Journal articles on the topic 'Crustal evolution'

To see the other types of publications on this topic, follow the link: Crustal evolution.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Crustal evolution.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Magni, Valentina. "Crustal recycling evolution." Nature Geoscience 10, no. 9 (August 21, 2017): 623–24. http://dx.doi.org/10.1038/ngeo3015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lowman, P. D. "Early Crustal Evolution." Science 264, no. 5162 (May 20, 1994): 1180–81. http://dx.doi.org/10.1126/science.264.5162.1180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rollinson, Hugh, and Martin Whitehouse. "Archaean crustal evolution." Precambrian Research 112, no. 1-2 (November 2001): 1–3. http://dx.doi.org/10.1016/s0301-9268(01)00167-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Berthelsen, Asger. "Proterozoic Crustal Evolution." Precambrian Research 70, no. 1-2 (November 1994): 166–67. http://dx.doi.org/10.1016/0301-9268(94)90026-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Friend, Clark R. L. "Archean crustal evolution." Precambrian Research 78, no. 4 (June 1996): 299–301. http://dx.doi.org/10.1016/0301-9268(95)00061-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Baadsgaard, H. "Proterozoic crustal evolution." Chemical Geology 112, no. 1-2 (January 1994): 197. http://dx.doi.org/10.1016/0009-2541(94)90116-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jahn, Bor-Ming. "Proterozoic crustal evolution." Tectonophysics 227, no. 1-4 (November 1993): 227–30. http://dx.doi.org/10.1016/0040-1951(93)90099-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tarney, John. "Archean crustal evolution." Tectonophysics 257, no. 2-4 (June 1996): 297–98. http://dx.doi.org/10.1016/0040-1951(95)00146-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hawkesworth, Chris J., Peter A. Cawood, and Bruno Dhuime. "Tectonics and crustal evolution." GSA Today 26, no. 09 (August 16, 2016): 4–11. http://dx.doi.org/10.1130/gsatg272a.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mooney, W. D., and R. Meissner. "Continental crustal evolution observations." Eos, Transactions American Geophysical Union 72, no. 48 (1991): 537. http://dx.doi.org/10.1029/90eo00380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Hales, A. L. "Speculations about crustal evolution." Journal of Geodynamics 16, no. 1-2 (October 1992): 55–64. http://dx.doi.org/10.1016/0264-3707(92)90018-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Gourgouliatos, Konstantinos N., and Samuel K. Lander. "Axisymmetric magneto-plastic evolution of neutron-star crusts." Monthly Notices of the Royal Astronomical Society 506, no. 3 (July 1, 2021): 3578–87. http://dx.doi.org/10.1093/mnras/stab1869.

Full text
Abstract:
ABSTRACT Magnetic field evolution in neutron-star crusts is driven by the Hall effect and Ohmic dissipation, for as long as the crust is sufficiently strong to absorb Maxwell stresses exerted by the field and thus makes the momentum equation redundant. For the strongest neutron-star fields, however, stresses build to the point of crustal failure, at which point the standard evolution equations are no longer valid. Here, we study the evolution of the magnetic field of the crust up to and beyond crustal failure, whence the crust begins to flow plastically. We perform global axisymmetric evolutions, exploring different types of failures affecting a limited region of the crust. We find that a plastic flow does not simply suppress the Hall effect even in the regime of a low plastic viscosity, but it rather leads to non-trivial evolution – in some cases even overreacting and enhancing the impact of the Hall effect. Its impact is more pronounced in the toroidal field, with the differences on the poloidal field being less substantial. We argue that both the nature of magnetar bursts and their spin-down evolution will be affected by plastic flow, so that observations of these phenomena may help us to constrain the way the crust fails.
APA, Harvard, Vancouver, ISO, and other styles
13

Durrheim, Raymond J., and Walter D. Mooney. "Archean and Proterozoic crustal evolution: Evidence from crustal seismology." Geology 19, no. 6 (1991): 606. http://dx.doi.org/10.1130/0091-7613(1991)019<0606:aapcee>2.3.co;2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Clowes, R. M., F. A. Cook, A. G. Green, C. E. Keen, J. N. Ludden, J. A. Percival, G. M. Quinlan, and G. F. West. "Lithoprobe: new perspectives on crustal evolution." Canadian Journal of Earth Sciences 29, no. 9 (September 1, 1992): 1813–64. http://dx.doi.org/10.1139/e92-145.

Full text
Abstract:
Lithoprobe is Canada's national, collaborative, multidisciplinary earth science research program directed toward an enhanced understanding of how the North American continent evolved. Research in its eight transects or study areas, which span the country from Vancouver Island to Newfoundland and geological time from 4 Ga to the present, is spearheaded by seismic reflection surveys. These, combined with many other studies, are providing new insight into the varied tectonic processes that have been active in forming the continent. Results from the Southern Cordillera transect show that Mesozoic crustal growth occurred in the central and eastern Cordillera by the accretion and amalgamation of exotic terranes, the collision of which resulted in the generation of crustal-scale antiforms and duplexes. After the principal periods of compression, this area was affected by a major episode of extension that led to the unroofing of the metamorphic core complexes. Farther to the west, past and present subduction processes have eroded the lower lithosphere of accreted terranes and left underplated sediments and oceanic lithosphere. The Lithoprobe East transect, covering the Paleozoic Newfoundland Appalachians and Mesozoic rifted Atlantic margin, reveals three lower crustal blocks, each with distinctive reflection signatures on marine seismic data. Structures of the geologically established tectono-stratigraphic domains, imaged clearly by new onshore reflection data, sole at upper crustal to mid-crustal levels, suggesting that much of the surface stratigraphy is allochthonous to the lower crustal blocks. At the ocean–continent transition, interpretations suggest underplating of thinned continental crust by basaltic melt during the rifting process.In Lake Superior, data from the Great Lakes International Multidisciplinary Program on Crustal Evolution (GLIMPCE) transect reveal the complex structures of the late Middle Proterozoic Keweenawan rift, which is up to 35 km deep, that almost split North America. The GLIMPCE data in Lake Huron show a spectacular series of east-dipping crustal-scale reflections that coincide with the Grenville front tectonic zone. These and other data have led to a two-stage model involving collision of an exotic terrane with the southern Superior cratonic margin in the late Early Proterozoic followed by stacking–crustal penetrating imbrication and ramping associated with the Middle Proterozoic Grenvillian orogeny. The Archean Kapuskasing structural zone, a prominent northeast-trending feature that cuts obliquely across the dominant east-west structures of the Superior Province, is interpreted as a thin thrust sheet, soled by a variably reflective décollement, above which about 70 km of crustal shortening has occurred to bring mid-crustal to lower crustal rocks to the surface, and below which the Moho deepens. The shortening may have been accomplished by brittle faulting and erosion at levels above 20 km and ductile folding or faulting in the lower crust. Preliminary studies in the Archean Abitibi greenstone belt indicate that two major fault zones, the Larder Lake–Cadillac and Porcupine–Destor, which host significant mineralization, were generated by crustal-scale thrust and (or) strike-slip tectonics. Archean crustal sections are as structurally diverse and complex as their Proterozoic and Phanerozoic counterparts. The reflection Moho has highly variable characteristics as imaged within transects and among different transects. Crustal and Moho reflectivity observed in the various transects is caused by a wide range of features, including fault–shear zones, lithologic contacts, compositional layering, fluids in zones of high porosity, and anisotropy.
APA, Harvard, Vancouver, ISO, and other styles
15

Mueller, D. "Plate tectonics and crustal evolution." Eos, Transactions American Geophysical Union 79, no. 18 (1998): 220. http://dx.doi.org/10.1029/98eo00164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Kelemen, Peter, and Brad Hacker. "Arc Crustal Genesis and Evolution." GSA Today 16, no. 3 (2006): 20. http://dx.doi.org/10.1130/1052-5173(2006)016[0020:acgae]2.0.co;2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Jahn, Bor-Ming. "Precambrian Crustal Evolution of China." Journal of Asian Earth Sciences 18, no. 5 (April 2000): 633–34. http://dx.doi.org/10.1016/s1367-9120(00)00013-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Nimmo, Francis, and Ken Tanaka. "EARLY CRUSTAL EVOLUTION OF MARS." Annual Review of Earth and Planetary Sciences 33, no. 1 (May 31, 2005): 133–61. http://dx.doi.org/10.1146/annurev.earth.33.092203.122637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Wilson, Marjorie. "Crustal evolution in the Andes." Nature 341, no. 6242 (October 1989): 483–84. http://dx.doi.org/10.1038/341483a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Santosh, M. "Supercontinents and crustal evolution: Preface." Journal of Geodynamics 50, no. 3-4 (September 2010): 113–15. http://dx.doi.org/10.1016/j.jog.2010.04.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Horscroft, Timothy J. "Plate tectonics and crustal evolution." Earth-Science Reviews 42, no. 4 (November 1997): 276–77. http://dx.doi.org/10.1016/s0012-8252(97)81863-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Santosh, M. "Supercontinents and Crustal Evolution: Introduction." Gondwana Research 6, no. 3 (July 2003): 351–52. http://dx.doi.org/10.1016/s1342-937x(05)70991-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Clemens, J. D. "Plate tectonics and crustal evolution." Journal of Structural Geology 12, no. 3 (January 1990): 400–401. http://dx.doi.org/10.1016/0191-8141(90)90028-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Meissner, R., and W. D. Mooney. "Speculations on continental crustal evolution." Eos, Transactions American Geophysical Union 72, no. 52 (1991): 585. http://dx.doi.org/10.1029/90eo00405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Rivers, Toby, and Walfried Schwerdtner. "Post-peak Evolution of the Muskoka Domain, Western Grenville Province: Ductile Detachment Zone in a Crustal-scale Metamorphic Core Complex." Geoscience Canada 42, no. 4 (December 7, 2015): 403. http://dx.doi.org/10.12789/geocanj.2015.42.080.

Full text
Abstract:
The Ottawa River Gneiss Complex (ORGC) in the western Grenville Province of Ontario and Quebec is interpreted as the exhumed mid-crustal core of a large metamorphic core complex. This paper concerns the post-peak evolution of the Muskoka domain, the highest structural level in the southern ORGC that is largely composed of amphibolite-facies straight gneiss derived from retrogressed granulite-facies precursors. It is argued that retrogression and high strain occurred during orogenic collapse and that the Muskoka domain acted as the ductile detachment zone between two stronger crustal units, the underlying granulite-facies core known as the Algonquin domain and the overlying lower grade cover comprising the Composite Arc Belt. Formation of the metamorphic core complex followed Ottawan crustal thickening, peak metamorphism and possible channel flow, and took place in a regime of crustal thinning and gravitational collapse in which the cool brittle–ductile upper crust underwent megaboudinage and the underlying hot ductile mid crust flowed into the intervening megaboudin neck regions. Post-peak crustal thinning in the Muskoka domain began under suprasolidus conditions, was facilitated by widespread retrogression, and was heterogeneous, perhaps attaining ~90% locally. It was associated with a range of ductile, high-temperature extensional structures including multi-order boudinage and associated extensional bending folds, and a regional system of extension-dominated transtensional cross-folds. These ductile structures were followed by brittle–ductile fault propagation folding at higher crustal level after the gneiss complex was substantially exhumed and cooled. Collectively the data record ~60 m.y. of post-peak extension on the margin of an exceptionally large metamorphic core complex in which the ductile detachment zone has a true thickness of ~7 km. The large scale of the core complex is consistent with the deep level of erosion, and the long duration of extensional collapse is compatible with double thickness crust at the metamorphic peak, the presence of abundant leucosome in the mid crust and widespread fluid-fluxed retrogression, collectively pointing to the important role of core complexes in crustal cooling after the peak of the Grenvillian Orogeny.RÉSUMÉLe complexe gneissique de la rivière des Outaouais (ORGC) dans la portion ouest de la Province de Grenville au Québec et en Ontario est interprété comme le cœur d’un grand complexe métamorphique à coeur de noyau. Le présent article porte sur l’évolution post-pic du domaine de Muskoka, soit le niveau structural le plus élevé de l’ORGC composé en grande partie d’orthogneiss au faciès amphibolite dérivés de précurseurs au faciès granulite. Nous soutenons que la rétromorphose et les grandes déformations se sont produites durant l’effondrement orogénique et que le domaine de Muskoka en a été une zone de détachement ductile entre deux unités crustales plus résistantes, le cœur au faciès granulite sous-jacent étant le domaine Algonquin, et la chapeau sus-jacent à plus faible grade de métamorphisme comprenant le Ceinture d’Arc Composite. La formation du complexe métamorphique à coeur de noyau est survenue après l’épaississement crustale ottavien, le pic métamorphique et le possible flux en chenal, et s’est produit en régime d’amincissement crustal et d’effondrement gravitationnel au cours duquel la croûte supérieure refroidie a subit un mégaboudinage et où la croûte moyenne chaude et ductile sous-jacente a flué dans les régions entre les mégaboudins. L’amincissement crustale post-pic dans le domaine de Muskoka, qui a débuté en conditions suprasolidus, a été facilité par une rétromorphose généralisée, hétérogène, atteignant à peu près 90 % par endroits. Celle-ci a été associée avec une gamme de structures d’extension ductiles de haute température, incluant du boudinage de plusieurs ordres de grandeur et de plis de flexure d’extension, ainsi qu’un système régional de plis croisés d’origine transtensionnelle. À ces structures ductiles a succédé une phase de plissement de propagation de failles cassantes à ductiles à un plus haut niveau crustal, après que le complexe gneissique ait été exhumé et se soit refroidi. Prises ensemble, les données indiquent une extension post-pic sur la marge d’un complexe métamorphique à coeur de noyau exceptionnellement grand aux environs de 60 m.y. et dans laquelle la zone de détachement montre une épaisseur véritable d’environ 7 km. La grandeur de l’échelle du complexe métamorphique à coeur de noyau concorde avec le fort niveau d’érosion, et la grande durée de l’effondrement d’extension est compatible avec une croûte de double épaisseur au pic de métamorphisme, la présence de leucosomes abondants dans la croûte moyenne et d’une rétromorphose à flux fluidique généralisée, l’ensemble indiquant l’importance du rôle des complexes métamorphiques à coeur de noyau dans le refroidissement de la croûte après le pic de l’orogenèse grenvillienne.
APA, Harvard, Vancouver, ISO, and other styles
26

Clift, Peter D., Paola Vannucchi, and Jason Phipps Morgan. "Crustal redistribution, crust–mantle recycling and Phanerozoic evolution of the continental crust." Earth-Science Reviews 97, no. 1-4 (December 2009): 80–104. http://dx.doi.org/10.1016/j.earscirev.2009.10.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Lander, S. K. "MAGNETAR FIELD EVOLUTION AND CRUSTAL PLASTICITY." Astrophysical Journal 824, no. 2 (June 14, 2016): L21. http://dx.doi.org/10.3847/2041-8205/824/2/l21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Goldfarb, R. J. "Crustal Evolution and Metallogeny in India." Economic Geology 108, no. 2 (February 21, 2013): 387–88. http://dx.doi.org/10.2113/econgeo.108.2.387.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Glikson, Andrew Y. "Oceanic mega-impacts and crustal evolution." Geology 27, no. 5 (1999): 387. http://dx.doi.org/10.1130/0091-7613(1999)027<0387:omiace>2.3.co;2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Pesonen, L. J., T. H. Torsvik, S. Å. Elming, and G. Bylund. "Crustal evolution of Fennoscandia—palaeomagnetic constraints." Tectonophysics 162, no. 1-2 (May 1989): 27–49. http://dx.doi.org/10.1016/0040-1951(89)90355-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Hofmann, A. W. "Episodic Crustal Growth and Mantle Evolution." Mineralogical Magazine 58A, no. 1 (1994): 420–21. http://dx.doi.org/10.1180/minmag.1994.58a.1.219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Deb, Mihir. "Crustal evolution and metallogeny in India." Journal of the Geological Society of India 83, no. 3 (March 2014): 344. http://dx.doi.org/10.1007/s12594-014-0046-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Hartnady, Chris, Pieter Joubert, and Clives Stowe. "Proterozoic Crustal Evolution in Southwestern Africa." Episodes 8, no. 4 (December 1, 1985): 236–44. http://dx.doi.org/10.18814/epiiugs/1985/v8i4/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Glikson, A. Y., and J. Vickers. "Asteroid impact connections of crustal evolution∗." Australian Journal of Earth Sciences 57, no. 1 (February 2010): 79–95. http://dx.doi.org/10.1080/08120090903416211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Glikson, A. Y. "Asteroids and early precambrian crustal evolution." Earth-Science Reviews 35, no. 3 (October 1993): 285–319. http://dx.doi.org/10.1016/0012-8252(93)90041-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Xingyuan, Ma, and He Guoqi. "Precambrian crustal evolution of eastern Asia." Journal of Southeast Asian Earth Sciences 3, no. 1-4 (January 1989): 9–15. http://dx.doi.org/10.1016/0743-9547(89)90005-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Moorbath, S. "Crustal evolution in the early precambrian." Origins of Life and Evolution of the Biosphere 15, no. 4 (December 1985): 251–61. http://dx.doi.org/10.1007/bf01808172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Tang, Ming, Wei-Qiang Ji, Xu Chu, Anbin Wu, and Chen Chen. "Reconstructing crustal thickness evolution from europium anomalies in detrital zircons." Geology 49, no. 1 (September 4, 2020): 76–80. http://dx.doi.org/10.1130/g47745.1.

Full text
Abstract:
Abstract A new data compilation shows that in intermediate to felsic rocks, zircon Eu/Eu* [chondrite normalized Eu/ ] correlates with whole rock La/Yb, which has been be used to infer crustal thickness. The resultant positive correlation between zircon Eu/Eu* and crustal thickness can be explained by two processes favored during high-pressure differentiation: (1) supression of plagioclase and (2) endogenic oxidation of Eu2+ due to garnet fractionation. Here we calibrate a crustal thickness proxy based on Eu anomalies in zircons. The Eu/Eu*-in-zircon proxy makes it possible to reconstruct crustal thickness evolution in magmatic arcs and orogens using detrital zircons. To evaluate this new proxy, we analyzed detrital zircons separated from modern river sands in the Gangdese belt, southern Tibet. Our results reveal two episodes of crustal thickening (to 60–70 km) since the Cretaceous. The first thickening event occurred at 90–70 Ma, and the second at 50–30 Ma following Eurasia-India collision. These findings are temporally consistent with contractional deformation of sedimentary strata in southern Tibet.
APA, Harvard, Vancouver, ISO, and other styles
39

BALLY, A. W. "Deep-Crustal Evolution: The Nature of the Lower Continental Crust. J." Science 236, no. 4803 (May 15, 1987): 861–62. http://dx.doi.org/10.1126/science.236.4803.861-a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Searle, M. P., and B. R. Hacker. "Structural and metamorphic evolution of the Karakoram and Pamir following India–Kohistan–Asia collision." Geological Society, London, Special Publications 483, no. 1 (September 12, 2018): 555–82. http://dx.doi.org/10.1144/sp483.6.

Full text
Abstract:
AbstractFollowing the c. 50 Ma India–Kohistan arc–Asia collision, crustal thickening uplifted the Himalaya (Indian Plate), and the Karakoram, Pamir and Tibetan Plateau (Asian Plate). Whereas surface geology of Tibet shows limited Cenozoic metamorphism and deformation, and only localized crustal melting, the Karakoram–Pamir show regional sillimanite- and kyanite-grade metamorphism, and crustal melting resulting in major granitic intrusions (Baltoro granites). U/Th–Pb dating shows that metamorphism along the Hunza Karakoram peaked at c. 83–62 and 44 Ma with intrusion of the Hunza dykes at 52–50 Ma and 35 ± 1.0 Ma, and along the Baltoro Karakoram peaked at c. 28–22 Ma, but continued until 5.4–3.5 Ma (Dassu dome). Widespread crustal melting along the Baltoro Batholith spanned 26.4–13 Ma. A series of thrust sheets and gneiss domes (metamorphic core complexes) record crustal thickening and regional metamorphism in the central and south Pamir from 37 to 20 Ma. At 20 Ma, break-off of the Indian slab caused large-scale exhumation of amphibolite-facies crust from depths of 30–55 km, and caused crustal thickening to jump to the fold-and-thrust belt at the northern edge of the Pamir. Crustal thickening, high-grade metamorphism and melting are certainly continuing at depth today in the India–Asia collision zone.
APA, Harvard, Vancouver, ISO, and other styles
41

Wever, Th, Raymond J. Durrheim, and Walter D. Mooney. "Comment and Reply on "Archean and Proterozoic crustal evolution: Evidence from crustal seismology"." Geology 20, no. 7 (1992): 664. http://dx.doi.org/10.1130/0091-7613(1992)020<0664:caroaa>2.3.co;2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

James, D. "Crustal structure of the Kaapvaal craton and its significance for early crustal evolution." Lithos 71, no. 2-4 (December 2003): 413–29. http://dx.doi.org/10.1016/j.lithos.2003.07.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Ziegler, P. A., and P. Dèzes. "Crustal evolution of Western and Central Europe." Geological Society, London, Memoirs 32, no. 1 (2006): 43–56. http://dx.doi.org/10.1144/gsl.mem.2006.032.01.03.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Lee, Seung-Ryeol, and Kyung-O. Cho. "Precambrian Crustal Evolution of the Korean Peninsula." Journal of the Petrological Society of Korea 21, no. 2 (June 30, 2012): 89–112. http://dx.doi.org/10.7854/jpsk.2012.21.2.089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Kaula, William M. "Mantle convection and crustal evolution on Venus." Geophysical Research Letters 17, no. 9 (August 1990): 1401–3. http://dx.doi.org/10.1029/gl017i009p01401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Struik, L. C. "Crustal evolution of the Eastern Canadian Cordillera." Tectonics 7, no. 4 (August 1988): 727–47. http://dx.doi.org/10.1029/tc007i004p00727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Sial, A. N., M. K. Pandit, and V. P. Ferreira. "Granites in Crustal Evolution and Metallogenesis: Introduction." Gondwana Research 5, no. 2 (April 2002): 259–60. http://dx.doi.org/10.1016/s1342-937x(05)70721-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Tsunogae, Toshiaki, Sanghoon Kwon, and M. Santosh. "Crustal evolution in Asia: Correlations and connections." Journal of Asian Earth Sciences 130 (November 2016): 1. http://dx.doi.org/10.1016/j.jseaes.2016.08.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Ashwal, Lewis D., and Grant M. Bybee. "Crustal evolution and the temporality of anorthosites." Earth-Science Reviews 173 (October 2017): 307–30. http://dx.doi.org/10.1016/j.earscirev.2017.09.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Bai Jin and Dai Fengyan. "The early Precambrian crustal evolution of China." Journal of Southeast Asian Earth Sciences 13, no. 3-5 (March 1996): 205–14. http://dx.doi.org/10.1016/0743-9547(96)00027-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography