "Optimization of cryogenic carbon dioxide capture from natural gas." Materialwissenschaft und Werkstofftechnik 50, no. 3 (March 2019): 248–53. http://dx.doi.org/10.1002/mawe.201800202.
Full textFont-Palma, Carolina, David Cann, and Chinonyelum Udemu. "Review of Cryogenic Carbon Capture Innovations and Their Potential Applications." C 7, no. 3 (July 29, 2021): 58. http://dx.doi.org/10.3390/c7030058.
Full textKotowicz, Janusz, and Sylwia Berdowska. "The influence of selected parameters on the efficiency and economic charactersistics of the oxy-type coal unit with a membrane-cryogenic oxygen separator." Archives of Thermodynamics 37, no. 1 (March 1, 2016): 73–85. http://dx.doi.org/10.1515/aoter-2016-0005.
Full textSusanti, Indri. "Technologies and Materials for Carbon Dioxide Capture." Science Education and Application Journal 1, no. 2 (October 5, 2019): 84. http://dx.doi.org/10.30736/seaj.v1i2.147.
Full textScholes, Colin, Minh Ho, and Dianne Wiley. "Membrane-Cryogenic Post-Combustion Carbon Capture of Flue Gases from NGCC." Technologies 4, no. 2 (April 22, 2016): 14. http://dx.doi.org/10.3390/technologies4020014.
Full textCormos, Calin-Cristian. "Techno-Economic Evaluations of Copper-Based Chemical Looping Air Separation System for Oxy-Combustion and Gasification Power Plants with Carbon Capture." Energies 11, no. 11 (November 9, 2018): 3095. http://dx.doi.org/10.3390/en11113095.
Full textBabar, Muhammad, Mohamad Azmi Bustam, Abulhassan Ali, Abdulhalim Shah Maulud, Umar Shafiq, Ahmad Mukhtar, Syed Nasir Shah, Khuram Maqsood, Nurhayati Mellon, and Azmi M. Shariff. "Thermodynamic data for cryogenic carbon dioxide capture from natural gas: A review." Cryogenics 102 (September 2019): 85–104. http://dx.doi.org/10.1016/j.cryogenics.2019.07.004.
Full textMat, Norfamila Che, and G. Glenn Lipscomb. "Global sensitivity analysis for hybrid membrane-cryogenic post combustion carbon capture process." International Journal of Greenhouse Gas Control 81 (February 2019): 157–69. http://dx.doi.org/10.1016/j.ijggc.2018.12.023.
Full textDissertations / Theses on the topic "Cryogenic carbon capture"
Jensen, Mark. "Energy Process Enabled by Cryogenic Carbon Capture." BYU ScholarsArchive, 2015. https://scholarsarchive.byu.edu/etd/5711.
Full textNielson, Bradley J. "Cryogenic Carbon Capture using a Desublimating Spray Tower." BYU ScholarsArchive, 2013. https://scholarsarchive.byu.edu/etd/3721.
Full textRussell, Christopher Stephen. "Carbon Capture and Synergistic Energy Storage: Performance and Uncertainty Quantification." BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/7414.
Full textJames, David William. "Failing Drop CO2 Deposition (Desublimation) Heat Exchanger for the Cryogenic Carbon Capture Process." BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/2930.
Full textDingilian, Kayane Kohar. "Homogeneous Nucleation of Carbon Dioxide (CO2) in Supersonic Nozzles." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1607019789125519.
Full textSafdarnejad, Seyed Mostafa. "Developing Modeling, Optimization, and Advanced Process Control Frameworks for Improving the Performance of Transient Energy-Intensive Applications." BYU ScholarsArchive, 2016. https://scholarsarchive.byu.edu/etd/6057.
Full textFazlollahi, Farhad. "Dynamic Liquefied Natural Gas (LNG) Processing with Energy Storage Applications." BYU ScholarsArchive, 2016. https://scholarsarchive.byu.edu/etd/5956.
Full textBroman, Nils. "Värdeskapande av koldioxid frånbiogasproduktion : En kartläggning över lämpliga CCU-tekniker för implementeringpå biogasanläggningar i Sverige." Thesis, Linköpings universitet, Industriell miljöteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-171793.
Full textKoldioxid från biogasproduktion betraktas i dagsläget som utan värde och släpps ut i atmosfärenvid uppgradering av biogas. Restgasen är en potentiell kolkälla och kan vara värdeskapandeför biogasprocessen. Genom att finna en lämplig värdeskapande process som utnyttjarkoldioxid går det att ge både ekonomiska och miljömässiga incitament till företag att utvecklasin verksamhet. I detta projekt undersöktes möjligheten att skapa värde av denna CO2.Genom en utvärdering av den tekniska mognadsgraden hos CCU-tekniker kunde en rekommendationges vid projektets slut. En analys av tekniska hinder, såsom föroreningar i gassammansättningen,såväl som hinder i form av kompetens och företagskultur undersöktes för attkunna ge en motiverad rekommendation. I projektet kartlades vilka värdeskapande systemsom skulle passa för biogasproducenter i en svensk kontext. Detta inkluderade etableradeuppgraderingstekniker för metan- och koldioxid som används i dagsläget. I projektet undersöktesäven lämpliga CCU-tekniker som kan samverka med de valda uppgraderingsprocessernaoch och agera värdeskapande. Utifrån denna kartläggning kunde det sedan anges vilkagemensamma, kritiska variabler som finns för dessa system. Därefter kunde en rekommendationav lämplig CCU-teknik ges beroende på den producerade CO2 sammansättningen. Enslutsats i projektet var att koldioxid från restgasen ofta var av hög koncentration (ca. 97-98 %)och ej innehöll några korrosiva eller toxiska komponenter, och att detta till stor del beror påhur rötkammaren är hanterad i produktionsprocessen. Således väcktes frågor kring vilka defaktiska begränsningarna för CCU är, då de inte torde vara tekniska. CCU-tekniker som visadesig vara av särskilt intresse var pH-reglering av avloppsverk, CO2 som näringssubstratför odling av mikroalger, samt tillverkning av kolsyreis för kyltransporter. Samtliga dessatekniker har tillräckligt hög teknisk mognadsgrad för att kunna installeras i dagsläget. AndraCCU-tekniker, såsom ”Power to gas”, kräver en hög CO2-koncentration och avfärdades dålitteraturstudien inte talade för den ekonomiska potentialen i dessa eftersom de kräver ytterligareuppgraderingssteg för CO2. Således valdes istället CCU-tekniker som skulle gå attimplementera direkt med den befintliga CO2 kvalitén. Vidare drogs slutsatsen att en anledningtill att CCU-tekniker inte har blivit vida implementerade till stor del är interna hindermellan distributörer och tillverkare (eller utnyttjare) av CCU-tekniker. Således kan användandetav koldioxid från biogasproduktion och implementering av CCU-tekniker främjasgenom att eliminera hinder hos företag. I projektet yttrade sig detta som bristande ekonomiskaincitament och okunskap. Ett ökat användande av CCU-tekniker kan också uppnås genomatt införa lagar och regler som begränsar användandet av föråldrade tekniker som drivs avfossila bränslen, och som kan ersättas av klimatvänliga CCU-tekniker.
De, Luna Phil. "Computational Simulations to Aid in the Experimental Discovery of Ice Recrystallization Inhibitors and Ultra-Microporous Metal Organic Frameworks." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32982.
Full textHaddad, Sylvain. "Etude des transitions contrôlées entre phases Solide-Vapeur de CO2 à partir d’un écoulement contenant du méthane en vue de l’épuration du biogaz." Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLEM069.
Full textCryogenic systems are one of the most promising and still rising technologies for upgrading biogas as it is solvent free and can operate at atmospheric pressure. In this work a new concept for cold recovery by controlled sublimation is presented. A cold gas flow is used as a defrosting gas that will sublimate the frost using the partial pressure gradient between the frost and the gas flow instead of wasting the cold by convective heat transfer. Prior to this step, CO2 deposition should be studied. CO2 frost formation and growth is thoroughly detailed and a model is presented to better explain how CO2 is separated from biogas and deposits on a cold surface. A comparison between the flat plate and the tube configurations showed that the latter was better for CO2 capture in a cryogenic system in terms of heat and mass transfer but it presents a problem of clogging as frost increases inside the tube. The study of frost formation along the tube showed a delay in the starting time of deposition at position further from the biogas inlet. A process for biogas cryogenic upgrading and biomethane liquefaction was presented with calculations for all the components included in the system. Simulation results show that cold recovery is possible by controlled sublimation and the tube temperature reached values lower to the gas flow temperature which is not possible by single convective heat transfer. The concept works best for lower CO2 concentrations in the inlet biogas if the frosting and defrosting phases are to be completed at the same time. Finally, an experiment was conducted to validate the concept of cold recovery by controlled sublimation, for which results have shown the potential to totally avoid cold utilities use in the cryogenic capture of CO2
Book chapters on the topic "Cryogenic carbon capture"
Wilcox, Jennifer. "Cryogenic Distillation and Air Separation." In Carbon Capture, 219–29. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-2215-0_6.
Full textRackley, Stephen A. "Cryogenic and Distillation Systems." In Carbon Capture and Storage, 195–205. Elsevier, 2010. http://dx.doi.org/10.1016/b978-1-85617-636-1.00009-2.
Full textPellegrini, Laura A., Giorgia De Guido, and Stefania Ingrosso. "Thermodynamic Framework for Cryogenic Carbon Capture." In Computer Aided Chemical Engineering, 475–80. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-823377-1.50080-x.
Full textPadungwatanaroj, Orakotch, and Kitipat Siemanond. "Optimization of Cryogenic Carbon Capture and LNG process by Mathematical programming." In Computer Aided Chemical Engineering, 337–42. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-444-64235-6.50062-0.
Full textConference papers on the topic "Cryogenic carbon capture"
Sayre, Aaron, Dave Frankman, Andrew Baxter, Kyler Stitt, and Larry Baxter. "Field Testing of Cryogenic Carbon Capture." In Carbon Management Technology Conference. Carbon Management Technology Conference, 2017. http://dx.doi.org/10.7122/486652-ms.
Full textSafdarnejad, Seyed M., Lindsey Kennington, Larry L. Baxter, and John D. Hedengren. "Investigating the impact of Cryogenic Carbon Capture on power plant performance." In 2015 American Control Conference (ACC). IEEE, 2015. http://dx.doi.org/10.1109/acc.2015.7172120.
Full textKim, Min Jae, Dong Hyeok Won, and Tong Seop Kim. "Performance Improvement of a Micro Gas Turbine Adopting Exhaust Gas Recirculation for CO2 Capture by Integration With Liquid Air Energy Storage." In ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/gt2018-75901.
Full textFont-Palma, Carolina, George Lychnos, Homam Nikpey Somehsaraei, Paul Willson, and Mohsen Assadi. "Comparison of Performance of Alternative Post Combustion Carbon Capture Processes for a Biogas Fueled Micro Gas Turbine." In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-15558.
Full textMoore, J. Jeffrey, Hector Delgado, and Timothy Allison. "Qualification Testing of a Liquid CO2 Turbopump for Carbon Capture and Sequestration Applications." In ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/gt2011-45912.
Full textAkram, Muhammad, Simon Blakey, and Mohamed Pourkashanian. "Influence of Gas Turbine Exhaust CO2 Concentration on the Performance of Post Combustion Carbon Capture Plant." In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-42454.
Full textElhoshee, Sara, Fatima Taqi, Amna Alabdullah, Mohamed Hassan, and Azza Abouhashem. "Fabrication and Testing of Polymeric Membranes for Energy-Efficient Separation of Carbon Dioxide from Flue Gas." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0046.
Full textCarapellucci, Roberto, Roberto Cipollone, and Davide Di Battista. "MCFC-Based System for Active CO2 Capture From Flue Gases." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-86881.
Full textSander, Frank, Sebastian Foeste, and Roland Span. "Model of an Oxygen Transport Membrane for Coal Fired Power Cycles With CO2 Capture." In ASME Turbo Expo 2007: Power for Land, Sea, and Air. ASMEDC, 2007. http://dx.doi.org/10.1115/gt2007-27788.
Full textAhmad Zuhdi, M. Faizan, F. Hadana Rahman, Hamid Shahjavan, M. Azlan Mas’od, R. Suhaib Salihuddin, N. Ashikin Zulkepli, Azila Alias, M. Yazid Jalani, and Tan Kin Yiin. "Feasibility Study of Offshore Hybrid Technology for High CO2 Gas Field Monetization." In International Petroleum Technology Conference. IPTC, 2021. http://dx.doi.org/10.2523/iptc-21220-ms.
Full textReports on the topic "Cryogenic carbon capture"
Baxter, Larry L., Andrew Baxter, Ethan Bever, Stephanie Burt, Skyler Chamberlain, David Frankman, Christopher Hoeger, et al. Cryogenic Carbon Capture Development Final/Technical Report. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1572908.
Full text