Journal articles on the topic 'Cryogenic air separation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Cryogenic air separation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Cornelissen, R. L., and G. G. Hirs. "Exergy analysis of cryogenic air separation." Energy Conversion and Management 39, no. 16-18 (November 1998): 1821–26. http://dx.doi.org/10.1016/s0196-8904(98)00062-4.
Full textCheung, Harry. "Moderate-pressure cryogenic air separation process." Gas Separation & Purification 5, no. 1 (March 1991): 25–28. http://dx.doi.org/10.1016/0950-4214(91)80045-7.
Full textIonita, Claudia, Elena-Eugenia Vasilescu, Camelia Stanciu, Horatiu Pop, and Lucretia Popa. "Optimization of the air separation process in single stage cryogenic units." Technium: Romanian Journal of Applied Sciences and Technology 14 (October 9, 2023): 14–17. http://dx.doi.org/10.47577/technium.v14i.9666.
Full textXiong, Yong Qiang, and Ben Hua. "Simulation and Analysis of Cryogenic Air Separation Process with LNG Cold Energy Utilization." Advanced Materials Research 881-883 (January 2014): 653–58. http://dx.doi.org/10.4028/www.scientific.net/amr.881-883.653.
Full textParulekar, Prasad J. "Chemical Plant Utility – Nitrogen System Design." International Journal for Research in Applied Science and Engineering Technology 9, no. 11 (November 30, 2021): 1560–67. http://dx.doi.org/10.22214/ijraset.2021.39047.
Full textDutta, T., K. P. Sinhamahapatra, and S. S. Bandyopadhyay. "CFD Analysis of Energy Separation in Ranque-Hilsch Vortex Tube at Cryogenic Temperature." Journal of Fluids 2013 (November 14, 2013): 1–14. http://dx.doi.org/10.1155/2013/562027.
Full textKhalel, Zeinab A. M., Ali A. Rabah, and Taj Alasfia M. Barakat. "A New Cryogenic Air Separation Process with Flash Separator." ISRN Thermodynamics 2013 (June 27, 2013): 1–4. http://dx.doi.org/10.1155/2013/253437.
Full textMiller, Jason, William L. Luyben, Paul Belanger, Stephane Blouin, and Larry Megan. "Improving Agility of Cryogenic Air Separation Plants." Industrial & Engineering Chemistry Research 47, no. 2 (January 2008): 394–404. http://dx.doi.org/10.1021/ie070975t.
Full textHamayun, Muhammad Haris, Naveed Ramzan, Murid Hussain, and Muhammad Faheem. "Evaluation of Two-Column Air Separation Processes Based on Exergy Analysis." Energies 13, no. 23 (December 2, 2020): 6361. http://dx.doi.org/10.3390/en13236361.
Full textBucsa, Sorin, Alexandru Serban, Mugur C. Balan, Claudia Ionita, Gabriel Nastase, Catalina Dobre, and Alexandru Dobrovicescu. "Exergetic Analysis of a Cryogenic Air Separation Unit." Entropy 24, no. 2 (February 13, 2022): 272. http://dx.doi.org/10.3390/e24020272.
Full textYe, Pengcheng, Erik Sjöberg, and Jonas Hedlund. "Air separation at cryogenic temperature using MFI membranes." Microporous and Mesoporous Materials 192 (July 2014): 14–17. http://dx.doi.org/10.1016/j.micromeso.2013.09.016.
Full textvan der Ham, L. V., and S. Kjelstrup. "Exergy analysis of two cryogenic air separation processes." Energy 35, no. 12 (December 2010): 4731–39. http://dx.doi.org/10.1016/j.energy.2010.09.019.
Full textSchoofs, Gregory R., and P. Petit. "Repressurization of adsorption purifiers for cryogenic air separation." Chemical Engineering Science 48, no. 4 (February 1993): 753–60. http://dx.doi.org/10.1016/0009-2509(93)80141-c.
Full textCao, Yanan, Christopher L. E. Swartz, and Jesus Flores‐Cerrillo. "Preemptive dynamic operation of cryogenic air separation units." AIChE Journal 63, no. 9 (May 2, 2017): 3845–59. http://dx.doi.org/10.1002/aic.15753.
Full textRinker, Garrett. "Minimum work associated with separating nitrogen from air: An exergy analysis." F1000Research 13 (March 1, 2024): 158. http://dx.doi.org/10.12688/f1000research.145337.1.
Full textVoronetskiy, A. V. "Comparative analysis of operational indicators of air separation plants." Glavnyj mekhanik (Chief Mechanic), no. 3 (February 25, 2022): 188–202. http://dx.doi.org/10.33920/pro-2-2203-03.
Full textWojcieszak, Paweł. "Exergy Analysis of Liquid Nitrogen Power Cycles." EPJ Web of Conferences 201 (2019): 01004. http://dx.doi.org/10.1051/epjconf/201920101004.
Full textBerdowska, Sylwia, and Anna Skorek-Osikowska. "Technology of oxygen production in the membranecryogenic air separation system for a 600 MW oxy-type pulverized bed boiler." Archives of Thermodynamics 33, no. 3 (September 1, 2012): 61–72. http://dx.doi.org/10.2478/v10173-012-0018-8.
Full textXu, Zuhua, Jun Zhao, Xi Chen, Zhijiang Shao, Jixin Qian, Lingyu Zhu, Zhiyong Zhou, and Haizhong Qin. "Automatic load change system of cryogenic air separation process." Separation and Purification Technology 81, no. 3 (October 2011): 451–65. http://dx.doi.org/10.1016/j.seppur.2011.08.024.
Full textYe, Pengcheng, Danil Korelskiy, Mattias Grahn, and Jonas Hedlund. "Cryogenic air separation at low pressure using MFI membranes." Journal of Membrane Science 487 (August 2015): 135–40. http://dx.doi.org/10.1016/j.memsci.2015.03.063.
Full textMandler, J. A., D. R. Vinson, and N. Chatterjee. "Dynamic Modelling and Control of Cryogenic AIR Separation Plants." IFAC Proceedings Volumes 22, no. 8 (August 1989): 267–73. http://dx.doi.org/10.1016/s1474-6670(17)53367-4.
Full textAgrawal, Rakesh, and Robert M. Thorogood. "Production of medium pressure nitrogen by cryogenic air separation." Gas Separation & Purification 5, no. 4 (December 1991): 203–9. http://dx.doi.org/10.1016/0950-4214(91)80025-z.
Full textZhu, Yu, Sean Legg, and Carl D. Laird. "Optimal design of cryogenic air separation columns under uncertainty." Computers & Chemical Engineering 34, no. 9 (September 2010): 1377–84. http://dx.doi.org/10.1016/j.compchemeng.2010.02.007.
Full textDarling, Robert M., and Zhiwei Yang. "Electrochemical Air Separation and Emergency Power Fuel Cell for Aircraft." ECS Meeting Abstracts MA2022-02, no. 50 (October 9, 2022): 2561. http://dx.doi.org/10.1149/ma2022-02502561mtgabs.
Full textAlyaseen, Nazar Oudah Mousa, Salem Mehrzad, and Mohammad Reza Saffarian. "Modeling and Design of a Multistream Plate-Fin Heat Exchanger in the Air Separation Units by Pinch Technology." International Journal of Chemical Engineering 2023 (November 30, 2023): 1–16. http://dx.doi.org/10.1155/2023/9204268.
Full textKhalel, Zeinab A. M. "Proposed Transformation Flow Sheet of a Single Column Cryogenic Air Separation Process Utilizing LNG Cold Energy." East African Scholars Journal of Engineering and Computer Sciences 5, no. 3 (June 19, 2022): 32–40. http://dx.doi.org/10.36349/easjecs.2022.v05i03.001.
Full textMisra, Shamik, Mangesh Kapadi, Ravindra D. Gudi, and R. Srihari. "Energy-Efficient Production Scheduling of a Cryogenic Air Separation Plant." Industrial & Engineering Chemistry Research 56, no. 15 (April 10, 2017): 4399–414. http://dx.doi.org/10.1021/acs.iecr.6b04585.
Full textVorob'ev, P. V., O. V. Miller, and A. P. Cherepanov. "Sibkriotekhnika's cryogenic equipment in technologies that use air-separation products." Chemical and Petroleum Engineering 31, no. 7 (July 1995): 343–45. http://dx.doi.org/10.1007/bf01150272.
Full textWankat, Phillip C., and Kyle P. Kostroski. "Hybrid Membrane-Cryogenic Distillation Air Separation Process for Oxygen Production." Separation Science and Technology 46, no. 10 (June 2011): 1539–45. http://dx.doi.org/10.1080/01496395.2011.577497.
Full textFu, Chao, and Truls Gundersen. "Recuperative vapor recompression heat pumps in cryogenic air separation processes." Energy 59 (September 2013): 708–18. http://dx.doi.org/10.1016/j.energy.2013.06.055.
Full textSchmidt, William P., Karen S. Winegardner, Martin Dennehy, and Howard Castle-Smith. "Safe design and operation of a cryogenic air separation unit." Process Safety Progress 20, no. 4 (December 2001): 269–79. http://dx.doi.org/10.1002/prs.680200409.
Full textQuarshie, Anthony W. K., José Matias, and Christopher L. E. Swartz. "Economic Model Predictive Control for Cryogenic Air Separation Unit Startup." IFAC-PapersOnLine 58, no. 14 (2024): 761–66. http://dx.doi.org/10.1016/j.ifacol.2024.08.429.
Full textLeiva, C. A., D. A. Poblete, T. L. Aguilera, C. A. Acuña, and F. J. Quintero. "Air Separation Units (ASUs) Simulation Using Aspen Hysys® at Oxinor I of Air Liquid Chile S.A Plant." Polish Journal of Chemical Technology 22, no. 1 (March 1, 2020): 10–17. http://dx.doi.org/10.2478/pjct-2020-0003.
Full textFu, Qian, Yasuki kansha, Chunfeng Song, Yuping Liu, Masanori Ishizuka, and Atsushi Tsutsumi. "An Advanced Cryogenic Air Separation Process Based on Self-heat Recuperation for CO2 Separation." Energy Procedia 61 (2014): 1673–76. http://dx.doi.org/10.1016/j.egypro.2014.12.189.
Full textYe, Bicui, Shufei Sun, and Zheng Wang. "Potential for Energy Utilization of Air Compression Section Using an Open Absorption Refrigeration System." Applied Sciences 12, no. 13 (June 23, 2022): 6373. http://dx.doi.org/10.3390/app12136373.
Full textMitovski, Milance, and Aleksandra Mitovski. "Efficiency of the process of cryogenic air separation into the components." Chemical Industry 63, no. 5 (2009): 397–405. http://dx.doi.org/10.2298/hemind0905397m.
Full textZhang, Xiao-bin, Jian-ye Chen, Lei Yao, Yong-hua Huang, Xue-jun Zhang, and Li-min Qiu. "Research and development of large-scale cryogenic air separation in China." Journal of Zhejiang University SCIENCE A 15, no. 5 (May 2014): 309–22. http://dx.doi.org/10.1631/jzus.a1400063.
Full textKansha, Yasuki, Akira Kishimoto, Tsuguhiko Nakagawa, and Atsushi Tsutsumi. "A novel cryogenic air separation process based on self-heat recuperation." Separation and Purification Technology 77, no. 3 (March 4, 2011): 389–96. http://dx.doi.org/10.1016/j.seppur.2011.01.012.
Full textAcharya, D., F. Fitch, and R. Jain. "Some Issues in Operating Adsorption Prepurification Systems for Cryogenic Air Separation." Separation Science and Technology 31, no. 16 (September 1996): 2171–82. http://dx.doi.org/10.1080/01496399608001038.
Full textPintilie, M., A. Șerban, V. Popa, and C. L. Popa. "Design analysis of low pressure distillation column for cryogenic air separation." IOP Conference Series: Materials Science and Engineering 595 (September 20, 2019): 012023. http://dx.doi.org/10.1088/1757-899x/595/1/012023.
Full textWimer, John G., Dale Keairns, Edward L. Parsons, and John A. Ruether. "Integration of Gas Turbines Adapted for Syngas Fuel With Cryogenic and Membrane-Based Air Separation Units: Issues to Consider for System Studies." Journal of Engineering for Gas Turbines and Power 128, no. 2 (January 13, 2005): 271–80. http://dx.doi.org/10.1115/1.2056535.
Full textChong, Kok Chung, Soon Onn Lai, Hui San Thiam, and Woei Jye Lau. "The Progress of Polymeric Membrane Separation Technique in O2/N2 Separation." Key Engineering Materials 701 (July 2016): 255–59. http://dx.doi.org/10.4028/www.scientific.net/kem.701.255.
Full textBucanovic, Ljubisa, Mihailo Lazarevic, and Srecko Batalov. "The fractional PID controllers tuned by genetic algorithms for expansion turbine in the cryogenic air separation process." Chemical Industry 68, no. 5 (2014): 519–28. http://dx.doi.org/10.2298/hemind130717078b.
Full textVariny, Miroslav, Dominika Jediná, Miroslav Rimár, Ján Kizek, and Marianna Kšiňanová. "Cutting Oxygen Production-Related Greenhouse Gas Emissions by Improved Compression Heat Management in a Cryogenic Air Separation Unit." International Journal of Environmental Research and Public Health 18, no. 19 (October 1, 2021): 10370. http://dx.doi.org/10.3390/ijerph181910370.
Full textHaseli, Y., and N. S. Sifat. "Performance modeling of Allam cycle integrated with a cryogenic air separation process." Computers & Chemical Engineering 148 (May 2021): 107263. http://dx.doi.org/10.1016/j.compchemeng.2021.107263.
Full textRizk, J., M. Nemer, and D. Clodic. "A real column design exergy optimization of a cryogenic air separation unit." Energy 37, no. 1 (January 2012): 417–29. http://dx.doi.org/10.1016/j.energy.2011.11.012.
Full textCao, Yanan, Christopher L. E. Swartz, Jesus Flores-Cerrillo, and Jingran Ma. "Dynamic modeling and collocation-based model reduction of cryogenic air separation units." AIChE Journal 62, no. 5 (January 26, 2016): 1602–15. http://dx.doi.org/10.1002/aic.15164.
Full textBelikov, Dmitry, Satoshi Sugawara, Shigeyuki Ishidoya, Fumio Hasebe, Shamil Maksyutov, Shuji Aoki, Shinji Morimoto, and Takakiyo Nakazawa. "Three-dimensional simulation of stratospheric gravitational separation using the NIES global atmospheric tracer transport model." Atmospheric Chemistry and Physics 19, no. 8 (April 18, 2019): 5349–61. http://dx.doi.org/10.5194/acp-19-5349-2019.
Full textChorowski, Maciej, and Wojciech Gizicki. "Technical and economic aspects of oxygen separation for oxy-fuel purposes." Archives of Thermodynamics 36, no. 1 (March 1, 2015): 157–70. http://dx.doi.org/10.1515/aoter-2015-0011.
Full textCormos, Calin-Cristian. "Techno-Economic Evaluations of Copper-Based Chemical Looping Air Separation System for Oxy-Combustion and Gasification Power Plants with Carbon Capture." Energies 11, no. 11 (November 9, 2018): 3095. http://dx.doi.org/10.3390/en11113095.
Full text