Academic literature on the topic 'Cryo-EM structures'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cryo-EM structures.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Cryo-EM structures"

1

Lawson, Catherine L., and Wah Chiu. "Comparing cryo-EM structures." Journal of Structural Biology 204, no. 3 (December 2018): 523–26. http://dx.doi.org/10.1016/j.jsb.2018.10.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jiang, Wen, and Liang Tang. "Atomic cryo-EM structures of viruses." Current Opinion in Structural Biology 46 (October 2017): 122–29. http://dx.doi.org/10.1016/j.sbi.2017.07.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Malhotra, Sony, Sylvain Träger, Matteo Dal Peraro, and Maya Topf. "Modelling structures in cryo-EM maps." Current Opinion in Structural Biology 58 (October 2019): 105–14. http://dx.doi.org/10.1016/j.sbi.2019.05.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Scheres, Sjors HW, Wenjuan Zhang, Benjamin Falcon, and Michel Goedert. "Cryo-EM structures of tau filaments." Current Opinion in Structural Biology 64 (October 2020): 17–25. http://dx.doi.org/10.1016/j.sbi.2020.05.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Subroto, Toto, Rina Fajri Nuwarda, Umi Baroroh, Zuhrotun Nafisah, Bevi Lidya, and Muhammad Yusuf. "IN SILICO STUDY OF CRYO-EM STRUCTURES OF ANTIGEN-ANTIBODY COMPLEX OF CHIKUNGUNYA FOR THE DEVELOPMENT OF DIAGNOSTIC AGENT." Asian Journal of Pharmaceutical and Clinical Research 10, no. 14 (May 1, 2017): 62. http://dx.doi.org/10.22159/ajpcr.2017.v10s2.19489.

Full text
Abstract:
Objective: Despite the availability of the commercial rapid tests of chikungunya, the difference of pathogen’s genotypes amongst different countries has created some causes for concern. It is found that the sensitivity of the current chikungunya rapid tests on Asian strain was only 20.5%, as compared to 90.3% when tested on the African phylogroup. Therefore, the development of diagnostics that is specific for the current strain circulating in the country is important to be done. The cryo-electron microscopy (cryo-EM) structures of antigen-antibody complex can be used as an insightful structural basis to the development of the tailored antibody for diagnostics purposes. However, cryo-EM structures usually were resolved in low resolution, thus some sterical clashes between residues are expected. This work aims to refine the cryo-EM structures of E1 E2 of chikungunya virus (CHIKV) in complex with antibody using molecular mechanics method, to calculate the binding energy of antigen-antibody complex, and to compare it with the experimental results.Methods: Thecryo-EM structures were refined in vacuoby short minimization scheme using AMBER 14. The binding energies were calculated using Firedock and MM/GBSA methods.Results:The results showed that the direct calculation of binding energies of cryo-EM structures reflected high repulsive forces. While the calculation on the refined structured showed lower binding energies. Visual inspections on the complex structures also indicated that the refined structures showed better interactions.Conclusion:As a conclusion, the refinement of cryo-EM structures should be useful to gain more insight into the binding mode of interactions between antigenic protein and antibody, at the atomic level.
APA, Harvard, Vancouver, ISO, and other styles
6

Ceska, Tom, Chun-Wa Chung, Rob Cooke, Chris Phillips, and Pamela A. Williams. "Cryo-EM in drug discovery." Biochemical Society Transactions 47, no. 1 (January 15, 2019): 281–93. http://dx.doi.org/10.1042/bst20180267.

Full text
Abstract:
Abstract The impact of structural biology on drug discovery is well documented, and the workhorse technique for the past 30 years or so has been X-ray crystallography. With the advent of several technological improvements, including direct electron detectors, automation, better microscope vacuums and lenses, phase plates and improvements in computing power enabled by GPUs, it is now possible to record and analyse images of protein structures containing high-resolution information. This review, from a pharmaceutical perspective, highlights some of the most relevant and interesting protein structures for the pharmaceutical industry and shows examples of how ligand-binding sites, membrane proteins, both big and small, pseudo symmetry and complexes are being addressed by this technique.
APA, Harvard, Vancouver, ISO, and other styles
7

Glaeser, Robert M. "Replication and validation of cryo-EM structures." Journal of Structural Biology 184, no. 2 (November 2013): 379–80. http://dx.doi.org/10.1016/j.jsb.2013.09.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chiu, Wah, and Greg Pintilie. "Quantifying the resolvability in cryo-EM structures." Acta Crystallographica Section A Foundations and Advances 75, a1 (July 20, 2019): a351. http://dx.doi.org/10.1107/s0108767319096582.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yang, Guanghui, Rui Zhou, and Yigong Shi. "Cryo-EM structures of human γ-secretase." Current Opinion in Structural Biology 46 (October 2017): 55–64. http://dx.doi.org/10.1016/j.sbi.2017.05.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lawson, Catherine L., Helen M. Berman, and Wah Chiu. "Evolving data standards for cryo-EM structures." Structural Dynamics 7, no. 1 (January 2020): 014701. http://dx.doi.org/10.1063/1.5138589.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Cryo-EM structures"

1

Wilkes, Martin [Verfasser], Christine [Akademischer Betreuer] [Gutachter] Ziegler, and Clemens [Gutachter] Glaubitz. "Single-particle cryo-EM structures of oligomeric membrane protein complexes / Martin Wilkes ; Gutachter: Clemens Glaubitz, Christine Ziegler ; Betreuer: Christine Ziegler." Frankfurt am Main : Universitätsbibliothek Johann Christian Senckenberg, 2016. http://d-nb.info/1120493412/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Preis, Anne [Verfasser], and Roland [Akademischer Betreuer] Beckmann. "Cryo-EM structures of eukaryotic translation termination and ribosome recycling complexes containing eRF1, eRF3 and ABCE1 / Anne Preis ; Betreuer: Roland Beckmann." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2020. http://d-nb.info/1213658837/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhou, Yu. "Structural study of eIF2B by electron microscopy." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/structural-study-of-eif2b-by-electron-microscopy(feacd470-3139-4648-9812-c152168c930d).html.

Full text
Abstract:
In eukaryotic translation initiation, eIF2B, a 295 kDa multisubunit (from α to ε) complex,is the guanine nucleotide exchange factor (GEF) of eIF2, a GTP binding protein, and hasmultiple roles in regulating the level of active eIF2-GTP-Met-tRNAi ternary complexes inthe cytoplasm. Mutations in eIF2B subunits affect global protein synthesis and, in human,are responsible to cause a genetically inherited lethal childhood brain disease calledLeukoencephalopathy with Vanishing White Matter (VWM). Although the genetic aspectseIF2B have been widely studied over decades, detailed structural knowledge only becameavailable in recent years but is still limited. This study aims to gain structural insights intoyeast eIF2B by a range of electron microscopy techniques to improve our understandingtowards its GEF activity with eIF2 and regulatory response. By performing size-exclusion chromatography and multi-angle static light scattering (SECMALS), it was found that eIF2B is a stable dimer of pentamers (~600 kDa). Negativestaining (25.8 Å) and cryo-EM (12.1 Å) eIF2B decamer models that showed 2-foldrotational symmetry were generated by single particle reconstruction. Homology modelingof yeast eIF2B subunits revealed an eIF2B(αβδ)2 hexameric core and two separate arm-likeeIF2Bγε catalytic domains with potential flexibility. To constrain subunit position in thearm structure, Ni-NTA-Nanogold labeling against the multihistidine tag of eIF2Bγ wasperformed. In addition, genetic approaches were applied to eliminate synthesis of eIF2Bα(34 kDa) and eIF2B(βγδε)2 octamer complexes (532 kDa) were purified by SEC-MALSand analysed by negative staining single particle reconstruction. It was speculated thatdeletion of eIF2Bα might have triggered significant conformational rearrangement that ledto high uniformity in the 2D class averages. A hypothetical model was thus proposed forthe octamer where the two arm-like domains clamp together to form a compact structure.
APA, Harvard, Vancouver, ISO, and other styles
4

Abdelkareem, Moamen. "Structural basis of transcription : RNA polymerase backtracking and its reactivation." Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAJ062.

Full text
Abstract:
Ma thèse se focalise sur la compréhension d’un phénomène de transcription, appelé backtracking, qui inactive la RNAP et arrête la transcription. La réactivation des complexes RNAP arrêtés et la reprise de la transcription nécessitent un facteur protéique appelé GreB. L’objectif du projet était d’obtenir des informations structurelles sur: i) la façon dont le retour en arrière inactive la RNAP dans E. coli; et ii) comment GreB sauve la RNAP en marche arrière pour continuer la transcription. À l'aide de SP cryo-EM, j’ai capturé quatre instantanés de RNAP dans différents états. Mes résultats montrent que l'ARN n'est plus aligné avec le site actif. De plus, suite à un retour en arrière, la RNAP adopte de nouvelles modifications de conformation permettant la liaison de GreB. En conséquence, le NTD de GreB entre en contact le site actif de la RNAP et donne des résidus acides qui augmentent l'affinité pour un ion magnésium, ce qui est nécessaire pour la catalyse du clivage de l'ARN mal aligné. Ces quatre reconstructions donnent un aperçu du mécanisme catalytique et de la dynamique du clivage et de l'extension de l'ARN
[...]My Ph.D. was focused on the understanding of a transcriptional phenomenon, termed backtracking, which inactivates RNAP and halts transcription. Reactivation of halted RNAP complexes and transcription resumption, requires a protein factor called GreB. The objective of the project was to gain structural information on: i) how backtracking inactivates RNAP inE. coli; and ii) how GreB rescues backtracked RNAP to continue transcription. Using SP cryo- EM, I captured four snapshots of RNAP at different states covering the backtracking and reactivation cycle. My results show that the RNA is no longer aligned with the active center, explaining the transcription halt. Furthermore, as a result of backtracking, RNAP adopts new conformational changes allowing GreB binding. As a consequence, the NTD of GreB contacts RNAP active center and donates acidic residues that increase the affinity towards a magnesium ion, which is required for cleavage catalysis of the misaligned RNA. These four reconstructions give insights on the catalytic mechanism and dynamics of RNA cleavage and extension. [...]
APA, Harvard, Vancouver, ISO, and other styles
5

Brito, Querido Jailson Fernando. "Structural study of mRNA translation in kinetoplastids by Cryo-electron microscopy." Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAJ108.

Full text
Abstract:
Les kinétoplastides sont un groupe de protozoaires, et qui menace plus de 400 millions de personnes dans le monde entier. Ils possèdent des segments d'expansion d'ARNr (SE) inhabituellement plus larges dans les sous-unités 40S. Ici, nous avons purifié à partir de lysats de cellules de T. cruzi des complexes d'initiation natifs (48S IC) et des sous-unités de 40S natives que nous avons ensuite analysées par cryo-ME. La structure des 48S IC révèle certains des aspects spécifiques de la traduction aux kinétoplastides, tels qu'un réseau d’interaction complexe entre eIF3 et SEs. En outre, notre structure met en évidence le rôle de DDX60 dans l'initiation de la traduction chez les kinétoplastides. La structure d'une sous-unité 40S native révèle l'existence d'un facteur non caractérisé (appelé ηF). Le site de liaison de ηF suggère un rôle dans le contrôle de la traduction. De plus, nous avons rapporté́ la structure d’une nouvelle protéine ribosomale (-r) spécifique des kinétoplastides (KSRP). Notre travail pose les premières bases structurales des aspects spécifiques de l'initiation de la traduction chez les kinétoplastides
Kinetoplastid is a group of flagellated protozoans, which threatens more than 400 million people world-wide. They possess unusual large rRNA expansion segments (ES) in the 40S, such as ES6S, ES7S and ES9S and their location suggests an involvement in the initiation process. Furthermore, all mature mRNAs possess a conserved 5’ spliced-leader. Here, we purified from T. cruzi cell lysates native initiation complexes and native 40S subunits that we then analysed by cryo-EM. The structure of native initiation complexes reveals several kinetoplastid-specific aspects of translation, such as an intricate interaction network between eIF3 and ES6S and ES7S. Furthermore, it reveals the role of DDX60 in translation initiation in kinetoplastids. The structure of native 40S subunits reveals the existence of an uncharacterized factor (termed ηF) bound at platform of the 40S. The binding site of ηF suggests a role in translational control. Moreover, we reported a novel kinetoplastid-specific ribosomal (r-) protein (KSRP) bound to the 40S subunit. Our work represents the first structural characterization of kinetoplastids-specific aspects of translation initiation
APA, Harvard, Vancouver, ISO, and other styles
6

Spikes, Tobias Edward. "Structural studies of the mitochondrial F-ATPase." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/274349.

Full text
Abstract:
The mitochondrial F-ATPases make about 90% of cellular ATP. They are multi-protein assemblies with a membrane extrinsic catalytic domain attached to a membrane embedded sector. They operate by a mechanical rotary mechanism powered by an electro-chemical gradient, generated across the inner mitochondrial membrane by respiration. A detailed molecular description has been provided by X-ray crystallographic studies and "single molecule" observations of the mechanism of the F1 catalytic domain. Details are known also of the architecture of the peripheral stalk of part of the stator and the membrane embedded region of the rotor. However, knowledge of the detailed structure of the rest of the membrane domain, and the detailed mechanism of generation of rotation is lacking. Recently, studies of the intact mitochondrial F-ATPases, determined by cryo-electron microscopy (cryo-em), have provided structural information at intermediate levels of resolution. Whilst these structures have given insights into the mechanism of generation of rotation, the information required for a molecular understanding of this mechanism is still lacking. Moreover, the locations and roles of six supernumerary membrane subunits are unclear. Some of them are likely to be involved in the formation of dimers of the enzyme which line the edges of mitochondrial cristae. Therefore, in this thesis, a procedure is described for the purification of dimers of the bovine and yeast F-ATPases. The structure of the bovine dimer has been determined by cryo-em at a resolution of ca. 6.9 Angstrom. This structure confirms features concerning the trans-membrane spans of the a-, A6L- and b-subunits observed in the monomeric complex. In addition, the single trans-membrane a-helix of the f-subunit has been located, and the subunit appears to mediate dimer formation. The structure of A6L has been extended, and the a-helices of subunits e- and g- have been located. Another novel feature has been assigned to the DAPIT subunit, and may provide links between dimers in forming larger oligomers. Further improvement in the resolution of the structure is hampered by the extreme conformational heterogeneity of the F-ATPase. To this end, the simpler Fo membrane domain has been isolated and characterized initially by electron microscopy in negative stain.
APA, Harvard, Vancouver, ISO, and other styles
7

He, Shaoda. "Helical reconstruction in RELION." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/284086.

Full text
Abstract:
Helical assemblies of proteins are ubiquitous in nature and they perform vital functions in a wide range of organisms. The recent development of direct electron detectors and other imaging techniques in cryo-electron microscopy (cryo-EM) has opened new possibilities in solving helical structures at atomic resolution. Existing software packages for helical processing often require experience in tuning many ad hoc parameters to achieve optimal reconstruction results. REgularised LIkelihood OptimisatioN (RELION), an open-source single-particle analysis package, reduces the need for user expertise by the formulation of an empirical Bayesian framework, and has yielded some of the highest resolution density maps in recent years. Prior information about the helical assemblies can be conveniently incorporated into the statistical framework of RELION and thereby improves the helical reconstructions. This PhD thesis describes the development of a helical processing computation workflow with reduced user intervention in RELION. Chapter 1 introduces the theoretical basis of cryo-EM data acquisition and single-particle data processing, the concepts of helical symmetry, and a previously described method for iterative real-space reconstruction of helical assemblies, to which the RELION implementation bears resemblance. Chapter 2 discusses multiple adaptations to RELION that are necessary for helical processing. Key elements include the imposition and local refinement of helical symmetry, masks on helical segments and references, expressions of angular and translational prior information, manual and automated segment picking as well as initial model generation for helices. Calculations have been performed on four test data sets showing that the developed methods in RELION yield results that are as good as or better than alternative approaches for the tests performed. Chapter 3 describes the same methodology adapted to helical sub-tomogram averaging in RELION. Chapter 4 introduces the local symmetry option developed for special types of filaments with pseudo-helical symmetry. The concept can be extended to general single-particle analysis as well. Chapter 5 describes four helical structures determined in collaboration with other research groups using helical RELION for data processing. Chapter 6 concludes the thesis with a brief summary and future prospects.
APA, Harvard, Vancouver, ISO, and other styles
8

Nojima, Shingo. "Cryo-EM Structure of the Prostaglandin E Receptor EP4 Coupled to G Protein." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263574.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Torchy, Morgan. "Etude structure-fonction du complexe de remodelage de la chromatine NuRD." Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAJ113/document.

Full text
Abstract:
Une approche de biologie structurale intégrative a été mise à profit pour l'étude de l’organisation structurale du complexe NuRD. Mon travail s'est focalisé essentiellement sur trois sous-unités du complexe: MBD3, RbAp46 et RbAp48. J'ai mis en place les protocoles de production et de purification de ces différentes sous-unités, et les ai caractérisé biophysiquement par diverses méthodes. Nous avons ensuite entrepris des études de liaisons sur des nucléosomes reconstitués au laboratoire. Pour MBD3, l'optimisation du complexe nous a permis d'obtenir des cristaux diffractant jusqu'à 7 A de résolution. Parallèlement, une reconstruction 3D préliminaire à partir de données de cryo-microscopie électronique a pu être obtenue à 25A de résolution. Pour RbAp46/48, nous avons pu montrer que ces protéines formaient un complexe stable avec le nucléosome, pavant la voie pour leur future étude structurale par cryo-microscopie électronique ou cristallographie aux rayons-X
An integrative structural biology approach has been used to study the structural organization of the NuRD complex.My work focused especially on three subunits of this complex: MBD3, RbAp46 and RbAp48. I set up the preparation of the individual subunits and characterized them by various biophysical methods. We next carried out binding assays with homemade human nucleosomes. For MBD3, optimization of the complex led to crystals diffracting up to 7 Å. In parallel, a preliminary 3-D reconstruction at 25 Å resolution has been solved in cryo-EM. For RbAp46/48, crystal we were able to show that these proteins form stable complexes with the nucleosome, paving the way for future structural analysis by cryo-EM or X-ray crystallography
APA, Harvard, Vancouver, ISO, and other styles
10

Guo, Xieyang. "Regulation of transcription : structural studies of an RNA polymerase elongation complex bound to transcription factor NusA." Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAJ071/document.

Full text
Abstract:
La pause transcriptionnelle marquée par les ARN polymérases (RNAP) est un mécanisme clé pour réguler l'expression des gènes dans tous les règnes de la vie et est une condition préalable à la terminaison de la transcription. Le facteur de transcription bactérien essentiel NusA stimule à la fois la pause et la terminaison de la transcription, jouant ainsi un rôle central. Ici, je présente des reconstructions par cryo-microscopie électronique (cryo-EM) à une seule particule de NusA lié à des complexes d'élongation en présence et en absence d’ARN en épingle à cheveux dans le canal de sortie de l'ARN. Les structures révèlent quatre interactions entre NusA et RNAP qui suggèrent comment NusA stimule le repliement de l’ARN, la pause et la terminaison de la transcription. Un intermédiaire de translocation asymétrique de l'ARN et de l'ADN convertit le site actif de l'enzyme en un état inactif, fournissant une explication structurelle pour l'inhibition de la catalyse. La comparaison de RNAP à différentes étapes de la mise en pause donne un aperçu de la nature dynamique du processus et du rôle de NusA en tant que facteur de régulation
Transcriptional pausing by RNA polymerases (RNAPs) is a key mechanism to regulate gene expression in all kingdoms of life and is a prerequisite for transcription termination. The essential bacterial transcription factor NusA stimulates both pausing and termination of transcription, thus playing a central role. Here, I present single-particle electron cryo-microscopy (cryo-EM) reconstructions of NusA bound to paused elongation complexes with and without a pause-enhancing hairpin in the RNA exit channel. The structures reveal four interactions between NusA and RNAP that suggest how NusA stimulates RNA folding, pausing, and termination. An asymmetric translocation intermediate of RNA and DNA converts the active site of the enzyme into an inactive state, providing a structural explanation for the inhibition of catalysis. Comparing RNAP at different stages of pausing provides insights on the dynamic nature of the process and the role of NusA as a regulatory factor
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Cryo-EM structures"

1

service), ScienceDirect (Online, ed. Cryo-EM: Sample preparation and data collection. San Diego, Calif: Academic Press/Elsevier, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

service), ScienceDirect (Online. Cryo-EM: Analyses, interpretation, and case studies. San Diego, Calif: Academic Press/Elsevier, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Cryo-EM structures"

1

Pilsl, Michael, and Christoph Engel. "Structural Studies of Eukaryotic RNA Polymerase I Using Cryo-Electron Microscopy." In Ribosome Biogenesis, 71–80. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2501-9_5.

Full text
Abstract:
AbstractTechnical advances have pushed the resolution limit of single-particle cryo-electron microscopy (cryo-EM) throughout the past decade and made the technique accessible to a wide range of samples. Among them, multisubunit DNA-dependent RNA polymerases (Pols) are a prominent example. This review aims at briefly summarizing the architecture and structural adaptations of Pol I, highlighting the importance of cryo-electron microscopy in determining the structures of transcription complexes.
APA, Harvard, Vancouver, ISO, and other styles
2

Pilsl, Michael, Florian B. Heiss, Gisela Pöll, Mona Höcherl, Philipp Milkereit, and Christoph Engel. "Preparation of RNA Polymerase Complexes for Their Analysis by Single-Particle Cryo-Electron Microscopy." In Ribosome Biogenesis, 81–96. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2501-9_6.

Full text
Abstract:
AbstractRecent technological progress revealed new prospects of high-resolution structure determination of macromolecular complexes using cryo-electron microscopy (cryo-EM). In the field of RNA polymerase (Pol) I research, a number of cryo-EM studies contributed to understanding the highly specialized mechanisms underlying the transcription of ribosomal RNA genes. Despite a broad applicability of the cryo-EM method itself, preparation of samples for high-resolution data collection can be challenging. Here, we describe strategies for the purification and stabilization of Pol I complexes, exemplarily considering advantages and disadvantages of the methodology. We further provide an easy-to-implement protocol for the coating of EM-grids with self-made carbon support films. In sum, we present an efficient workflow for cryo-grid preparation and optimization, including early stage cryo-EM screening that can be adapted to a wide range of soluble samples for high-resolution structure determination.
APA, Harvard, Vancouver, ISO, and other styles
3

Natesh, Ramanathan. "Single-Particle cryo-EM as a Pipeline for Obtaining Atomic Resolution Structures of Druggable Targets in Preclinical Structure-Based Drug Design." In Challenges and Advances in Computational Chemistry and Physics, 375–400. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05282-9_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Agirrezabala, Xabier, Hstau Y. Liao, Eduard Schreiner, Jie Fu, Rodrigo F. Ortiz-Meoz, Klaus Schulten, Rachel Green, and Joachim Frank. "Structural Characterization of mRNA-tRNA Translocation Intermediates." In Novel Developments in Cryo‐EM of Biological Molecules, 87–107. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003456100-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Frank, Joachim, and Abbas Ourmazd. "Continuous Changes in Structure Mapped by Manifold Embedding of Single-Particle Data in Cryo-EM." In Novel Developments in Cryo‐EM of Biological Molecules, 127–46. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003456100-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Bo, Sandip Kaledhonkar, Ming Sun, Bingxin Shen, Zonghuan Lu, David Barnard, Toh-Ming Lu, Ruben L. Gonzalez, and Joachim Frank. "Structural Dynamics of Ribosome Subunit Association Studied by Mixing-Spraying Time-Resolved Cryogenic Electron Microscopy." In Novel Developments in Cryo‐EM of Biological Molecules, 315–41. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003456100-16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mei, Kunrong, and Wei Guo. "Modeling the Cryo-EM Structure of the Exocyst Complex." In Methods in Molecular Biology, 247–62. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2639-9_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hillen, Hauke S. "Cryo-EM for Structure Determination of Mitochondrial Ribosome Samples." In Methods in Molecular Biology, 89–100. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3171-3_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fu, Ziao, Gabriele Indrisiunaite, Sandip Kaledhonkar, Binita Shah, Ming Sun, Bo Chen, Robert A. Grassucci, Mans Ehrenberg, and Joachim Frank. "The Structural Basis for Release-Factor Activation During Translation Termination Revealed by Time-Resolved Cryogenic Electron Microscopy." In Novel Developments in Cryo‐EM of Biological Molecules, 481–500. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003456100-23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Agrawal, Rajendra K., Manjuli R. Sharma, Aymen Yassin, Indrajit Lahiri, and inda L. Spremulli. "Structure and function of organellar ribosomes as revealed by cryo-EM." In Ribosomes, 83–96. Vienna: Springer Vienna, 2011. http://dx.doi.org/10.1007/978-3-7091-0215-2_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Cryo-EM structures"

1

Haslam, Devin, Mohammad Zubair, Desh Ranjan, Abhishek Biswas, and Jing He. "Challenges in matching secondary structures in cryo-EM: An exploration." In 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2016. http://dx.doi.org/10.1109/bibm.2016.7822776.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chen, Lin, and Jing He. "Using Combined Features to Analyze Atomic Structures derived from Cryo-EM Density Maps." In BCB '18: 9th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3233547.3233709.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhong, Ellen D., Adam Lerer, Joseph H. Davis, and Bonnie Berger. "CryoDRGN2: Ab initio neural reconstruction of 3D protein structures from real cryo-EM images." In 2021 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2021. http://dx.doi.org/10.1109/iccv48922.2021.00403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Haslam, Devin, Tao Zeng, Rongjian Li, and Jing He. "Exploratory Studies Detecting Secondary Structures in Medium Resolution 3D Cryo-EM Images Using Deep Convolutional Neural Networks." In BCB '18: 9th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3233547.3233704.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mu, Yongcheng, Jiangwen Sun, and Jing He. "The Combined Focal Cross Entropy and Dice Loss Function for Segmentation of Protein Secondary Structures from Cryo-EM 3D Density maps." In 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2022. http://dx.doi.org/10.1109/bibm55620.2022.9995469.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

NOGALES, EVA. "CRYO-EM VISUALIZATION OF MACROMOLECULAR STRUCTURE AND DYNAMICS." In 25th Solvay Conference on Chemistry. WORLD SCIENTIFIC, 2021. http://dx.doi.org/10.1142/9789811228216_0037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Scheres, Sjors H. W. "A Bayesian view on cryo-EM structure determination." In 2012 IEEE 9th International Symposium on Biomedical Imaging (ISBI 2012). IEEE, 2012. http://dx.doi.org/10.1109/isbi.2012.6235807.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Penczek, Pawel A., and Francisco J. Asturias. "Ab initio cryo-EM structure determination as a validation problem." In 2014 IEEE International Conference on Image Processing (ICIP). IEEE, 2014. http://dx.doi.org/10.1109/icip.2014.7025419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Golubev, A., B. Fatkhullin, I. Khusainov, L. Jenner, A. Gabdulkhakov, Sh Validov, G. Yusupova, M. Yusupov, and K. Usachev. "Cryo-EM structure of the 70 initiation complex from S. aurues." In XXVIII Российская конференция по электронной микроскопии и VI школа молодых учёных "Современные методы электронной, зондовой микроскопии и комплементарные методы в исследованиях наноструктур и наноматериалов". Crossref, 2020. http://dx.doi.org/10.37795/rcem.2020.51.47.049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hennig, Michael. "CRYO-EM ENABLED STRUCTURE BASED DRUG DISCOVERY ON CHALLENGING MEMBRANE PROTEIN TARGETS." In European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography